Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Vogt-Koyanagi-Harada syndrome (VKHS) is a common type of uveitis characterized by the invasion of melanocyte-rich tissues. In recent years, the incidence of VKHS has been increasing yearly, and its specific pathogenesis has not yet been elucidated. However, its pathogenesis has been a hot topic of research. The clinical course of VKHS is characterized by the early involvement of the posterior segment of the eye, including exudative retinal detachment, optic papillitis, bilateral diffuse chorioretinitis, etc. If treated improperly or with delayed treatment, the inflammation may gradually spread to the anterior segment of the eye, leading to vision loss or even vision. This study examines the pathogenesis of VKHS. It reviews the progress of research on the pathogenesis of VKHS, which will help to improve the understanding of VKHS and provide a reference for subsequent studies.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240311578241014050805
2024-10-24
2025-12-17
Loading full text...

Full text loading...

/deliver/fulltext/cmm/25/9/CMM-25-9-01.html?itemId=/content/journals/cmm/10.2174/0115665240311578241014050805&mimeType=html&fmt=ahah

References

  1. MissakaR.F.B.G. SoutoF.M.S. AlbornozN.C.A. Self-Reported Quality of Life in Patients with Long-Standing Vogt-Koyanagi-Harada Disease.Ocul. Immunol. Inflamm.202028340942010.1080/09273948.2019.1595672 31136253
    [Google Scholar]
  2. CinguA.K. BezY. CinarY. Impact of collagen cross-linking on psychological distress and vision and health-related quality of life in patients with keratoconus.Eye Contact Lens201541634935310.1097/ICL.0000000000000129 25794329
    [Google Scholar]
  3. HsuY.R. HuangJ.C.C. TaoY. Noninfectious uveitis in the Asia–Pacific region.Eye (Lond.)2019331667710.1038/s41433‑018‑0223‑z 30323327
    [Google Scholar]
  4. HouS. LiN. LiaoX. KijlstraA. YangP. Uveitis genetics.Exp. Eye Res.202019010785310.1016/j.exer.2019.107853 31669406
    [Google Scholar]
  5. NoroseK. YanoA. WangX.C. Dominance of activated T cells and interleukin-6 in aqueous humor in Vogt-Koyanagi-Harada disease.Invest. Ophthalmol. Vis. Sci.19943513339 8300361
    [Google Scholar]
  6. TakeuchiM. MizukiN. OhnoS. Pathogenesis of non-infectious uveitis elucidated by recent genetic findings.Front. Immunol.20211264047310.3389/fimmu.2021.640473 33912164
    [Google Scholar]
  7. ChiW. YangP. LiB. IL-23 promotes CD4+ T cells to produce IL-17 in Vogt-Koyanagi-Harada disease.J. Allergy Clin. Immunol.200711951218122410.1016/j.jaci.2007.01.010 17335887
    [Google Scholar]
  8. CollisonL.W. WorkmanC.J. KuoT.T. The inhibitory cytokine IL-35 contributes to regulatory T-cell function.Nature2007450716956656910.1038/nature06306 18033300
    [Google Scholar]
  9. YeC. YanoH. WorkmanC.J. VignaliD.A.A. Interleukin-35: Structure, Function and Its Impact on Immune-Related Diseases.J. Interferon Cytokine Res.2021411139140610.1089/jir.2021.0147 34788131
    [Google Scholar]
  10. LopalcoG. LucheriniO.M. LopalcoA. Cytokine Signatures in Mucocutaneous and Ocular Behçet’s Disease.Front. Immunol.2017820010.3389/fimmu.2017.00200 28289419
    [Google Scholar]
  11. GuoJ. GuM. ZhangW. LiuY. QianC. DengA. Aberrant IL ‐35 levels in patients with primary Sjogren’s syndrome.Scand. J. Immunol.2018885e1271810.1111/sji.12718 30589451
    [Google Scholar]
