Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Obstructive sleep apnea (OSA) is widespread in the population and affects as many as one billion people worldwide. OSA is associated with dysfunction of the brain system that controls breathing, which leads to intermittent hypoxia (IH), hypercapnia, and oxidative stress (OS). The number of NOD-like receptor family pyrin domain-containing (NLRP3) inflammasome was increased after IH, hypercapnia, and OS. NLRP3 inflammasome is closely related to inflammation. NLRP3 inflammasome causes a series of inflammatory diseases by activating IL-1β and IL-18. Subsequently, NLRP3 inflammasome plays an important role in the complications of OSA, including Type 2 diabetes (T2DM), coronary heart disease (CHD), hypertension, neuro-inflammation, and depression. This review will introduce the basic composition and structure of the NLRP3 inflammasome and focus on the relationship between the NLRP3 inflammasome and OSA and OSA complications. We can deeply understand how NLRP3 inflammasome is strongly associated with OSA and OSA complications.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240294605240426123650
2024-05-16
2025-12-10
Loading full text...

Full text loading...

References

  1. FinnssonE. ÓlafsdóttirG.H. LoftsdóttirD.L. A scalable method of determining physiological endotypes of sleep apnea from a polysomnographic sleep study.Sleep2021441zsaa16810.1093/sleep/zsaa168 32929467
    [Google Scholar]
  2. GongL.J. WangX.Y. GuW.Y. WuX. Pinocembrin ameliorates intermittent hypoxia-induced neuroinflammation through BNIP3-dependent mitophagy in a murine model of sleep apnea.J. Neuroinflammation202017133710.1186/s12974‑020‑02014‑w 33176803
    [Google Scholar]
  3. LévyP. RyanS. OldenburgO. ParatiG. Sleep apnoea and the heart.Eur. Respir. Rev.20132212933335210.1183/09059180.00004513 23997061
    [Google Scholar]
  4. PrabhakarN.R. PengY.J. NanduriJ. Hypoxia-inducible factors and obstructive sleep apnea.J. Clin. Invest.2020130105042505110.1172/JCI137560 32730232
    [Google Scholar]
  5. BenjafieldA.V. AyasN.T. EastwoodP.R. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis.Lancet Respir. Med.20197868769810.1016/S2213‑2600(19)30198‑5 31300334
    [Google Scholar]
  6. WuX. GongL. XieL. NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-Parkin pathway of mitophagy in a murine model of sleep apnea.Front. Immunol.20211262816810.3389/fimmu.2021.628168 33717152
    [Google Scholar]
  7. CicconeM. ScicchitanoP. ZitoA. Correlation between inflammatory markers of atherosclerosis and carotid intima-media thickness in Obstructive Sleep Apnea.Molecules20141921651166210.3390/molecules19021651 24481114
    [Google Scholar]
  8. OrrùG. StorariM. ScanoA. PirasV. TaibiR. ViscusoD. Obstructive Sleep Apnea, oxidative stress, inflammation and endothelial dysfunction-An overview of predictive laboratory biomarkers.Eur. Rev. Med. Pharmacol. Sci.2020241269396948 32633387
    [Google Scholar]
  9. BehboudiA. ThelanderT. YaziciD. Association of TNF-α (-308G/A) gene polymorphism with circulating TNF-α levels and excessive daytime sleepiness in adults with coronary artery disease and concomitant obstructive sleep apnea.J. Clin. Med.20211015341310.3390/jcm10153413 34362196
    [Google Scholar]
  10. WaliS. ManzarM. AbdelazizM. Putative associations between inflammatory biomarkers, obesity, and obstructive sleep apnea.Ann. Thorac. Med.202116432933610.4103/atm.atm_644_20 34820020
    [Google Scholar]
  11. HedbergP. NohlertE. TegelbergÅ. Effects of oral appliance treatment on inflammatory biomarkers in obstructive sleep apnea: A randomised controlled trial.J. Sleep Res.2021304e1325310.1111/jsr.13253 33300239
    [Google Scholar]
  12. ZhaoY.S. TanM. SongJ.X. Involvement of hepcidin in cognitive damage induced by chronic intermittent hypoxia in mice.Oxid. Med. Cell. Longev.2021202111410.1155/2021/8520967 34394834
    [Google Scholar]
  13. WaniK. AlHarthiH. AlghamdiA. SabicoS. Al-DaghriN.M. Role of NLRP3 inflammasome activation in obesity-mediated metabolic disorders.Int. J. Environ. Res. Public Health202118251110.3390/ijerph18020511 33435142
    [Google Scholar]
  14. MengX. ZhangX. SuX. Daphnes Cortex and its licorice-processed products suppress inflammation via the TLR4/NF-κB/NLRP3 signaling pathway and regulation of the metabolic profile in the treatment of rheumatoid arthritis.J. Ethnopharmacol.202228311465710.1016/j.jep.2021.114657 34600080
    [Google Scholar]
  15. GuoZ. YuS. ChenX. YeR. ZhuW. LiuX. NLRP3 is involved in ischemia/reperfusion injury.CNS Neurol. Disord. Drug Targets201615669971210.2174/1871527315666160321111829 26996163
    [Google Scholar]
  16. KergetB. KergetF. Yüce KahramanÇ. AksakalA. ArazÖ. The relationship between NLRP3 rs10159239 and Vaspin rs2236242 gene variants and obstructive sleep apnea.Ups. J. Med. Sci.2021126112610.48101/ujms.v126.7603 34349888
    [Google Scholar]
  17. DuP. WangJ. HanY. FengJ. Blocking the LncRNA MALAT1/miR-224-5p/NLRP3 axis inhibits the hippocampal inflammatory response in T2DM With OSA.Front. Cell. Neurosci.2020149710.3389/fncel.2020.00097 32477065
    [Google Scholar]
  18. YuC. LiuY. SunL. Chronic obstructive sleep apnea promotes aortic remodeling in canines through miR-145/Smad3 signaling pathway.Oncotarget2017823377053771610.18632/oncotarget.17144 28465478
    [Google Scholar]
