Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

One of the greatest serious side effects of diabetes is diabetic nephropathy (DN), which is also the key factor in the sometimes-deadly diabetic end-stage renal disease. Progressive renal interstitial fibrosis is closely associated with oxidative stress, and the extracellular matrix is typically a feature of DN. Some RNAs formed by genome transcription that are not translated into proteins are recognized as non-coding RNAs. It has been shown that ncRNAs control apoptosis, inflammatory response, cell proliferation, autophagy, and other pathogenic processes, contributing to the pathogenesis of DN. Exosomes are nano-carriers vesicles that variety in size from 40 to 160 nm. Exosomes are widely present and dispersed in different bodily fluids, plentiful in nucleic acids, lipids, and proteins (microRNA, mRNA, tRNA, lncRNA, circRNA, .). Exosomes play a crucial role as messengers for cellular communication. They transport and transmit key signaling molecules, participate in the transfer of information and materials between cells, control cellular physiological processes, and are carefully linked to the beginning and development of many diseases. Herein, we summarized the role of different ncRNAs in DN. Moreover, we highlighted the role of the exosomal form of ncRNAs in the DN pathogenesis.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240287631240321072504
2024-04-05
2025-12-09
Loading full text...

Full text loading...

References

  1. SchernthanerG. MogensenC.E. SchernthanerG.H. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system.Diabetes Vasc. Dis. Res.2014115306323
    [Google Scholar]
  2. ZhangM. FengL. ZhuM. The anti-inflammation effect of Moutan Cortex on advanced glycation end products-induced rat mesangial cells dysfunction and High-glucose–fat diet and streptozotocin-induced diabetic nephropathy rats.J. Ethnopharmacol.2014151159160010.1016/j.jep.2013.11.015 24269777
    [Google Scholar]
  3. KanwarY.S. WadaJ. SunL. Diabetic nephropathy: Mechanisms of renal disease progression.Exp. Biol. Med.2008233141110.3181/0705‑MR‑134 18156300
    [Google Scholar]
  4. LinY.C. ChangY.H. YangS.Y. WuK.D. ChuT.S. Update of pathophysiology and management of diabetic kidney disease.J. Formos. Med. Assoc.2018117866267510.1016/j.jfma.2018.02.007
    [Google Scholar]
  5. AndrésdóttirG. JensenM.L. CarstensenB. Improved survival and renal prognosis of patients with type 2 diabetes and nephropathy with improved control of risk factors.Diabetes Care20143761660166710.2337/dc13‑2036 24623028
    [Google Scholar]
  6. BondevaT. WolfG. Reactive oxygen species in diabetic nephropathy: Friend or foe?Nephrol. Dial. Transplant.201429111998200310.1093/ndt/gfu037 24589719
    [Google Scholar]
  7. AlvarezM.L. DiStefanoJ.K. The role of non-coding RNAs in diabetic nephropathy: Potential applications as biomarkers for disease development and progression.Diabetes Res. Clin. Pract.201399111110.1016/j.diabres.2012.10.010 23102915
    [Google Scholar]
  8. HagiwaraS. McClellandA. KantharidisP. MicroRNA in diabetic nephropathy: Renin angiotensin, aGE/RAGE, and oxidative stress pathway.J. Diabetes Res.2013201311110.1155/2013/173783 24575418
    [Google Scholar]
  9. LvL. LiD. TianF. LiX. ZhangJ. YuX. RETRACTED ARTICLE: Silence of lncRNA GAS5 alleviates high glucose toxicity to human renal tubular epithelial HK-2 cells through regulation of miR-27a.Artif. Cells Nanomed. Biotechnol.20194712205221210.1080/21691401.2019.1616552 31159592
    [Google Scholar]
  10. WangG. YanY. XuN. HuiY. YinD. Upregulation of microRNA-424 relieved diabetic nephropathy by targeting Rictor through mTOR Complex2/Protein Kinase B signaling.J. Cell. Physiol.20192347116461165310.1002/jcp.27822 30637733
    [Google Scholar]