  12. HanM. LiY. LiuS. Elevation of Serum IL-35 in Patients with Primary Sjögren’s Syndrome.J. Interferon Cytokine Res.2018381045245610.1089/jir.2018.0059 30256702
    [Google Scholar]
  13. HuJ. QinY. YiS. Decreased interleukin(IL)-35 Expression is Associated with Active Intraocular Inflammation in Vogt-Koyanagi-Harada (VKH) Disease.Ocul. Immunol. Inflamm.201927459560110.1080/09273948.2018.1433306 29498905
    [Google Scholar]
  14. ChangR. YiS. TanX. MicroRNA-20a-5p suppresses IL-17 production by targeting OSM and CCL1 in patients with Vogt-Koyanagi-Harada disease.Br. J. Ophthalmol.2018102228229010.1136/bjophthalmol‑2017‑311079 28972028
    [Google Scholar]
  15. EL Andaloussi SMäger I, Breakefield XO, Wood MJA. Extracellular vesicles: biology and emerging therapeutic opportunities.Nat. Rev. Drug Discov.201312534735710.1038/nrd3978 23584393
    [Google Scholar]
  16. LawsonC. KovacsD. FindingE. UlfelderE. Luis-FuentesV. Extracellular Vesicles: Evolutionarily Conserved Mediators of Intercellular Communication.Yale J. Biol. Med.2017903481491 28955186
    [Google Scholar]
  17. LiB. SunN. YangF. Plasma-Derived Small Extracellular Vesicles From VKH Patients Suppress T Cell Proliferation via MicroRNA-410-3p Modulation of CXCL5 Axis.Invest. Ophthalmol. Vis. Sci.202364121110.1167/iovs.64.12.11 37672286
    [Google Scholar]
  18. JiangG. YunJ. KaplanH.J. ZhaoY. SunD. ShaoH. Vaccination with circulating exosomes in autoimmune uveitis prevents recurrent intraocular inflammation.Clin. Exp. Ophthalmol.20214991069107710.1111/ceo.13990 34455666
    [Google Scholar]
  19. YiS. ChangR. HuJ. Disabled-2 (DAB2) Overexpression Inhibits Monocyte-Derived Dendritic Cells’ Function in Vogt-Koyanagi-Harada Disease.Invest. Ophthalmol. Vis. Sci.201859114662466910.1167/iovs.18‑24630 30267088
    [Google Scholar]
  20. InomataH SakamotoT. Immunohistochemical studies of Vogt-Koyanagi-Harada disease with sunset sky fundus.Curr Eye Res19909sup1)(Suppl.354010.3109/02713689008999417 1974489
    [Google Scholar]
  21. ChanC.C. PalestineA.G. KuwabaraT. NussenblattR.B. Immunopathologic study of Vogt-Koyanagi-Harada syndrome.Am. J. Ophthalmol.1988105660761110.1016/0002‑9394(88)90052‑9 3259837
    [Google Scholar]
  22. Abu El-AsrarA.M. DheyabA. KhatibD. StruyfS. Van DammeJ. OpdenakkerG. Efficacy of B Cell Depletion Therapy with Rituximab in Refractory Chronic Recurrent Uveitis Associated with Vogt-Koyanagi-Harada Disease.Ocul. Immunol. Inflamm.202230375075710.1080/09273948.2020.1820531 32990482
    [Google Scholar]
  23. El-AsrarA.M.A. BerghmansN. Al-ObeidanS.A. Differential CXC and CX3C Chemokine Expression Profiles in Aqueous Humor of Patients With Specific Endogenous Uveitic Entities.Invest. Ophthalmol. Vis. Sci.20185962222222810.1167/iovs.17‑23225 29715366
    [Google Scholar]
  24. Abu El-AsrarA.M. BerghmansN. Al-ObeidanS.A. The Cytokine Interleukin-6 and the Chemokines CCL20 and CXCL13 Are Novel Biomarkers of Specific Endogenous Uveitic Entities.Invest. Ophthalmol. Vis. Sci.201657114606461310.1167/iovs.16‑19758 27603722
    [Google Scholar]
  25. LeglerD.F. LoetscherM. RoosR.S. Clark-LewisI. BaggioliniM. MoserB. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5.J. Exp. Med.1998187465566010.1084/jem.187.4.655 9463416
    [Google Scholar]
  26. HaselowK. BodeJ.G. WammersM. Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages.J. Leukoc. Biol.20139461253126410.1189/jlb.0812396 23990628