  19. YuZ.W. ZhangJ. LiX. WangY. FuY.H. GaoX.Y. A new research hot spot: The role of NLRP3 inflammasome activation, a key step in pyroptosis, in diabetes and diabetic complications.Life Sci.202024011713810.1016/j.lfs.2019.117138 31809715
    [Google Scholar]
  20. WangC. TanJ. MiaoY. ZhangQ. Obstructive sleep apnea, prediabetes and progression of type 2 diabetes: A systematic review and meta-analysis.J. Diabetes Investig.20221381396141110.1111/jdi.13793 35302714
    [Google Scholar]
  21. Catalan SerraP. SolerX. Obstructive sleep apnea and cardiovascular events in elderly patients.Expert Rev. Respir. Med.202216219721010.1080/17476348.2022.2030225 35041560
    [Google Scholar]
  22. SalariN. KhazaieH. AbolfathiM. GhasemiH. ShabaniS. RasoulpoorS. The effect of obstructive sleep apnea on the increased risk of cardiovascular disease: A systematic review and meta-analysis.Neurol. Sci.202243121923110.1007/s10072‑021‑05765‑3
    [Google Scholar]
  23. ChenL. ZouS. WangJ. Association of obstructive sleep apnea syndrome (OSA/OSAHS) with coronary atherosclerosis risk: Systematic review and meta-analysis.Comput. Math. Methods Med.202220221910.1155/2022/8905736 36035275
    [Google Scholar]
  24. RedlineS. AzarbarzinA. PekerY. Obstructive sleep apnoea heterogeneity and cardiovascular disease.Nat. Rev. Cardiol.202320856057310.1038/s41569‑023‑00846‑6 36899115
    [Google Scholar]
  25. AhmedA.M. NurS.M. XiaochenY. Association between obstructive sleep apnea and resistant hypertension: Systematic review and meta-analysis.Front. Med. (Lausanne)202310120095210.3389/fmed.2023.1200952 37332747
    [Google Scholar]
  26. RajachandranM. NickelN. LangeR.A. Sleep apnea and cardiovascular risk.Curr. Opin. Cardiol.202338545646110.1097/HCO.0000000000001065 37382140
    [Google Scholar]
  27. ZongD. LiuX. ShenC. LiuT. OuyangR. Involvement of Galectin-3 in neurocognitive impairment in obstructive sleep apnea via regulating inflammation and oxidative stress through NLRP3.Sleep Med.202310111010.1016/j.sleep.2022.09.018 36332381
    [Google Scholar]
  28. SheN. ShiY. FengY. NLRP3 inflammasome regulates astrocyte transformation in brain injury induced by chronic intermittent hypoxia.BMC Neurosci.20222317010.1186/s12868‑022‑00756‑2 36437451
    [Google Scholar]
  29. GnoniV. IlicK. DrakatosP. Obstructive sleep apnea and multiple facets of a neuroinflammatory response: A narrative review.J. Thorac. Dis.202214256457410.21037/jtd‑21‑1231 35280483
    [Google Scholar]
  30. LeeS.A. ImK. SeoJ.Y. JungM. Association between sleep apnea severity and symptoms of depression and anxiety among individuals with obstructive sleep apnea.Sleep Med.2023101111810.1016/j.sleep.2022.09.023 36332382
    [Google Scholar]
  31. LiT.M. TanL. TangX.D. Current status of and progress in research on obstructive sleep apnea and comorbid depressive disorders.Sichuan Da Xue Xue Bao Yi Xue Ban2023542252256 36949681
    [Google Scholar]
  32. GrewalN. GordonD. BajajS. Impact of obstructive sleep apnea treatment on cardiovascular disease associated mortality and morbidity: A systematic review.Curr. Probl. Cardiol.202449110213910.1016/j.cpcardiol.2023.102139 37863463
    [Google Scholar]
  33. AlterkiA. Abu-FarhaM. Al ShawafE. Al-MullaF. AbubakerJ. Investigating the relationship between obstructive sleep apnoea, inflammation and cardio-metabolic diseases.Int. J. Mol. Sci.2023247680710.3390/ijms24076807 37047780
    [Google Scholar]
  34. CumpstonE. ChenP. Sleep apnea syndrome.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  35. FuJ. SchroderK. WuH. Mechanistic insights from inflammasome structures.Nat. Rev. Immunol.202410.1038/s41577‑024‑00995‑w 38374299
    [Google Scholar]
  36. BarnettK.C. LiS. LiangK. TingJ.P.Y. A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases.Cell2023186112288231210.1016/j.cell.2023.04.025 37236155
    [Google Scholar]
  37. MalikA. KannegantiT.D. Inflammasome activation and assembly at a glance.J. Cell Sci.2017130233955396310.1242/jcs.207365 29196474
    [Google Scholar]
  38. ChangP. LiH. HuH. LiY. WangT. The Role of HDAC6 in autophagy and NLRP3 inflammasome.Front. Immunol.20211276383110.3389/fimmu.2021.763831 34777380
    [Google Scholar]
  39. SharmaM. de AlbaE. Structure, activation and regulation of NLRP3 and AIM2 inflammasomes.Int. J. Mol. Sci.202122287210.3390/ijms22020872 33467177
    [Google Scholar]
  40. AbbateA. ToldoS. MarchettiC. KronJ. Van TassellB.W. DinarelloC.A. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease.Circ. Res.202012691260128010.1161/CIRCRESAHA.120.315937 32324502
    [Google Scholar]
  41. ZahidA. LiB. KombeA.J.K. JinT. TaoJ. Pharmacological inhibitors of the NLRP3 inflammasome.Front. Immunol.201910253810.3389/fimmu.2019.02538 31749805
    [Google Scholar]
  42. ZhenY. ZhangH. NLRP3 inflammasome and inflammatory bowel disease.Front. Immunol.20191027610.3389/fimmu.2019.00276 30873162
    [Google Scholar]
  43. LuA. MagupalliV.G. RuanJ. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes.Cell201415661193120610.1016/j.cell.2014.02.008 24630722
    [Google Scholar]
  44. DuncanJ.A. BergstralhD.T. WangY. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling.Proc. Natl. Acad. Sci. USA2007104198041804610.1073/pnas.0611496104 17483456
    [Google Scholar]
  45. ZhangZ. TangJ. CuiX. New insights and novel therapeutic potentials for macrophages in myocardial infarction.Inflammation20214451696171210.1007/s10753‑021‑01467‑2 33866463