  11. DiStefanoJ.K. The emerging role of long noncoding RNAs in human disease.Methods Mol. Biol.201817069111010.1007/978‑1‑4939‑7471‑9_6 29423795
    [Google Scholar]
  12. EbadiZ. MoradiN. Kazemi FardT. Captopril and spironolactone can attenuate diabetic nephropathy in wistar rats by targeting microRNA-192 and microRNA-29a/b/c.DNA Cell Biol.201938101134114210.1089/dna.2019.4732 31433203
    [Google Scholar]
  13. GuoJ. LiJ. ZhaoJ. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin.Sci. Rep.201771231410.1038/s41598‑017‑01027‑5 28539664
    [Google Scholar]
  14. MartinsT.S. VazM. HenriquesA.G. A review on comparative studies addressing exosome isolation methods from body fluids.Anal. Bioanal. Chem.202341571239126310.1007/s00216‑022‑04174‑5 35838769
    [Google Scholar]
  15. LudwigA.K. GiebelB. Exosomes: Small vesicles participating in intercellular communication.Int. J. Biochem. Cell Biol.2012441111510.1016/j.biocel.2011.10.005 22024155
    [Google Scholar]
  16. NealC.S. MichaelM.Z. PimlottL.K. YongT.Y. LiJ.Y.Z. GleadleJ.M. Circulating microRNA expression is reduced in chronic kidney disease.Nephrol. Dial. Transplant.201126113794380210.1093/ndt/gfr485 21891774
    [Google Scholar]
  17. RamezaniA. DevaneyJ.M. CohenS. Circulating and urinary micro RNA profile in focal segmental glomerulosclerosis: A pilot study.Eur. J. Clin. Invest.201545439440410.1111/eci.12420 25682967
    [Google Scholar]
  18. BaruttaF. TricaricoM. CorbelliA. Urinary exosomal microRNAs in incipient diabetic nephropathy.PLoS One2013811e7379810.1371/journal.pone.0073798 24223694
    [Google Scholar]
  19. SchedlA. Renal abnormalities and their developmental origin.Nat. Rev. Genet.200781079180210.1038/nrg2205 17878895
    [Google Scholar]
  20. SunH.J. WuZ.Y. CaoL. Hydrogen sulfide: Recent progression and perspectives for the treatment of diabetic nephropathy.Molecules20192415285710.3390/molecules24152857 31390847
    [Google Scholar]
  21. ChawlaT. SharmaD. SinghA. Role of the renin angiotensin system in diabetic nephropathy.World J. Diabetes20101514114510.4239/wjd.v1.i5.141 21537441
    [Google Scholar]
  22. LvJ. WuY. MaiY. BuS. Noncoding RNAs in diabetic nephropathy: Pathogenesis, biomarkers, and therapy.J. Diabetes Res.2020202011010.1155/2020/3960857 32656264
    [Google Scholar]
  23. BhattK. MiQ.S. DongZ. microRNAs in kidneys: Biogenesis, regulation, and pathophysiological roles.Am. J. Physiol. Renal Physiol.20113003F602F61010.1152/ajprenal.00727.2010 21228106
    [Google Scholar]
  24. Fernandez-ValverdeS.L. TaftR.J. MattickJ.S. MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications.Diabetes20116071825183110.2337/db11‑0171 21709277
    [Google Scholar]
  25. ChuaJ.H. ArmugamA. JeyaseelanK. MicroRNAs: Biogenesis, function and applications.Curr. Opin. Mol. Ther.2009112189199 19330724
    [Google Scholar]
  26. KimV.N. HanJ. SiomiM.C. Biogenesis of small RNAs in animals.Nat. Rev. Mol. Cell Biol.200910212613910.1038/nrm2632 19165215
    [Google Scholar]
  27. ZamoreP.D. HaleyB. Ribo-gnome: The big world of small RNAs.Science200530957401519152410.1126/science.1111444 16141061
    [Google Scholar]
  28. KanazawaH.M. OgawaD. TakanoM. MiyakeM. Sox6 suppression induces RA-dependent apoptosis mediated by BMP-4 expression during neuronal differentiation in P19 cells.Mol. Cell. Biochem.20164121-2495710.1007/s11010‑015‑2607‑8 26590087
    [Google Scholar]
  29. HanY. XuH. ChengJ. Downregulation of long non-coding RNA H19 promotes P19CL6 cells proliferation and inhibits apoptosis during late-stage cardiac differentiation via miR-19b-modulated Sox6.Cell Biosci.2016615810.1186/s13578‑016‑0123‑5 27895893
    [Google Scholar]
  30. IguchiH. UrashimaY. InagakiY. SOX6 suppresses cyclin D1 promoter activity by interacting with beta-catenin and histone deacetylase 1, and its down-regulation induces pancreatic beta-cell proliferation.J. Biol. Chem.200728226190521906110.1074/jbc.M700460200 17412698