    [Google Scholar]
  27. YonenoK. HisamatsuT. ShimamuraK. TGR 5 signalling inhibits the production of pro‐inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn’s disease.Immunology20131391192910.1111/imm.12045 23566200
    [Google Scholar]
  28. YangJ. HuJ. FengL. Decreased Expression of TGR5 in Vogt-Koyanagi-Harada (VKH) Disease.Ocul. Immunol. Inflamm.202028220020810.1080/09273948.2018.1560477 30794473
    [Google Scholar]
  29. OhtaK. YoshimuraN. Expression of Fas antigen on helper T lymphocytes in Vogt-Koyanagi-Harada disease.Graefes Arch. Clin. Exp. Ophthalmol.1998236643443910.1007/s004170050102 9646088
    [Google Scholar]
  30. DamicoF.M. BezerraF.T. SilvaG.C. GasparinF. YamamotoJ.H. New insights into Vogt-Koyanagi-Harada disease.Arq. Bras. Oftalmol.200972341342010.1590/S0004‑27492009000300028 19668980
    [Google Scholar]
  31. SugitaS. TakaseH. TaguchiC. Ocular infiltrating CD4+ T cells from patients with Vogt-Koyanagi-Harada disease recognize human melanocyte antigens.Invest. Ophthalmol. Vis. Sci.20064762547255410.1167/iovs.05‑1547 16723469
    [Google Scholar]
  32. YamakiK. GochoK. HayakawaK. KondoI. SakuragiS. Tyrosinase family proteins are antigens specific to Vogt-Koyanagi-Harada disease.J. Immunol.2000165127323732910.4049/jimmunol.165.12.7323 11120868
    [Google Scholar]
  33. WuX. LiuY. JinS. Single-cell sequencing of immune cells from anticitrullinated peptide antibody positive and negative rheumatoid arthritis.Nat. Commun.2021121497710.1038/s41467‑021‑25246‑7 34404786
    [Google Scholar]
  34. FiorilloM.T. HaroonN. CicciaF. BrebanM. Editorial: Ankylosing Spondylitis and Related Immune-Mediated Disorders.Front. Immunol.201910123210.3389/fimmu.2019.01232 31214188
    [Google Scholar]
  35. WeiderT. RichardsonS.J. MorganN.G. PaulsenT.H. Dahl-JørgensenK. HammerstadS.S. Upregulation of HLA Class I and Antiviral Tissue Responses in Hashimoto’s Thyroiditis.Thyroid202030343244210.1089/thy.2019.0607 31910110
    [Google Scholar]
  36. AndreoliC.M. Stephen FosterC. Vogt-Koyanagi-Harada Disease.Int. Ophthalmol. Clin.200646211112210.1097/00004397‑200604620‑00011 16770158
    [Google Scholar]
  37. KimM.H. SeongM.C. KwakN.H. Association of HLA with Vogt-Koyanagi-Harada syndrome in Koreans.Am. J. Ophthalmol.2000129217317710.1016/S0002‑9394(99)00434‑1 10682969
    [Google Scholar]
  38. SakataV.M. da SilvaF.T. HirataC.E. High rate of clinical recurrence in patients with Vogt–Koyanagi–Harada disease treated with early high-dose corticosteroids.Graefes Arch. Clin. Exp. Ophthalmol.2015253578579010.1007/s00417‑014‑2904‑z 25592477
    [Google Scholar]
  39. ShiT. LvW. ZhangL. ChenJ. ChenH. Association of HLA-DR4/HLA-DRB1*04 with Vogt-Koyanagi-Harada disease: a systematic review and meta-analysis.Sci. Rep.201441688710.1038/srep06887 25382027
    [Google Scholar]
  40. DamicoF.M. Cunha-NetoE. GoldbergA.C. T-cell recognition and cytokine profile induced by melanocyte epitopes in patients with HLA-DRB1*0405-positive and -negative Vogt-Koyanagi-Harada uveitis.Invest. Ophthalmol. Vis. Sci.20054672465247110.1167/iovs.04‑1273 15980237
    [Google Scholar]
  41. LiuB. DengT. ZhuL. ZhongJ. Association of human leukocyte antigen (HLA)-DQ and HLA-DQA1/DQB1 alleles with Vogt–Koyanagi–Harada disease.Medicine (Baltimore)2018977e991410.1097/MD.0000000000009914 29443768
    [Google Scholar]