    [Google Scholar]
  46. Olivares-SilvaF. De GregorioN. Espitia-CorredorJ. Resolvin-D1 attenuation of angiotensin II-induced cardiac inflammation in mice is associated with prevention of cardiac remodeling and hypertension.Biochim. Biophys. Acta Mol. Basis Dis.202118671216624110.1016/j.bbadis.2021.166241 34400298
    [Google Scholar]
  47. LamkanfiM. DixitV.M. The Inflammasomes.PLoS Pathog.2009512e100051010.1371/journal.ppat.1000510 20041168
    [Google Scholar]
  48. ManS.M. TourlomousisP. HopkinsL. MonieT.P. FitzgeraldK.A. BryantC.E. Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1β production.J. Immunol.2013191105239524610.4049/jimmunol.1301581 24123685
    [Google Scholar]
  49. LiuL. YangY. FangR. Giardia duodenalis and its secreted PPIB trigger inflammasome activation and pyroptosis in macrophages through TLR4-induced ROS signaling and A20-mediated NLRP3 deubiquitination.Cells20211012342510.3390/cells10123425 34943932
    [Google Scholar]
  50. IslamM.T. BardaweelS.K. MubarakM.S. Immunomodulatory effects of diterpenes and their derivatives through nlrp3 inflammasome pathway: A review.Front. Immunol.20201157213610.3389/fimmu.2020.572136 33101293
    [Google Scholar]
  51. Mayes-HopfingerL. EnacheA. XieJ. Chloride sensing by WNK1 regulates NLRP3 inflammasome activation and pyroptosis.Nat. Commun.2021121454610.1038/s41467‑021‑24784‑4 34315884
    [Google Scholar]
  52. LiY. HuangX. HuangS. Central role of myeloid MCPIP1 in protecting against LPS-induced inflammation and lung injury.Signal Transduct. Target. Ther.2017211706610.1038/sigtrans.2017.66 29263935
    [Google Scholar]
  53. LiX. ShanC. WuZ. YuH. YangA. TanB. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathway.Inflamm. Res.202069436537310.1007/s00011‑020‑01331‑3 32130427
    [Google Scholar]
  54. LiY. XiaY. YinS. Targeting microglial α-Synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson’s Disease.Front. Immunol.20211271980710.3389/fimmu.2021.719807 34691027
    [Google Scholar]
  55. ZussoM. LunardiV. FranceschiniD. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway.J. Neuroinflammation201916114810.1186/s12974‑019‑1538‑9 31319868
    [Google Scholar]
  56. XuJ. ZhengY. ZhaoY. Succinate/IL-1β signaling axis promotes the inflammatory progression of endothelial and exacerbates atherosclerosis.Front. Immunol.20221381757210.3389/fimmu.2022.817572 35273600
    [Google Scholar]
  57. RheinheimerJ. de SouzaB.M. CardosoN.S. BauerA.C. CrispimD. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review.Metabolism2017741910.1016/j.metabol.2017.06.002 28764843
    [Google Scholar]
  58. De MiguelC. PelegrínP. Baroja-MazoA. CuevasS. Emerging role of the inflammasome and pyroptosis in hypertension.Int. J. Mol. Sci.2021223106410.3390/ijms22031064 33494430
    [Google Scholar]
  59. BaiY. MuQ. BaoX. Targeting NLRP3 inflammasome in the treatment of diabetes and diabetic complications: Role of natural compounds from herbal medicine.Aging Dis.20211271587160410.14336/AD.2021.0318 34631209
    [Google Scholar]
  60. SilvisM.J.M. DemkesE.J. FioletA.T.L. Immunomodulation of the NLRP3 inflammasome in atherosclerosis, coronary artery disease, and acute myocardial infarction.J. Cardiovasc. Transl. Res.2021141233410.1007/s12265‑020‑10049‑w 32648087
    [Google Scholar]
  61. ChenX. WangY. YaoN. LinZ. Immunoproteasome modulates NLRP3 inflammasome-mediated neuroinflammation under cerebral ischaemia and reperfusion conditions.J. Cell. Mol. Med.202226246247410.1111/jcmm.17104 34866334
    [Google Scholar]
  62. ChaiG. LiuS. YangH. DuG. ChenX. NLRP3 blockade suppresses pro-inflammatory and pro-angiogenic cytokine secretion in diabetic retinopathy.Diabetes Metab. Syndr. Obes.2020133047305810.2147/DMSO.S264215 32904641
    [Google Scholar]
  63. BellutM. PappL. BieberM. KraftP. StollG. SchuhmannM.K. NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood–brain barrier integrity in murine stroke.Cell Death Dis.20211312010.1038/s41419‑021‑04379‑z 34930895
    [Google Scholar]
  64. SharmaB.R. KannegantiT.D. NLRP3 inflammasome in cancer and metabolic diseases.Nat. Immunol.202122555055910.1038/s41590‑021‑00886‑5 33707781
    [Google Scholar]
  65. DewanN.A. NietoF.J. SomersV.K. Intermittent hypoxemia and OSA.Chest2015147126627410.1378/chest.14‑0500 25560865
    [Google Scholar]
  66. DingH. LiY. LiX. Treatment with 7% and 10% CO 2 enhanced expression of IL-1β TNF-α and IL-6 in hypoxic cultures of human whole blood.J. Int. Med. Res.202048410.1177/0300060520912105 32264730
    [Google Scholar]
  67. DrummondS.E. BurnsD.P. O’ConnorK.M. ClarkeG. O’HalloranK.D. The role of NADPH oxidase in chronic intermittent hypoxia-induced respiratory plasticity in adult male mice.Respir. Physiol. Neurobiol.202129210371310.1016/j.resp.2021.103713 34116239
    [Google Scholar]
  68. XuC. XuJ. ZouC. Chronic intermittent hypoxia regulates CaMKII-dependent MAPK signaling to promote the initiation of Abdominal Aortic Aneurysm.Oxid. Med. Cell. Longev.2021202111510.1155/2021/2502324 34970414
    [Google Scholar]
  69. SongJ. JiangL. FuC. Heterozygous SOD2 deletion deteriorated chronic intermittent hypoxia-induced lung inflammation and vascular remodeling through mtROS-NLRP3 signaling pathway.Acta Pharmacol. Sin.20204191197120710.1038/s41401‑019‑0349‑y 32066884
    [Google Scholar]
  70. ManiaciA. IannellaG. CocuzzaS. Oxidative stress and inflammation biomarker expression in obstructive sleep apnea patients.J. Clin. Med.202110227710.3390/jcm10020277 33451164