    [Google Scholar]
  31. Pleskovič A, Letonja SM, Vujkovac CA, Kruzliak P, Petrovič D. SOX6 gene polymorphism (rs16933090) and markers of subclinical atherosclerosis in patients with type 2 diabetes mellitus.Int. Angiol.2016356552556
    [Google Scholar]
  32. JiangZ.H. TangY.Z. SongH.N. YangM. LiB. NiC.L. miRNA 342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6.Int. J. Mol. Med.20204514552 31746345
    [Google Scholar]
  33. AbboudH.E. Role of platelet-derived growth factor in renal injury.Annu. Rev. Physiol.199557129730910.1146/annurev.ph.57.030195.001501 7778870
    [Google Scholar]
  34. KatoM. NatarajanR. Diabetic nephropathy—emerging epigenetic mechanisms.Nat. Rev. Nephrol.201410951753010.1038/nrneph.2014.116 25003613
    [Google Scholar]
  35. RuggenentiP. CravediP. RemuzziG. The RAAS in the pathogenesis and treatment of diabetic nephropathy.Nat. Rev. Nephrol.20106631933010.1038/nrneph.2010.58 20440277
    [Google Scholar]
  36. SharmaK. ZiyadehF.N. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator.Diabetes199544101139114610.2337/diab.44.10.1139 7556948
    [Google Scholar]
  37. YamamotoT. NakamuraT. NobleN.A. RuoslahtiE. BorderW.A. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy.Proc. Natl. Acad. Sci.19939051814181810.1073/pnas.90.5.1814 7680480
    [Google Scholar]
  38. ChenS. JimB. ZiyadehF.N. Diabetic nephropathy and transforming growth factor-β Transforming our view of glomerulosclerosis and fibrosis build-up.Semin. Nephrol.200323653254310.1053/S0270‑9295(03)00132‑3 14631561
    [Google Scholar]
  39. KanwarY.S. SunL. XieP. LiuF. ChenS. A glimpse of various pathogenetic mechanisms of diabetic nephropathy.Annu. Rev. Pathol.20116139542310.1146/annurev.pathol.4.110807.092150 21261520
    [Google Scholar]
  40. KatoM. ArceL. WangM. PuttaS. LantingL. NatarajanR. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells.Kidney Int.201180435836810.1038/ki.2011.43 21389977
    [Google Scholar]
  41. ZhuY. CasadoM. VaulontS. SharmaK. Role of upstream stimulatory factors in regulation of renal transforming growth factor-beta1.Diabetes20055471976198410.2337/diabetes.54.7.1976 15983197
    [Google Scholar]
  42. RobertsA.B. McCuneB.K. SpornM.B. TGF-β Regulation of extracellular matrix.Kidney Int.199241355755910.1038/ki.1992.81 1573828
    [Google Scholar]
  43. ZhangY. FengX.H. WuR-Y. DerynckR. Receptor-associated Mad homologues synergize as effectors of the TGF-β response.Nature1996383659616817210.1038/383168a0 8774881
    [Google Scholar]
  44. PonceletA.C. SchnaperH.W. Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells.J. Biol. Chem.2001276106983699210.1074/jbc.M006442200 11114293
    [Google Scholar]
  45. TsuchidaK.I. ZhuY. SivaS. DunnS.R. SharmaK. Role of Smad4 on TGF-β–induced extracellular matrix stimulation in mesangial cells.Kidney Int.20036362000200910.1046/j.1523‑1755.2003.00009.x 12753287
    [Google Scholar]
  46. ChinB.Y. MohseninA. LiS.X. ChoiA.M.K. ChoiM.E. Stimulation of pro-α; 1 (I) collagen by TGF-β 1 in mesangial cells: Role of the p38 MAPK pathway.Am. J. Physiol. Renal Physiol.20012803F495F50410.1152/ajprenal.2001.280.3.F495 11181412
    [Google Scholar]
  47. HayashidaT. PonceletA.C. HubchakS.C. SchnaperH.W. TGF-β1 activates MAP kinase in human mesangial cells: A possible role in collagen expression.Kidney Int.19995651710172010.1046/j.1523‑1755.1999.00733.x 10571779
    [Google Scholar]
  48. KimY.S. XuZ.G. ReddyM.A. Novel interactions between TGF-beta1 actions and the 12/15-lipoxygenase pathway in mesangial cells.J. Am. Soc. Nephrol.200516235236210.1681/ASN.2004070568 15615821
    [Google Scholar]
  49. KatoM. YuanH. XuZ.G. Role of the Akt/FoxO3a pathway in TGF-beta1-mediated mesangial cell dysfunction: A novel mechanism related to diabetic kidney disease.J. Am. Soc. Nephrol.200617123325333510.1681/ASN.2006070754 17082237