  42. DuL. YangP. HouS. Association of the CTLA-4 gene with Vogt–Koyanagi–Harada syndrome.Clin. Immunol.20081271434810.1016/j.clim.2008.01.004 18282809
    [Google Scholar]
  43. ZhuY. YuH. QiuY. Promoter Hypermethylation of GATA3, IL-4, and TGF-β Confers Susceptibility to Vogt-Koyanagi-Harada Disease in Han Chinese.Invest. Ophthalmol. Vis. Sci.20175831529153610.1167/iovs.16‑21188 28278322
    [Google Scholar]
  44. QiuY. YuH. ZhuY. Hypermethylation of Interferon Regulatory Factor 8 (IRF8) Confers Risk to Vogt-Koyanagi-Harada Disease.Sci. Rep.201771100710.1038/s41598‑017‑01249‑7 28432342
    [Google Scholar]
  45. HouS. YeZ. LiaoD. miR-23a, miR-146a and miR-301a confer predisposition to Vogt-Koyanagi-Harada syndrome but not to Behcet’s disease.Sci. Rep.2016612005710.1038/srep20057 26818976
    [Google Scholar]
  46. ZhangL. HuangY. CuiX. Increased Expression of Indoleamine 2,3-Dioxygenase (IDO) in Vogt-Koyanagi-Harada (VKH) Disease May Lead to a Shift of T Cell Responses Toward a Treg Population.Inflammation20204351780178810.1007/s10753‑020‑01252‑7 32435912
    [Google Scholar]
  47. PertovaaraM. HasanT. RaitalaA. Indoleamine 2,3-dioxygenase activity is increased in patients with systemic lupus erythematosus and predicts disease activation in the sunny season.Clin. Exp. Immunol.2007150227427810.1111/j.1365‑2249.2007.03480.x 17711489
    [Google Scholar]
  48. ZhuL. JiF. WangY. Synovial autoreactive T cells in rheumatoid arthritis resist IDO-mediated inhibition.J. Immunol.2006177118226823310.4049/jimmunol.177.11.8226 17114500
    [Google Scholar]
  49. WolfA.M. WolfD. RumpoldH. Overexpression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease.Clin. Immunol.20041131475510.1016/j.clim.2004.05.004 15380529
    [Google Scholar]
  50. OrabonaC. GrohmannU. Indoleamine 2,3-dioxygenase and regulatory function: tryptophan starvation and beyond.Methods Mol. Biol.201067726928010.1007/978‑1‑60761‑869‑0_19 20941617
    [Google Scholar]
  51. CuiX. SuG. ZhangL. Integrated omics analysis of sweat reveals an aberrant amino acid metabolism pathway in Vogt–Koyanagi–Harada disease.Clin. Exp. Immunol.2020200325025910.1111/cei.13435 32222072
    [Google Scholar]
  52. PacoldM.E. BrimacombeK.R. ChanS.H. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate.Nat. Chem. Biol.201612645245810.1038/nchembio.2070 27110680
    [Google Scholar]
  53. PanD. HiroseT. Vogt-Koyanagi-Harada syndrome: review of clinical features.Semin. Ophthalmol.2011264-531231510.3109/08820538.2011.588654 21958180
    [Google Scholar]
  54. SchallreuterK.U. SalemM.A.E.L. GibbonsN.C.J. Blunted epidermal L‐tryptophan metabolism in vitiligo affects immune response and ROS scavenging by Fenton chemistry, part 1: epidermal H 2 O 2/ONOO – ‐mediated stress abrogates tryptophan hydroxylase and dopa decarboxylase activities, leading to low serotonin and melatonin levels.FASEB J.20122662457247010.1096/fj.11‑197137 22415302
    [Google Scholar]
  55. ZhaoH.F. JiangW.D. LiuY. Dietary choline regulates antibacterial activity, inflammatory response and barrier function in the gills of grass carp (Ctenopharyngodon idella).Fish Shellfish Immunol.20165213915010.1016/j.fsi.2016.03.029 26988287
    [Google Scholar]
  56. VeskovicM. MladenovicD. MilenkovicM. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease.Eur. J. Pharmacol.2019848394810.1016/j.ejphar.2019.01.043 30689995
    [Google Scholar]