    [Google Scholar]
  71. LinQ. LiS. JiangN. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation.Redox Biol.20192610125410.1016/j.redox.2019.101254 31229841
    [Google Scholar]
  72. WuX. LuH. HuL. Chronic intermittent hypoxia affects endogenous serotonergic inputs and expression of synaptic proteins in rat hypoglossal nucleus.Am. J. Transl. Res.201792546557 28337282
    [Google Scholar]
  73. XuL. YangY. ChenJ. The role of reactive oxygen species in cognitive impairment associated with sleep apnea.Exp. Ther. Med.2020205110.3892/etm.2020.9132 32934669
    [Google Scholar]
  74. WangZ. LuY.L. ChenM. XuH.F. ZhengL.R. Piceatannol alleviates glucolipotoxicity induced vascular barrier injury through inhibition of the ROS/NF-kappa B signaling pathway.Am. J. Transl. Res.2022141120134 35173833
    [Google Scholar]
  75. TurnbullC.D. Intermittent hypoxia, cardiovascular disease and obstructive sleep apnoea.J. Thorac. Dis.201810S1Suppl. 1S33S3910.21037/jtd.2017.10.33 29445526
    [Google Scholar]
  76. GaoS. EminM. ThomaT. Complement promotes endothelial von Willebrand factor and angiopoietin-2 release in obstructive sleep apnea.Sleep2021444zsaa28610.1093/sleep/zsaa286 33351148
    [Google Scholar]
  77. BonsignoreM.R. BaiamonteP. MazzucaE. CastrogiovanniA. MarroneO. Obstructive sleep apnea and comorbidities: A dangerous liaison.Multidiscip. Respir. Med.2019141810.1186/s40248‑019‑0172‑9 30809382
    [Google Scholar]
  78. WiginderA. Sahlin-IngridssonC. GeijerM. BlombergA. FranklinK.A. Forsblad-d’EliaH. Prevalence and factors related to sleep apnoea in ankylosing spondylitis.Clin. Rheumatol.202241249149810.1007/s10067‑021‑05924‑z 34581892
    [Google Scholar]
  79. MayA.M. Van WagonerD.R. MehraR. OSA and cardiac arrhythmogenesis.Chest2017151122524110.1016/j.chest.2016.09.014 27693594
    [Google Scholar]
  80. DengY. GuoX.L. YuanX. ShangJ. ZhuD. LiuH.G. P2X7 receptor antagonism attenuates the intermittent hypoxia-induced spatial deficits in a murine model of sleep apnea via inhibiting neuroinflammation and oxidative stress.Chin. Med. J. (Engl.)2015128162168217510.4103/0366‑6999.162495 26265609
    [Google Scholar]
  81. PetersM.E. KimyonR.S. MitchellG.S. WattersJ.J. Repetitive acute intermittent hypoxia does not promote generalized inflammatory gene expression in the rat CNS.Respir. Physiol. Neurobiol.201521811010.1016/j.resp.2015.07.008 26213117
    [Google Scholar]
  82. DingH.G. DengY.Y. YangR. Hypercapnia induces IL-1β overproduction via activation of NLRP3 inflammasome: Implication in cognitive impairment in hypoxemic adult rats.J. Neuroinflammation2018151410.1186/s12974‑017‑1051‑y 29304864
    [Google Scholar]
  83. JelicM. MandicA. MaricicS. SrdjenovicB. Oxidative stress and its role in cancer.J. Cancer Res. Ther.2021171222810.4103/jcrt.JCRT_862_16 33723127
    [Google Scholar]
  84. FormanH.J. ZhangH. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy.Nat. Rev. Drug Discov.202120968970910.1038/s41573‑021‑00233‑1 34194012
    [Google Scholar]
  85. LiuX.J. WangY.Q. ShangS.Q. XuS. GuoM. TMT induces apoptosis and necroptosis in mouse kidneys through oxidative stress-induced activation of the NLRP3 inflammasome.Ecotoxicol. Environ. Saf.202223011316710.1016/j.ecoenv.2022.113167 34995909
    [Google Scholar]
  86. DuttaD. LiuJ. XiongH. NLRP3 inflammasome activation and SARS-CoV-2-mediated hyperinflammation, cytokine storm and neurological syndromes.Int. J. Physiol. Pathophysiol. Pharmacol.2022143138160 35891930
    [Google Scholar]
  87. MelianteP.G. ZoccaliF. CasconeF. Molecular pathology, oxidative stress, and biomarkers in obstructive sleep apnea.Int. J. Mol. Sci.2023246547810.3390/ijms24065478 36982552
    [Google Scholar]
  88. SunZ.M. GuanP. LuoL.F. Resveratrol protects against CIH-induced myocardial injury by targeting Nrf2 and blocking NLRP3 inflammasome activation.Life Sci.202024511736210.1016/j.lfs.2020.117362 31996295
    [Google Scholar]
  89. YiX. ZhuQ.X. WuX.L. TanT.T. JiangX.J. Histone methylation and oxidative stress in cardiovascular diseases.Oxid. Med. Cell. Longev.2022202211510.1155/2022/6023710 35340204
    [Google Scholar]
  90. BarnesP.J. Oxidative stress in chronic obstructive pulmonary disease.Antioxidants202211596510.3390/antiox11050965 35624831
    [Google Scholar]
  91. TeleanuD.M. NiculescuA.G. LunguI.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases.Int. J. Mol. Sci.20222311593810.3390/ijms23115938 35682615
    [Google Scholar]
  92. McNicholasW.T. Obstructive sleep apnoea and comorbidity – an overview of the association and impact of continuous positive airway pressure therapy.Expert Rev. Respir. Med.201913325126110.1080/17476348.2019.1575204 30691323
    [Google Scholar]
  93. ArnaudC. BilloirE. de Melo JuniorA.F. PereiraS.A. O’HalloranK.D. MonteiroE.C. Chronic intermittent hypoxia-induced cardiovascular and renal dysfunction: From adaptation to maladaptation.J. Physiol.2023601245553557710.1113/JP284166 37882783
    [Google Scholar]
  94. ChaiY. CaiY. FuY. Salidroside ameliorates depression by suppressing NLRP3-mediated pyroptosis via P2X7/NF-κB/NLRP3 signaling pathway.Front. Pharmacol.20221381236210.3389/fphar.2022.812362 35496273
    [Google Scholar]
  95. MalickiM. KarugaF.F. SzmydB. SochalM. GabryelskaA. Obstructive sleep apnea, circadian clock disruption, and metabolic consequences.Metabolites20221316010.3390/metabo13010060 36676985