    [Google Scholar]
  50. MahimainathanL. DasF. VenkatesanB. ChoudhuryG.G. Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN.Diabetes20065572115212510.2337/db05‑1326 16804083
    [Google Scholar]
  51. KatoM. PuttaS. WangM. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN.Nat. Cell Biol.200911788188910.1038/ncb1897 19543271
    [Google Scholar]
  52. ParkJ.T. KatoM. YuanH. FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy.J. Biol. Chem.201328831224692248010.1074/jbc.M113.453043 23788640
    [Google Scholar]
  53. DeshpandeS.D. PuttaS. WangM. Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy.Diabetes20136293151316210.2337/db13‑0305 23649518
    [Google Scholar]
  54. PuttaS. LantingL. SunG. LawsonG. KatoM. NatarajanR. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy.J. Am. Soc. Nephrol.201223345846910.1681/ASN.2011050485 22223877
    [Google Scholar]
  55. KatoM. NatarajanR. MicroRNA circuits in transforming growth factor-β actions and diabetic nephropathy.Semin. Nephrol.201232325326010.1016/j.semnephrol.2012.04.004 22835456
    [Google Scholar]
  56. CaoD. JiangC. WanC. Upregulation of MiR-126 delays the senescence of human glomerular mesangial cells induced by high glucose via telomere-p53-p21-rb signaling pathway.Curr. Med. Sci.201838575876410.1007/s11596‑018‑1942‑x 30341510
    [Google Scholar]
  57. HarrisT.A. YamakuchiM. FerlitoM. MendellJ.T. LowensteinC.J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1.Proc. Natl. Acad. Sci.200810551516152110.1073/pnas.0707493105 18227515
    [Google Scholar]
  58. CastroN.E. KatoM. ParkJ.T. NatarajanR. Transforming growth factor β1 (TGF-β1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells.J. Biol. Chem.201428942290012901310.1074/jbc.M114.600783 25204661
    [Google Scholar]
  59. BaiX. GengJ. ZhouZ. TianJ. LiX. MicroRNA-130b improves renal tubulointerstitial fibrosis via repression of Snail-induced epithelial-mesenchymal transition in diabetic nephropathy.Sci. Rep.2016612047510.1038/srep20475 26837280
    [Google Scholar]
  60. WangY. ShiJ. ChaiK. YingX. ZhouB. The role of snail in EMT and tumorigenesis.Curr. Cancer Drug Targets201313996397210.2174/15680096113136660102 24168186
    [Google Scholar]
  61. Al-TantawyS.M. ErakyS.M. EissaL.A. Promising renoprotective effect of gold nanoparticles and dapagliflozin in diabetic nephropathy via targeting miR-192 and miR-21.J. Biochem. Mol. Toxicol.20233710e2343010.1002/jbt.23430 37352119
    [Google Scholar]
  62. McClellandA.D. Herman-EdelsteinM. KomersR. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7.Clin. Sci.2015129121237124910.1042/CS20150427 26415649
    [Google Scholar]
  63. BeraA. DasF. ChoudhuryG.N. MariappanM.M. KasinathB.S. ChoudhuryG.G. Reciprocal regulation of miR-214 and PTEN by high glucose regulates renal glomerular mesangial and proximal tubular epithelial cell hypertrophy and matrix expansion.Am. J. Physiol. Cell Physiol.20173134C430C44710.1152/ajpcell.00081.2017 28701356
    [Google Scholar]
  64. ShaoB.Y. ZhangS.F. LiH.D. MengX.M. ChenH.Y. Epigenetics and Inflammation in Diabetic Nephropathy.Front. Physiol.20211264958710.3389/fphys.2021.649587 34025445
    [Google Scholar]
  65. KöllingM. KaucsarT. SchauerteC. HübnerA. DettlingA. ParkJ.K. Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice.Mol. Ther.201725116518010.1016/j.ymthe.2016.08.001
    [Google Scholar]
  66. ZhongX. ChungA.C.K. ChenH.Y. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes.Diabetologia201356366367410.1007/s00125‑012‑2804‑x 23292313
    [Google Scholar]
  67. ChenX. ZhaoL. XingY. LinB. Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression.Biomed. Pharmacother.201810871410.1016/j.biopha.2018.09.007
    [Google Scholar]
  68. WangJ. DuanL. TianL. LiuJ. WangS. GaoY. Serum miR-21 may be a potential diagnostic biomarker for diabetic nephropathy.Exp. Clin. Endocrinol. Diabetes20161247417423