  57. KochM.W. IlnytskyyY. GolubovA. MetzL.M. YongV.W. KovalchukO. Global transcriptome profiling of mild relapsing‐remitting versus primary progressive multiple sclerosis.Eur. J. Neurol.201825465165810.1111/ene.13565 29316044
    [Google Scholar]
  58. SantosA.L.M. VitórioJ.G. de PaivaM.J.N. Frontotemporal dementia: Plasma metabolomic signature using gas chromatography–mass spectrometry.J. Pharm. Biomed. Anal.202018911342410.1016/j.jpba.2020.113424 32619729
    [Google Scholar]
  59. ZhangQ. YinX. WangH. Fecal Metabolomics and Potential Biomarkers for Systemic Lupus Erythematosus.Front. Immunol.20191097610.3389/fimmu.2019.00976 31130958
    [Google Scholar]
  60. XuJ. SuG. HuangX. Metabolomic Analysis of Aqueous Humor Identifies Aberrant Amino Acid and Fatty Acid Metabolism in Vogt-Koyanagi-Harada and Behcet’s Disease.Front. Immunol.20211258739310.3389/fimmu.2021.587393 33732231
    [Google Scholar]
  61. YiX. YangP. SunM. YangY. LiF. Decreased 1,25-Dihydroxyvitamin D3 level is involved in the pathogenesis of Vogt-Koyanagi-Harada (VKH) disease.Mol. Vis.201117673679 21403851
    [Google Scholar]
  62. JohnstonJ. BasatvatS. IlyasZ. FrancisS. Kiss-TothE. Tribbles in inflammation.Biochem. Soc. Trans.20154351069107410.1042/BST20150095 26517925
    [Google Scholar]
  63. LiY. SuG. HuangF. Identification of differently expressed mRNAs by peripheral blood mononuclear cells in Vogt-Koyanagi-Harada disease.Genes Dis.2022951378138810.1016/j.gendis.2021.06.002 35873021
    [Google Scholar]
  64. SoodA.B. O’KeefeG. BuiD. JainN. Vogt-Koyanagi-Harada Disease Associated with Hepatitis B Vaccination.Ocul. Immunol. Inflamm.201927452452710.1080/09273948.2018.1483520 29953303
    [Google Scholar]
  65. KasaharaA. HiraideA. TomitaN. Vogt-Koyanagi-Harada disease occurring during interferon alpha therapy for chronic hepatitis C.J. Gastroenterol.200439111106110910.1007/s00535‑004‑1452‑4 15580406
    [Google Scholar]
  66. SugitaS. TakaseH. KawaguchiT. TaguchiC. MochizukiM. Cross-reaction between tyrosinase peptides and cytomegalovirus antigen by T cells from patients with Vogt-Koyanagi-Harada disease.Int. Ophthalmol.2007272-3879510.1007/s10792‑006‑9020‑y 17253112
    [Google Scholar]
  67. YuN. ZhangS. SunT. KangK. GuanM. XiangL. Double‐stranded RNA induces melanocyte death via activation of Toll‐like receptor 3.Exp. Dermatol.201120213413910.1111/j.1600‑0625.2010.01208.x 21255093
    [Google Scholar]
  68. Vega-TapiaF. BustamanteM. ValenzuelaR.A. UrzuaC.A. CuitinoL. miRNA Landscape in Pathogenesis and Treatment of Vogt–Koyanagi–Harada Disease.Front. Cell Dev. Biol.2021965851410.3389/fcell.2021.658514 34041239
    [Google Scholar]
  69. CantarelB.L. WaubantE. ChehoudC. Gut microbiota in multiple sclerosis: possible influence of immunomodulators.J. Investig. Med.201563572973410.1097/JIM.0000000000000192 25775034
    [Google Scholar]
  70. TremlettH. FadroshD.W. FaruqiA.A. Gut microbiota in early pediatric multiple sclerosis: a case−control study.Eur. J. Neurol.20162381308132110.1111/ene.13026 27176462
    [Google Scholar]
  71. YeZ. ZhangN. WuC. A metagenomic study of the gut microbiome in Behcet’s disease.Microbiome20186113510.1186/s40168‑018‑0520‑6 30077182
    [Google Scholar]
  72. LópezP. SánchezB. MargollesA. SuárezA. Intestinal dysbiosis in systemic lupus erythematosus: cause or consequence?Curr. Opin. Rheumatol.201628551552210.1097/BOR.0000000000000309 27466725
    [Google Scholar]