    [Google Scholar]
  96. GabryelskaA. TurkiewiczS. KarugaF.F. SochalM. StrzeleckiD. BiałasiewiczP. Disruption of circadian rhythm genes in obstructive sleep apnea patients—possible mechanisms involved and clinical implication.Int. J. Mol. Sci.202223270910.3390/ijms23020709 35054894
    [Google Scholar]
  97. KendzerskaT. GershonA.S. HawkerG. TomlinsonG. LeungR.S. Obstructive sleep apnea and incident diabetes. A historical cohort study.Am. J. Respir. Crit. Care Med.2014190221822510.1164/rccm.201312‑2209OC 24897551
    [Google Scholar]
  98. PourcetB. DuezH. Nuclear receptors and clock components in cardiovascular diseases.Int. J. Mol. Sci.20212218972110.3390/ijms22189721 34575881
    [Google Scholar]
  99. GengY.J. SmolenskyM.H. Sum-PingO. HermidaR. CastriottaR.J. Circadian rhythms of risk factors and management in atherosclerotic and hypertensive vascular disease: Modern chronobiological perspectives of an ancient disease.Chronobiol. Int.2023401336210.1080/07420528.2022.2080557 35758140
    [Google Scholar]
  100. XuX. WangJ. ChenG. Circadian cycle and neuroinflammation.Open Life Sci.20231812022071210.1515/biol‑2022‑0712 37872969
    [Google Scholar]
  101. DollishH.K. TsyglakovaM. McClungC.A. Circadian rhythms and mood disorders: Time to see the light.Neuron20241121254010.1016/j.neuron.2023.09.023 37858331
    [Google Scholar]
  102. SalvatoreP. IndicP. KhalsaH.K. TohenM. BaldessariniR.J. MagginiC. Circadian activity rhythms and psychopathology in major depressive episodes.Psychopathology20245711910.1159/000530768 37499644
    [Google Scholar]
  103. SapraA. BhandariP. Diabetes Mellitus.Treasure Island, (FL)StatPearls Publishing2022
    [Google Scholar]
  104. SanchesJ.M. ZhaoL.N. SalehiA. WollheimC.B. KaldisP. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk.FEBS J.2023290362064810.1111/febs.16306 34847289
    [Google Scholar]
  105. ReutrakulS. MokhlesiB. Obstructive sleep apnea and diabetes.Chest201715251070108610.1016/j.chest.2017.05.009 28527878
    [Google Scholar]
  106. KohH.C.E. van VlietS. CaoC. Effect of obstructive sleep apnea on glucose metabolism.Eur. J. Endocrinol.2022186445746710.1530/EJE‑21‑1025 35118996
    [Google Scholar]
  107. FariaA. LaherI. FasipeB. AyasN.T. Impact of obstructive sleep apnea and current treatments on the development and progression of Type 2 Diabetes.Curr. Diabetes Rev.2022189e16022220116910.2174/1573399818666220216095848 35170415
    [Google Scholar]
  108. KentB.D. GroteL. RyanS. Diabetes mellitus prevalence and control in sleep-disordered breathing: The European Sleep Apnea Cohort (ESADA) study.Chest2014146498299010.1378/chest.13‑2403 24831859
    [Google Scholar]
  109. RohmT.V. MeierD.T. OlefskyJ.M. DonathM.Y. Inflammation in obesity, diabetes, and related disorders.Immunity2022551315510.1016/j.immuni.2021.12.013 35021057
    [Google Scholar]
  110. MénégautL. LaubrietA. CrespyV. Inflammation and oxidative stress markers in type 2 diabetes patients with Advanced Carotid atherosclerosis.Cardiovasc. Diabetol.202322124810.1186/s12933‑023‑01979‑1 37710315
    [Google Scholar]
  111. DingS. XuS. MaY. LiuG. JangH. FangJ. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes.Biomolecules201991285010.3390/biom9120850 31835423
    [Google Scholar]
  112. GoraI.M. CiechanowskaA. LadyzynskiP. NLRP3 inflammasome at the interface of inflammation, endothelial dysfunction, and Type 2 Diabetes.Cells202110231410.3390/cells10020314 33546399
    [Google Scholar]
  113. XianH. KarinM. Oxidized mitochondrial DNA: A protective signal gone awry.Trends Immunol.202344318820010.1016/j.it.2023.01.006 36739208
    [Google Scholar]
  114. MaQ. Pharmacological inhibition of the NLRP3 inflammasome: Structure, molecular activation, and inhibitor-NLRP3 interaction.Pharmacol. Rev.202375348752010.1124/pharmrev.122.000629 36669831
    [Google Scholar]
  115. DrorE. DalmasE. MeierD.T. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation.Nat. Immunol.201718328329210.1038/ni.3659 28092375
    [Google Scholar]
  116. UngurianuA. ZanfirescuA. GrădinaruD. Ionescu-TîrgovișteC. Dănciulescu MiulescuR. MarginăD. Interleukins and redox impairment in type 2 diabetes mellitus: Mini-review and pilot study.Curr. Med. Res. Opin.202238451152210.1080/03007995.2022.2033049 35067142
    [Google Scholar]
  117. VerhulstC.E.M. van HeckJ.I.P. FabriciusT.W. Sustained proinflammatory effects of hypoglycemia in people with type 2 Diabetes and in people without diabetes.Diabetes202271122716272710.2337/db22‑0246 35848804
    [Google Scholar]
  118. KoumangoyeR. The role of Cl − and K + efflux in NLRP3 inflammasome and innate immune response activation.Am. J. Physiol. Cell Physiol.20223224C645C65210.1152/ajpcell.00421.2021 35171697
    [Google Scholar]
  119. EnginA. Fat cell and fatty acid turnover in obesity.Adv. Exp. Med. Biol.201796013516010.1007/978‑3‑319‑48382‑5_6 28585198
    [Google Scholar]
  120. AttalN. MarreroE. ThompsonK.J. McKillopI.H. Role of AMPK-SREBP signaling in regulating Fatty Acid Binding-4 (FABP4) expression following ethanol metabolism.Biology (Basel)20221111161310.3390/biology11111613 36358315
    [Google Scholar]
  121. WenH. GrisD. LeiY. Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling.Nat. Immunol.201112540841510.1038/ni.2022 21478880
    [Google Scholar]