    [Google Scholar]
  69. KatoM. NatarajanR. MicroRNAs in diabetic nephropathy: Functions, biomarkers, and therapeutic targets.Ann. N. Y. Acad. Sci.201513531728810.1111/nyas.12758 25877817
    [Google Scholar]
  70. KatoM. WangL. PuttaS. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-beta-induced collagen expression in kidney cells.J. Biol. Chem.201028544340043401510.1074/jbc.M110.165027 20713358
    [Google Scholar]
  71. FiorentinoL. CavaleraM. MavilioM. Regulation of TIMP3 in diabetic nephropathy: A role for microRNAs.Acta Diabetol.201350696596910.1007/s00592‑013‑0492‑8 23797704
    [Google Scholar]
  72. KatoM. ZhangJ. WangM. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors.Proc. Natl. Acad. Sci.200710493432343710.1073/pnas.0611192104 17360662
    [Google Scholar]
  73. MuJ. PangQ. GuoY.H. Functional implications of microRNA-215 in TGF-β1-induced phenotypic transition of mesangial cells by targeting CTNNBIP1.PLoS One201383e5862210.1371/journal.pone.0058622 23554908
    [Google Scholar]
  74. WangJ. DuanL. GuoT. Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy.J. Diabetes Complicat.201630340641410.1016/j.jdiacomp.2015.12.011 26775556
    [Google Scholar]
  75. DeyN. DasF. MariappanM.M. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes.J. Biol. Chem.201128629255862560310.1074/jbc.M110.208066 21613227
    [Google Scholar]
  76. LiD. LuZ. JiaJ. ZhengZ. LinS. Changes in microRNAs associated with podocytic adhesion damage under mechanical stress.J. Renin Angiotensin Aldosterone Syst.20131429710210.1177/1470320312460071 23087255
    [Google Scholar]
  77. LongJ. WangY. WangW. ChangB.H.J. DaneshF.R. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy.J. Biol. Chem.201128613118371184810.1074/jbc.M110.194969 21310958
    [Google Scholar]
  78. WangJ. GaoY. MaM. Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice.Cell Biochem. Biophys.201367253754610.1007/s12013‑013‑9539‑2 23443810
    [Google Scholar]
  79. AlvarezM.L. KhosroheidariM. EddyE. KieferJ. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy.PLoS One2013810e7746810.1371/journal.pone.0077468 24204837
    [Google Scholar]
  80. LiX. ZengL. CaoC. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy.Exp. Cell Res.2017350232733510.1016/j.yexcr.2016.12.006 27964927
    [Google Scholar]
  81. WangQ. WangY. MintoA.W. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy.FASEB J.200822124126413510.1096/fj.08‑112326 18716028
    [Google Scholar]
  82. YangH. WangQ. LiS. MicroRNA-218 promotes high glucose-induced apoptosis in podocytes by targeting heme oxygenase-1.Biochem. Biophys. Res. Commun.2016471458258810.1016/j.bbrc.2016.02.028 26876575
    [Google Scholar]
  83. ZanchiC. MacconiD. TrionfiniP. MicroRNA-184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy.Diabetologia20176061114112510.1007/s00125‑017‑4248‑9 28364255
    [Google Scholar]
  84. ChenY.Q. WangX.X. YaoX.M. MicroRNA-195 promotes apoptosis in mouse podocytes via enhanced caspase activity driven by BCL2 insufficiency.Am. J. Nephrol.201134654955910.1159/000333809 22123611
    [Google Scholar]
  85. LiX. WangS. HanZ. Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/Akt/mTOR pathway.Mol. Ther. Nucleic Acids20179485610.1016/j.omtn.2017.08.011 29246323
    [Google Scholar]
  86. WangL. GengJ. SunB. SunC. ShiY. YuX. MiR-92b-3p is induced by advanced glycation end products and involved in the pathogenesis of diabetic nephropathy.Evid. Based Complement. Alternat. Med.2020202011010.1155/2020/6050874 32215042
    [Google Scholar]
  87. WuL. WangQ. GuoF. MicroRNA-27a induces mesangial cell injury by targeting of PPARγ and its in vivo knockdown prevents progression of diabetic nephropathy.Sci. Rep.2016612607210.1038/srep26072 27184517
    [Google Scholar]