  73. YeZ. WuC. ZhangN. Altered gut microbiome composition in patients with Vogt-Koyanagi-Harada disease.Gut Microbes202011353955510.1080/19490976.2019.1700754 31928124
    [Google Scholar]
  74. ManniP. SaturnoM.C. AccorintiM. Vogt-Koyanagi-Harada Disease and COVID.J. Clin. Med.20231219624210.3390/jcm12196242 37834885
    [Google Scholar]
  75. JooC.W. KimY.K. ParkS.P. Vogt-Koyanagi-Harada Disease following mRNA-1273 (Moderna) COVID-19 Vaccination.Ocul. Immunol. Inflamm.20223051250125410.1080/09273948.2022.2053547 35404752
    [Google Scholar]
  76. ChenX. WangB. LiX. Acute-onset Vogt-Koyanagi-Harada like uveitis following Covid-19 inactivated virus vaccination.Am. J. Ophthalmol. Case Rep.20222610140410.1016/j.ajoc.2022.101404 35165663
    [Google Scholar]
  77. KimM. Vogt-Koyanagi-Harada Syndrome following influenza vaccination.Indian J. Ophthalmol.20166419810.4103/0301‑4738.178141 26953036
    [Google Scholar]
  78. DoganB. ErolM.K. CengizA. Vogt–Koyanagi–Harada disease following BCG vaccination and tuberculosis.Springerplus20165160310.1186/s40064‑016‑2223‑4 27247899
    [Google Scholar]
  79. MoorthyR.S. InomataH. RaoN.A. Vogt-Koyanagi-Harada syndrome.Surv. Ophthalmol.199539426529210.1016/S0039‑6257(05)80105‑5 7725227
    [Google Scholar]
  80. DamicoF.M. MarinM.L. GoldbergA.C. Revised diagnostic criteria for vogt-koyanagi-harada disease: considerations on the different disease categories.Am. J. Ophthalmol.20091472339345.e510.1016/j.ajo.2008.08.034 18992868
    [Google Scholar]
  81. ReadR.W. HollandG.N. RaoN.A. Revised diagnostic criteria for Vogt-Koyanagi-Harada disease: report of an international committee on nomenclature11The authors constitute the International Committee on Vogt-Koyanagi-Harada Disease Nomenclature, representing the participants of the First International Workshop on Vogt-Koyanagi-Harada Disease. A full list of participants appears at the end of the article.Am. J. Ophthalmol.2001131564765210.1016/S0002‑9394(01)00925‑4 11336942
    [Google Scholar]
  82. Al DousaryS. Auditory and vestibular manifestations of Vogt–Koyanagi–Harada disease.J. Laryngol. Otol.2011125213814110.1017/S0022215110001817 20880417
    [Google Scholar]
  83. YangP. RenY. LiB. FangW. MengQ. KijlstraA. Clinical characteristics of Vogt-Koyanagi-Harada syndrome in Chinese patients.Ophthalmology20071143606614.e310.1016/j.ophtha.2006.07.040 17123618
    [Google Scholar]
  84. SakataV.M. da SilvaF.T. HirataC.E. de CarvalhoJ.F. YamamotoJ.H. Diagnosis and classification of Vogt–Koyanagi–Harada disease.Autoimmun. Rev.2014134-555055510.1016/j.autrev.2014.01.023 24440284
    [Google Scholar]
  85. UrzuaC.A. VelasquezV. SabatP. Earlier immunomodulatory treatment is associated with better visual outcomes in a subset of patients with V ogt‐ K oyanagi‐ H arada disease.Acta Ophthalmol.2015936e475e48010.1111/aos.12648 25565265
    [Google Scholar]
  86. PapasavvasI. Tugal-TutkunI. HerbortC.P.Jr Vogt-Koyanagi-Harada is a curable autoimmune disease: Early diagnosis and immediate dual steroidal and non-steroidal immunosuppression are crucial prerequisites.J. Curr. Ophthalmol.202032431031410.4103/JOCO.JOCO_190_20 33553831
    [Google Scholar]
  87. Abu El-AsrarA.M. Al MudhaiyanT. Al NajashiA.A. Chronic Recurrent Vogt–Koyanagi–Harada Disease and Development of ‘Sunset Glow Fundus’ Predict Worse Retinal Sensitivity.Ocul. Immunol. Inflamm.201725447548510.3109/09273948.2016.1139730 27003480
    [Google Scholar]