  122. ZhuP. ZhangJ.J. CenY. High endogenously synthesized N-3 polyunsaturated fatty acids in fat-1 mice attenuate high-fat diet-induced insulin resistance by inhibiting NLRP3 inflammasome activation via Akt/GSK-3β/TXNIP pathway.Molecules20222719638410.3390/molecules27196384 36234919
    [Google Scholar]
  123. LiuH. JuA. DongX. Young and undamaged recombinant albumin alleviates T2DM by improving hepatic glycolysis through EGFR and protecting islet β cells in mice.J. Transl. Med.20232118910.1186/s12967‑023‑03957‑3 36747238
    [Google Scholar]
  124. YangJ. DingX. WangN. Preoperative oral carbohydrate levels in patients with Type 2 diabetes mellitus: The clinical guiding significance of free fatty acids.Front. Surg.2022981454010.3389/fsurg.2022.814540 35711703
    [Google Scholar]
  125. HamedS.A. Brain injury with diabetes mellitus: Evidence, mechanisms and treatment implications.Expert Rev. Clin. Pharmacol.201710440942810.1080/17512433.2017.1293521 28276776
    [Google Scholar]
  126. da Costa CalazaK. Blanco MartinezA.M. MendoncaH.R. Carpi-SantosR. Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve: Galectin-3 participation.Neural Regen. Res.202015462563510.4103/1673‑5374.266910 31638084
    [Google Scholar]
  127. FangX.X. WangH. SongH.L. WangJ. ZhangZ.J. Neuroinflammation involved in diabetes-related pain and itch.Front. Pharmacol.20221392161210.3389/fphar.2022.921612 35795572
    [Google Scholar]
  128. FitzpatrickS.F. KingA.D. O’DonnellC. RocheH.M. RyanS. Mechanisms of intermittent hypoxia-mediated macrophage activation – potential therapeutic targets for obstructive sleep apnoea.J. Sleep Res.2021303e1320210.1111/jsr.13202 32996666
    [Google Scholar]
  129. KattaN. LoethenT. LavieC.J. AlpertM.A. Obesity and coronary heart disease: Epidemiology, pathology, and coronary artery imaging.Curr. Probl. Cardiol.202146310065510.1016/j.cpcardiol.2020.100655 32843206
    [Google Scholar]
  130. SugimotoA. ShozawaH. MizumaK. HiedaS. OnoK. Pallidal dementia with underlying sleep apnea syndrome: A case report and literature review.Neurol. Sci.20204171961196310.1007/s10072‑020‑04273‑0 31997121
    [Google Scholar]
  131. OgilvieR.P. LakshminarayanK. IberC. PatelS.R. LutseyP.L. Joint effects of OSA and self-reported sleepiness on incident CHD and stroke.Sleep Med.201844323710.1016/j.sleep.2018.01.004 29530366
    [Google Scholar]
  132. TongY. WangZ. CaiL. LinL. LiuJ. ChengJ. NLRP3 inflammasome and its central role in the cardiovascular diseases.Oxid. Med. Cell. Longev.202020201810.1155/2020/4293206 32377298
    [Google Scholar]
  133. ZhangD. LiuX. XiaoQ. Co-exposure to bisphenols, parabens, and antimicrobials and association with coronary heart disease: Oxidative stress as a potential mediating factor?Environ. Sci. Technol.202357153153810.1021/acs.est.2c06488 36534741
    [Google Scholar]
  134. FengQ. GuoJ. HouA. The clinical role of serum cell division control 42 in coronary heart disease.Scand. J. Clin. Lab. Invest.2023831455010.1080/00365513.2022.2164518 36650947
    [Google Scholar]
  135. JiangY. XuC. ZhaoY. JiY. WangX. LiuY. LINC00926 is involved in hypoxia-induced vascular endothelial cell dysfunction via miR-3194-5p regulating JAK1/STAT3 signaling pathway.Eur. J. Histochem.2023671352610.4081/ejh.2023.3526 36647631
    [Google Scholar]
  136. SchmidtA.F. JoshiR. Gordillo-MarañónM. Biomedical consequences of elevated cholesterol-containing lipoproteins and apolipoproteins on cardiovascular and non-cardiovascular outcomes.Commun. Med. (Lond.)202331910.1038/s43856‑022‑00234‑0 36670186
    [Google Scholar]
  137. ZhaoJ. FanH. WangT. TyG index is positively associated with risk of CHD and coronary atherosclerosis severity among NAFLD patients.Cardiovasc. Diabetol.202221112310.1186/s12933‑022‑01548‑y 35778734
    [Google Scholar]
  138. Díaz-GarcíaE. Sanz-RubioD. García-TovarS. Inflammasome activation mediated by oxidised low-density lipoprotein in patients with sleep apnoea and early subclinical atherosclerosis.Eur. Respir. J.2023613220140110.1183/13993003.01401‑2022 36517180
    [Google Scholar]
  139. HanW. WeiZ. ZhangH. The association between sortilin and inflammation in patients with coronary heart disease.J. Inflamm. Res.202013717910.2147/JIR.S240421 32104044
    [Google Scholar]
  140. SukhanovS. HigashiY. YoshidaT. The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1β and IL-18 secretion.Cell. Signal.20217710982510.1016/j.cellsig.2020.109825 33160017
    [Google Scholar]
  141. KhwajaB. ThankamF.G. AgrawalD.K. Mitochondrial DAMPs and altered mitochondrial dynamics in OxLDL burden in atherosclerosis.Mol. Cell. Biochem.202147641915192810.1007/s11010‑021‑04061‑0 33492610
    [Google Scholar]
  142. JinD.Y. LiuC.L. TangJ.N. Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease.J. Zhejiang Univ. Sci. B201718868569510.1631/jzus.B1700073 28786243
    [Google Scholar]
  143. JefferisB.J.M.H. PapacostaO. OwenC.G. Interleukin 18 and coronary heart disease: Prospective study and systematic review.Atherosclerosis2011217122723310.1016/j.atherosclerosis.2011.03.015 21481392
    [Google Scholar]
  144. RidkerP.M. Anticytokine agents.Circ. Res.2019124343745010.1161/CIRCRESAHA.118.313129 30702995
    [Google Scholar]
  145. HigashikuniY. LiuW. NumataG. NLRP3 inflammasome activation through heart-brain interaction initiates cardiac inflammation and hypertrophy during pressure overload.Circulation2023147433835510.1161/CIRCULATIONAHA.122.060860 36440584