  88. MaityS. BeraA. ChoudhuryG.N. DasF. KasinathB.S. ChoudhuryG.G. microRNA-181a downregulates deptor for TGFβ-induced glomerular mesangial cell hypertrophy and matrix protein expression.Exp. Cell Res.2018364151510.1016/j.yexcr.2018.01.021 29397070
    [Google Scholar]
  89. ZhangY. ZhaoS. WuD. MicroRNA-22 promotes renal tubulointerstitial fibrosis by targeting PTEN and suppressing autophagy in diabetic nephropathy.J. Diabetes Res.2018201811110.1155/2018/4728645 29850604
    [Google Scholar]
  90. FuY. ZhangY. WangZ. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy.Am. J. Nephrol.201032658158910.1159/000322105 21071935
    [Google Scholar]
  91. ChenH.Y. ZhongX. HuangX.R. MengX.M. YouY. ChungA.C. MicroRNA-29b inhibits diabetic nephropathy in db/db mice.Mol. Ther.2014224842853
    [Google Scholar]
  92. LongJ. WangY. WangW. ChangB.H.J. DaneshF.R. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions.J. Biol. Chem.201028530234572346510.1074/jbc.M110.136168 20501654
    [Google Scholar]
  93. ZhangZ. LuoX. DingS. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy.FEBS Lett.20125861202610.1016/j.febslet.2011.07.042 21827757
    [Google Scholar]
  94. WangB. KomersR. CarewR. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis.J. Am. Soc. Nephrol.201223225226510.1681/ASN.2011010055 22095944
    [Google Scholar]
  95. HeF. PengF. XiaX. MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1.Diabetologia20145781726173610.1007/s00125‑014‑3282‑0 24908566
    [Google Scholar]
  96. LinC.L. LeeP.H. HsuY.C. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction.J. Am. Soc. Nephrol.20142581698170910.1681/ASN.2013050527 24578127
    [Google Scholar]
  97. DuB. MaL.M. HuangM.B. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells.FEBS Lett.2010584481181610.1016/j.febslet.2009.12.053 20067797
    [Google Scholar]
  98. WangB. KohP. WinbanksC. miR-200a Prevents renal fibrogenesis through repression of TGF-β2 expression.Diabetes201160128028710.2337/db10‑0892 20952520
    [Google Scholar]
  99. ZhaF. QuX. TangB. Long non-coding RNA MEG3 promotes fibrosis and inflammatory response in diabetic nephropathy via miR-181a/Egr-1/TLR4 axis.Aging201911113716373010.18632/aging.102011 31195367
    [Google Scholar]
  100. WoronieckaK.I. ParkA.S.D. MohtatD. ThomasD.B. PullmanJ.M. SusztakK. Transcriptome analysis of human diabetic kidney disease.Diabetes20116092354236910.2337/db10‑1181 21752957
    [Google Scholar]
  101. BasuR. LeeJ. WangZ. Loss of TIMP3 selectively exacerbates diabetic nephropathy.Am. J. Physiol. Renal Physiol.20123039F1341F135210.1152/ajprenal.00349.2012 22896043
    [Google Scholar]
  102. KassiriZ. OuditG.Y. KandalamV. Loss of TIMP3 enhances interstitial nephritis and fibrosis.J. Am. Soc. Nephrol.20092061223123510.1681/ASN.2008050492 19406980
    [Google Scholar]
  103. IjazA. TejadaT. CatanutoP. Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes.Kidney Int.200975438138810.1038/ki.2008.559 18971923
    [Google Scholar]
  104. ZhuD. WuX. XueQ. Long non-coding RNA CASC2 restrains high glucose-induced proliferation, inflammation and fibrosis in human glomerular mesangial cells through mediating miR-135a-5p/TIMP3 axis and JNK signaling.Diabetol. Metab. Syndr.20211318910.1186/s13098‑021‑00709‑5 34446088
    [Google Scholar]
  105. JiangQ. LiuC. LiC.P. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction.J. Clin. Invest.202013073833384710.1172/JCI123353 32343678
    [Google Scholar]
  106. BaiX. GengJ. LiX. Long noncoding RNA LINC01619 regulates MicroRNA-27a/forkhead box protein o1 and endoplasmic reticulum stress-mediated podocyte injury in diabetic nephropathy.Antioxid. Redox Signal.201829435537610.1089/ars.2017.7278 29334763
    [Google Scholar]
  107. GödelM. HartlebenB. HerbachN. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice.J. Clin. Invest.201112162197220910.1172/JCI44774 21606591