  88. Abu El-AsrarA.M. Al TamimiM. HemachandranS. Al-MezaineH.S. Al-MuammarA. KangaveD. Prognostic factors for clinical outcomes in patients with Vogt-Koyanagi-Harada disease treated with high-dose corticosteroids.Acta Ophthalmol.2013916e486e49310.1111/aos.12127 23575246
    [Google Scholar]
  89. AlBloushiA.F. AlfawazA.M. AlZaidA. AlsalamahA.K. GikandiP.W. Abu El-AsrarA.M. Incidence, Risk Factors and Surgical Outcomes of Cataract among Patients with Vogt-Koyanagi-Harada Disease.Ocul. Immunol. Inflamm.202129112813610.1080/09273948.2019.1668430 31638886
    [Google Scholar]
  90. CunninghamE.T.Jr RathinamS.R. Tugal-TutkunI. MuccioliC. ZierhutM. Vogt-Koyanagi-Harada Disease.Ocul. Immunol. Inflamm.201422424925210.3109/09273948.2014.939530 25014114
    [Google Scholar]
  91. KawaguchiT. HorieS. BouchenakiN. Ohno-MatsuiK. MochizukiM. HerbortC.P. Suboptimal therapy controls clinically apparent disease but not subclinical progression of Vogt-Koyanagi-Harada disease.Int. Ophthalmol.2010301415010.1007/s10792‑008‑9288‑1 19151926
    [Google Scholar]
  92. HashizumeK. ImamuraY. FujiwaraT. MachidaS. IshidaM. KurosakaD. Choroidal thickness in eyes with posterior recurrence of Vogt–Koyanagi–Harada disease after high‐dose steroid therapy.Acta Ophthalmol.2014926e490e49110.1111/aos.12384 24588838
    [Google Scholar]
  93. CheeS.P. ChanS.W.N. JapA. Comparison of Enhanced Depth Imaging and Swept Source Optical Coherence Tomography in Assessment of Choroidal Thickness in Vogt–Koyanagi–Harada Disease.Ocul. Immunol. Inflamm.201725452853210.3109/09273948.2016.1151896 27070488
    [Google Scholar]
  94. JaisankarD. RamanR. SharmaH.R. Choroidal and Retinal Anatomical Responses Following Systemic Corticosteroid Therapy in Vogt–Koyanagi–Harada Disease Using Swept-Source Optical Coherence Tomography.Ocul. Immunol. Inflamm.201927223524310.1080/09273948.2017.1332231 28700251
    [Google Scholar]
  95. HerbortC.P. MantovaniA. PapadiaM. Use of indocyanine green angiography in uveitis.Int. Ophthalmol. Clin.2012524133110.1097/IIO.0b013e318265d48b 22954926
    [Google Scholar]
  96. FardeauC. TranT.H.C. GharbiB. CassouxN. BodaghiB. LeHoangP. Retinal fluorescein and indocyanine green angiography and optical coherence tomography in successive stages of Vogt-Koyanagi-Harada disease.Int. Ophthalmol.2007272-316317210.1007/s10792‑006‑9024‑7 17273903
    [Google Scholar]
  97. BalciO. GascA. JeanninB. HerbortC.P.Jr Enhanced depth imaging is less suited than indocyanine green angiography for close monitoring of primary stromal choroiditis: a pilot report.Int. Ophthalmol.201737373774810.1007/s10792‑016‑0303‑7 27486023
    [Google Scholar]
  98. ElahiS. GillmannK. GascA. JeanninB. HerbortC.P.Jr Sensitivity of indocyanine green angiography compared to fluorescein angiography and enhanced depth imaging optical coherence tomography during tapering and fine-tuning of therapy in primary stromal choroiditis: A case series.J. Curr. Ophthalmol.201931218018710.1016/j.joco.2018.12.006 31317097
    [Google Scholar]
  99. HerbortC.P.Jr MantovaniA. Tugal-TutkunI. PapasavvasI. Classification of Non-Infectious and/or Immune Mediated Choroiditis: A Brief Overview of the Essentials.Diagnostics (Basel)202111693910.3390/diagnostics11060939 34073914
    [Google Scholar]
  100. BacsalK. WenD.S.H. CheeS.P. Concomitant choroidal inflammation during anterior segment recurrence in Vogt-Koyanagi-Harada disease.Am. J. Ophthalmol.20081453480486.e210.1016/j.ajo.2007.10.012 18191100