    [Google Scholar]
  146. ZengW. WuD. SunY. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages.Sci. Rep.20211111930510.1038/s41598‑021‑98437‑3 34588488
    [Google Scholar]
  147. XuW. QianL. YuanX. LuY. MicroRNA-223-3p inhibits oxidized low-density lipoprotein-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3.Clin. Hemorheol. Microcirc.202281324125310.3233/CH‑211232 35275525
    [Google Scholar]
  148. MillsK.T. StefanescuA. HeJ. The global epidemiology of hypertension.Nat. Rev. Nephrol.202016422323710.1038/s41581‑019‑0244‑2 32024986
    [Google Scholar]
  149. MillsK.T. BundyJ.D. KellyT.N. Global disparities of hypertension prevalence and control.Circulation2016134644145010.1161/CIRCULATIONAHA.115.018912 27502908
    [Google Scholar]
  150. HouH. ZhaoY. YuW. Association of obstructive sleep apnea with hypertension: A systematic review and meta-analysis.J. Glob. Health20188101040510.7189/jogh.08.010405 29497502
    [Google Scholar]
  151. SalmanL.A. ShulmanR. CohenJ.B. Obstructive sleep apnea, hypertension, and cardiovascular risk: Epidemiology, pathophysiology, and management.Curr. Cardiol. Rep.2020222610.1007/s11886‑020‑1257‑y 31955254
    [Google Scholar]
  152. WheltonP.K. CareyR.M. AronowW.S. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults.J. Am. Coll. Cardiol.20187119e127e24810.1016/j.jacc.2017.11.006 29146535
    [Google Scholar]
  153. ZhangZ. ZhaoL. ZhouX. MengX. ZhouX. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets.Front. Immunol.202313109872510.3389/fimmu.2022.1098725 36703963
    [Google Scholar]
  154. BarrowsI.R. RamezaniA. RajD.S. Inflammation, immunity, and oxidative stress in hypertension—partners in crime?Adv. Chronic Kidney Dis.201926212213010.1053/j.ackd.2019.03.001 31023446
    [Google Scholar]
  155. YihuiC. YanfengG. Inflammatory markers in patients with hypertension.Br. J. Hosp. Med. (Lond.)20238451810.12968/hmed.2022.0531 37235676
    [Google Scholar]
  156. GottliebD.J. Sleep apnea and cardiovascular disease.Curr. Diab. Rep.202121126410.1007/s11892‑021‑01426‑z 34902064
    [Google Scholar]
  157. PitzerA. ElijovichF. LafferC.L. DC ENaC-dependent inflammasome activation contributes to salt-sensitive hypertension.Circ. Res.2022131432834410.1161/CIRCRESAHA.122.320818 35862128
    [Google Scholar]
  158. BoarescuP.M. BoarescuI. PopR.M. Evaluation of oxidative stress biomarkers, pro-inflammatory cytokines, and histological changes in experimental hypertension, dyslipidemia, and Type 1 Diabetes Mellitus.Int. J. Mol. Sci.2022233143810.3390/ijms23031438 35163364
    [Google Scholar]
  159. ChenY. YeX. EscamesG. The NLRP3 inflammasome: Contributions to inflammation-related diseases.Cell. Mol. Biol. Lett.20232815110.1186/s11658‑023‑00462‑9 37370025
    [Google Scholar]
  160. ThomasJ.M. HuuskesB.M. SobeyC.G. DrummondG.R. VinhA. The IL-18/IL-18R1 signalling axis: Diagnostic and therapeutic potential in hypertension and chronic kidney disease.Pharmacol. Ther.202223910819110.1016/j.pharmthera.2022.108191 35461924
    [Google Scholar]
  161. WuZ. LuoC. ZhengB. Progress of research into the interleukin-1 family in cardiovascular disease.J. Inflamm. Res.2022156683669410.2147/JIR.S390915 36536642
    [Google Scholar]
  162. KimY.G. KimS.M. KimK.P. LeeS.H. MoonJ.Y. The role of inflammasome-dependent and inflammasome-independent NLRP3 in the kidney.Cells2019811138910.3390/cells8111389 31694192
    [Google Scholar]
  163. ReeseP.P. DoshiM.D. HallI.E. Deceased-donor acute kidney injury and acute rejection in kidney transplant recipients: A multicenter cohort.Am. J. Kidney Dis.2023812222231.e110.1053/j.ajkd.2022.08.011 36191727
    [Google Scholar]
  164. KrishnanS.M. DowlingJ.K. LingY.H. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice.Br. J. Pharmacol.2016173475276510.1111/bph.13230 26103560
    [Google Scholar]
  165. KrishnanS.M. LingY.H. HuuskesB.M. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension.Cardiovasc. Res.2019115477678710.1093/cvr/cvy252 30357309
    [Google Scholar]
  166. Kölliker-FrersR. UdovinL. Otero-LosadaM. Neuroinflammation: An integrating overview of reactive-neuroimmune cell interactions in health and disease.Mediators Inflamm.2021202112010.1155/2021/9999146 34158806
    [Google Scholar]
  167. MottahedinA. ArdalanM. ChumakT. RiebeI. EkJ. MallardC. Effect of neuroinflammation on synaptic organization and function in the developing brain: Implications for neurodevelopmental and neurodegenerative disorders.Front. Cell. Neurosci.20171119010.3389/fncel.2017.00190 28744200
    [Google Scholar]
  168. AshrafU. DingZ. DengS. YeJ. CaoS. ChenZ. Pathogenicity and virulence of Japanese encephalitis virus: Neuroinflammation and neuronal cell damage.Virulence202112196898010.1080/21505594.2021.1899674 33724154
    [Google Scholar]
  169. HanQ.Q. LeW. NLRP3 inflammasome-mediated neuroinflammation and related mitochondrial impairment in Parkinson’s Disease.Neurosci. Bull.202339583284410.1007/s12264‑023‑01023‑y 36757612
    [Google Scholar]
  170. NiJ. WuZ. StokaV. Increased expression and altered subcellular distribution of cathepsin B in microglia induce cognitive impairment through oxidative stress and inflammatory response in mice.Aging Cell2019181e1285610.1111/acel.12856 30575263
    [Google Scholar]
  171. SharmaA. LiawK. SharmaR. ZhangZ. KannanS. KannanR.M. Targeting mitochondrial dysfunction and oxidative stress in activated microglia using dendrimer-based therapeutics.Theranostics20188205529554710.7150/thno.29039 30555562