    [Google Scholar]
  108. HuangS. XuY. GeX. Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabetic nephropathy through activating Akt/mTOR signaling pathway.J. Cell. Physiol.20192347112001120710.1002/jcp.27770 30515796
    [Google Scholar]
  109. LeiJ. ZhaoL. ZhangY. WuY. LiuY. High glucose-induced podocyte injury involves activation of mammalian target of rapamycin (mTOR)-induced endoplasmic reticulum (ER) stress.Cell. Physiol. Biochem.201845624312443
    [Google Scholar]
  110. WangX. XuY. ZhuY.C. LncRNA NEAT1 promotes extracellular matrix accumulation and epithelial-to-mesenchymal transition by targeting miR-27b-3p and ZEB1 in diabetic nephropathy.J. Cell. Physiol.20192348129261293310.1002/jcp.27959 30549040
    [Google Scholar]
  111. HuM. WangR. LiX. Lnc RNA MALAT 1 is dysregulated in diabetic nephropathy and involved in high glucose-induced podocyte injury via its interplay with β-catenin.J. Cell. Mol. Med.201721112732274710.1111/jcmm.13189 28444861
    [Google Scholar]
  112. ZhuangL JinG WangQ GeX PeiX. Long Non-coding RNA ZFAS1 regulates fibrosis and scortosis in the cell model of diabetic nephropathy through miR-525-5p/SGK1 axis.Appl Biochem Biotechnol202310.1007/s12010‑023‑04721‑5 37768477
    [Google Scholar]
  113. ShanklandS.J. Cell cycle regulatory proteins in glomerular disease.Kidney Int.19995641208121510.1046/j.1523‑1755.1999.00709.x 10610411
    [Google Scholar]
  114. LiaoL. ChenJ. ZhangC. LncRNA NEAT1 promotes high glucose-induced mesangial cell hypertrophy by targeting miR-222-3p/CDKN1B axis.Front. Mol. Biosci.2021762782710.3389/fmolb.2020.627827 33585566
    [Google Scholar]
  115. SunL. DingM. ChenF. ZhuD. XieX. Long non coding RNA L13Rik promotes high glucose-induced mesangial cell hypertrophy and matrix protein expression by regulating miR-2861/CDKN1B axis.PeerJ202311e1617010.7717/peerj.16170 37868060
    [Google Scholar]
  116. WangJ. PanJ. LiH. lncRNA ZEB1-AS1 was suppressed by p53 for renal fibrosis in diabetic nephropathy.Mol. Ther. Nucleic Acids20181274175010.1016/j.omtn.2018.07.012 30121551
    [Google Scholar]
  117. SunS.F. TangP.M.K. FengM. Novel lncRNA Erbb4-IR promotes diabetic kidney injury in db/db mice by targeting miR-29b.Diabetes201867473174410.2337/db17‑0816 29222368
    [Google Scholar]
  118. XuJ. DengY. WangY. SunX. ChenS. FuG. SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway.Cell Prolif.2020532e1273810.1111/cpr.12738 31957155
    [Google Scholar]
  119. KatoM. WangM. ChenZ. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy.Nat. Commun.2016711286410.1038/ncomms12864 27686049
    [Google Scholar]
  120. LiJ. JiangX. DuanL. WangW. Long non-coding RNA MEG3 impacts diabetic nephropathy progression through sponging miR-145.Am. J. Transl. Res.2019111066916698 31737219
    [Google Scholar]
  121. SathishkumarC. PrabuP. MohanV. BalasubramanyamM. Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes.Hum. Genomics20181214110.1186/s40246‑018‑0173‑3 30139387
    [Google Scholar]
  122. MajumderS. HaddenM.J. ThiemeK. Dysregulated expression but redundant function of the long non-coding RNA HOTAIR in diabetic kidney disease.Diabetologia201962112129214210.1007/s00125‑019‑4967‑1 31399844
    [Google Scholar]
  123. ZhangY. TangP.M.K. TangP.C.T. LRNA9884, a novel smad3-dependent long noncoding RNA, promotes diabetic kidney injury in db/db mice via enhancing MCP-1–dependent renal inflammation.Diabetes20196871485149810.2337/db18‑1075 31048367
    [Google Scholar]
  124. GeX. XuB. XuW. Long noncoding RNA GAS5 inhibits cell proliferation and fibrosis in diabetic nephropathy by sponging miR-221 and modulating SIRT1 expression.Aging201911208745875910.18632/aging.102249 31631065
    [Google Scholar]
  125. ZhangP. SunY. PengR. Long non-coding RNA Rpph1 promotes inflammation and proliferation of mesangial cells in diabetic nephropathy via an interaction with Gal-3.Cell Death Dis.201910752610.1038/s41419‑019‑1765‑0 31285427