    [Google Scholar]
  101. HirookaK. SaitoW. NambaK. Significant role of the choroidal outer layer during recovery from choroidal thickening in Vogt-Koyanagi-Harada disease patients treated with systemic corticosteroids.BMC Ophthalmol.201515118110.1186/s12886‑015‑0171‑3 26677974
    [Google Scholar]
  102. NakayamaM. KeinoH. OkadaA.A. Enhanced depth imaging optical coherence tomography of the choroid in Vogt-Koyanagi-Harada disease.Retina201232102061206910.1097/IAE.0b013e318256205a 23095726
    [Google Scholar]
  103. CheeS.P. JapA. BacsalK. Spectrum of Vogt-Koyanagi-Harada disease in Singapore.Int. Ophthalmol.2007272-313714210.1007/s10792‑006‑9009‑6 17103022
    [Google Scholar]
  104. FangW. ZhouH. YangP. HuangX. WangL. KijlstraA. Longitudinal quantification of aqueous flare and cells in Vogt-Koyanagi-Harada disease.Br. J. Ophthalmol.200892218218510.1136/bjo.2007.128967 17965105
    [Google Scholar]
  105. OpdenakkerG. Abu El-AsrarA. Van DammeJ. Remnant Epitopes Generating Autoimmunity: From Model to Useful Paradigm.Trends Immunol.202041536737810.1016/j.it.2020.03.004 32299652
    [Google Scholar]
  106. Abu El-AsrarA.M. DosariM. HemachandranS. GikandiP.W. Al-MuammarA. Mycophenolate mofetil combined with systemic corticosteroids prevents progression to chronic recurrent inflammation and development of ‘sunset glow fundus’ in initial‐onset acute uveitis associated with Vogt–Koyanagi–Harada disease.Acta Ophthalmol.2017951859010.1111/aos.13189 27535102
    [Google Scholar]
  107. Abu El-AsrarA.M. HemachandranS. Al-MezaineH.S. KangaveD. Al-MuammarA.M. The outcomes of mycophenolate mofetil therapy combined with systemic corticosteroids in acute uveitis associated with Vogt–Koyanagi–Harada disease.Acta Ophthalmol.2012908e603e60810.1111/j.1755‑3768.2012.02498.x 22971163
    [Google Scholar]
  108. HerbortC.P.Jr Abu El AsrarA.M. TakeuchiM. Catching the therapeutic window of opportunity in early initial-onset Vogt–Koyanagi–Harada uveitis can cure the disease.Int. Ophthalmol.20193961419142510.1007/s10792‑018‑0949‑4 29948499
    [Google Scholar]
  109. ZhongZ. DaiL. WuQ. A randomized non-inferiority trial of therapeutic strategy with immunosuppressants versus biologics for Vogt-Koyanagi-Harada disease.Nat. Commun.2023141376810.1038/s41467‑023‑39483‑5 37355662
    [Google Scholar]
  110. NiccoliL. NanniniC. CassaràE. GiniG. LenzettiI. CantiniF. Efficacy of infliximab therapy in two patients with refractory Vogt-Koyanagi-Harada disease.Br. J. Ophthalmol.200993111553155410.1136/bjo.2008.153981 19854741
    [Google Scholar]
  111. UmranR.M.R. ShukurZ.Y.H. Rituximab for sight-threatening refractory pediatric Vogt–Koyanagi–Harada disease.Mod. Rheumatol.201828119719910.3109/14397595.2015.1071234 26154298
    [Google Scholar]
  112. BollettaE. GozziF. MastrofilippoV. Efficacy of rituximab treatment in vogt-koyanagi-harada disease poorly controlled by traditional immunosuppressive treatment.Ocul. Immunol. Inflamm.20223061303130810.1080/09273948.2021.1880604 33793383
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240311578241014050805
Loading
/content/journals/cmm/10.2174/0115665240311578241014050805
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Autoimmune disease; pathogenesis; Vogt-Koyanagi-Harada Syndrome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test