    [Google Scholar]
  172. HanB. JiangW. LiuH. Upregulation of neuronal PGC-1α ameliorates cognitive impairment induced by chronic cerebral hypoperfusion.Theranostics20201062832284810.7150/thno.37119 32194838
    [Google Scholar]
  173. JoseS. GrovesN.J. RoperK.E. GordonR. Mechanisms of NLRP3 activation and pathology during neurodegeneration.Int. J. Biochem. Cell Biol.202215110627310.1016/j.biocel.2022.106273 35926782
    [Google Scholar]
  174. KoubaB.R. Gil-MohapelJ. S Rodrigues AL. NLRP3 inflammasome: From pathophysiology to therapeutic target in major depressive disorder.Int. J. Mol. Sci.202224113310.3390/ijms24010133 36613574
    [Google Scholar]
  175. TsoukasP. RappE. Van Der KraakL. Interleukin-18 and cytotoxic impairment are independent and synergistic causes of murine virus-induced hyperinflammation.Blood2020136192162217410.1182/blood.2019003846 32589707
    [Google Scholar]
  176. WongM-L. InserraA. LewisM.D. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition.Mol. Psychiatry201621679780510.1038/mp.2016.46 27090302
    [Google Scholar]
  177. WangD. ZhangJ. JiangW. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability.Autophagy201713591492710.1080/15548627.2017.1293766 28318352
    [Google Scholar]
  178. XiaoQ-H. SunX-H. CuiZ-Q. TMEM16F may be a new therapeutic target for Alzheimer’s disease.Neural Regen. Res.202318364365110.4103/1673‑5374.350211 36018189
    [Google Scholar]
  179. BoraschiD. ItalianiP. MiglioriniP. BossùP. Cause or consequence? The role of IL-1 family cytokines and receptors in neuroinflammatory and neurodegenerative diseases.Front. Immunol.202314112819010.3389/fimmu.2023.1128190 37223102
    [Google Scholar]
  180. WangY.L. HanQ.Q. GongW.Q. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats.J. Neuroinflammation20181512110.1186/s12974‑018‑1054‑3 29343269
    [Google Scholar]
  181. RhieS.J. JungE.Y. ShimI. The role of neuroinflammation on pathogenesis of affective disorders.J. Exerc. Rehabil.20201612910.12965/jer.2040016.008 32161729
    [Google Scholar]
  182. IllesP. RubiniP. UlrichH. ZhaoY. TangY. Regulation of microglial functions by purinergic mechanisms in the healthy and diseased CNS.Cells202095110810.3390/cells9051108 32365642
    [Google Scholar]
  183. JinX. LiuM.Y. ZhangD.F. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP 3 inflammasomes and TLR 4/NF -κB signaling pathway.CNS Neurosci. Ther.201925557559010.1111/cns.13086 30676698
    [Google Scholar]
  184. ColonnaM. ButovskyO. Microglia function in the central nervous system during health and neurodegeneration.Annu. Rev. Immunol.201735144146810.1146/annurev‑immunol‑051116‑052358 28226226
    [Google Scholar]
  185. XueZ. ZhangZ. LiuH. lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation.Cell Death Differ.201926113014510.1038/s41418‑018‑0105‑8 29666475
    [Google Scholar]
  186. HuY. FengX. ChenJ. WuY. ShenL. Hydrogen rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO 1 signaling pathway after traumatic brain injury.Exp. Ther. Med.202123212610.3892/etm.2021.11049 34970349
    [Google Scholar]
  187. KimJ. LeeH. ParkS.K. Donepezil regulates LPS and Aβ-stimulated neuroinflammation through MAPK/NLRP3 inflammasome/STAT3 signaling.Int. J. Mol. Sci.202122191063710.3390/ijms221910637 34638977
    [Google Scholar]
  188. QiuW.Q. AiW. ZhuF.D. Polygala saponins inhibit NLRP3 inflammasome-mediated neuroinflammation via SHP-2-Mediated mitophagy.Free Radic. Biol. Med.2022179769410.1016/j.freeradbiomed.2021.12.263 34933095
    [Google Scholar]
  189. JehanS. AugusteE. Pandi-PerumalS.R. Depression, obstructive sleep apnea and psychosocial health.Sleep Med. Disord.20171300012 29517078
    [Google Scholar]
  190. GharsalliH. HariziC. ZaoucheR. Prevalence of depression and anxiety in obstructive sleep apnea.Tunis. Med.20221007525533 36571741
    [Google Scholar]
  191. XiaC.Y. GuoY.X. LianW.W. The NLRP3 inflammasome in depression: Potential mechanisms and therapies.Pharmacol. Res.202318710662510.1016/j.phrs.2022.106625 36563870
    [Google Scholar]
  192. WangH. HeY. SunZ. Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression.J. Neuroinflammation202219113210.1186/s12974‑022‑02492‑0 35668399
    [Google Scholar]
  193. HassamalS. Chronic stress, neuroinflammation, and depression: An overview of pathophysiological mechanisms and emerging anti-inflammatories.Front. Psychiatry202314113098910.3389/fpsyt.2023.1130989 37252156
    [Google Scholar]
  194. YamanishiK. MiyauchiM. MukaiK. Exploring molecular mechanisms involved in the development of the depression-like phenotype in interleukin-18-deficient mice.BioMed Res. Int.2021202111110.1155/2021/9975865 34708129
    [Google Scholar]
  195. QinZ. ShiD.D. LiW. Berberine ameliorates depression-like behaviors in mice via inhibiting NLRP3 inflammasome-mediated neuroinflammation and preventing neuroplasticity disruption.J. Neuroinflammation20232015410.1186/s12974‑023‑02744‑7 36859349
    [Google Scholar]
  196. HanX. XuT. FangQ. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy.Redox Biol.20214410201010.1016/j.redox.2021.102010 34082381
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240294605240426123650
Loading
/content/journals/cmm/10.2174/0115665240294605240426123650
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test