    [Google Scholar]
  126. LongJ. BadalS.S. YeZ. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy.J. Clin. Invest.2016126114205421810.1172/JCI87927 27760051
    [Google Scholar]
  127. ShenH. MingY. XuC. XuY. ZhaoS. ZhangQ. Deregulation of long noncoding RNA (TUG1) contributes to excessive podocytes apoptosis by activating endoplasmic reticulum stress in the development of diabetic nephropathy.J. Cell. Physiol.20192349151231513310.1002/jcp.28153 30671964
    [Google Scholar]
  128. LiY. HuangD. ZhengL. Retracted Article: Long non-coding RNA TUG1 alleviates high glucose induced podocyte inflammation, fibrosis and apoptosis in diabetic nephropathy via targeting the miR-27a-3p/E2F3 axis.RSC Advances2019964376203762910.1039/C9RA06136C 35542278
    [Google Scholar]
  129. YangJ. ShenY. YangX. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A.Am. J. Physiol. Renal Physiol.20193175F1350F135810.1152/ajprenal.00254.2019 31545928
    [Google Scholar]
  130. PengW. HuangS. ShenL. TangY. LiH. ShiY. Long noncoding RNA NONHSAG053901 promotes diabetic nephropathy via stimulating Egr-1/TGF-β-mediated renal inflammation.J. Cell. Physiol.201923410184921850310.1002/jcp.28485 30927260
    [Google Scholar]
  131. JiT.T. WangY.K. ZhuY.C. Long noncoding RNA Gm6135 functions as a competitive endogenous RNA to regulate toll-like receptor 4 expression by sponging miR-203-3p in diabetic nephropathy.J. Cell. Physiol.201923456633664110.1002/jcp.27412 30295314
    [Google Scholar]
  132. WangM. YaoD. WangS. YanQ. LuW. Long non-coding RNA ENSMUST00000147869 protects mesangial cells from proliferation and fibrosis induced by diabetic nephropathy.Endocrine2016541819210.1007/s12020‑016‑0950‑5 27083175
    [Google Scholar]
  133. ChenW. PengR. SunY. The topological key lncRNA H2k2 from the ceRNA network promotes mesangial cell proliferation in diabetic nephropathy via the miR-449a/b/Trim11/Mek signaling pathway.FASEB J.20193310114921150610.1096/fj.201900522R 31336052
    [Google Scholar]
  134. WangM. WangS. YaoD. YanQ. LuW. A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy.Mol. Cell. Endocrinol.201642613614510.1016/j.mce.2016.02.020 26923441
    [Google Scholar]
  135. WangS. ChenX. WangM. YaoD. ChenT. YanQ. Long non-coding RNA CYP4B1-PS1-001 inhibits proliferation and fibrosis in diabetic nephropathy by interacting with nucleolin.Cell. Physiol. Biochem.20184962174218710.1159/000493821
    [Google Scholar]
  136. GoudarziA.K. RadbakhshS. PourhanifehM.H. Circular RNA and diabetes: Epigenetic regulator with diagnostic role.Curr. Mol. Med.202020751652610.2174/1566524020666200129142106 31995005
    [Google Scholar]
  137. JinJ. SunH. ShiC. Circular RNA in renal diseases.J. Cell. Mol. Med.202024126523653310.1111/jcmm.15295 32333642
    [Google Scholar]
  138. LiY. ZhouY. ZhaoM. Differential profile of plasma circular RNAs in type 1 diabetes mellitus.Diabetes Metab. J.202044685486510.4093/dmj.2019.0151 32662258
    [Google Scholar]
  139. WangH.Y. WangY.P. ZengX. Circular RNA is a popular molecule in tumors of the digestive system (Review).Int. J. Oncol.2020571214210.3892/ijo.2020.5054 32377736
    [Google Scholar]
  140. YangF. ChenY. XueZ. High-throughput sequencing and exploration of the lncRNA-circRNA-miRNA-mRNA network in type 2 diabetes mellitus.BioMed Res. Int.2020202011310.1155/2020/8162524 32596376
    [Google Scholar]
  141. ZhangC. HanX. YangL. Circular RNA circPPM1F modulates M1 macrophage activation and pancreatic islet inflammation in type 1 diabetes mellitus.Theranostics20201024109081092410.7150/thno.48264 33042261
    [Google Scholar]
  142. LiuS WangH YangB CircTAOK1 regulates high glucose induced inflammation, oxidative stress, ECM accumulation, and apoptosis in diabetic nephropathy via targeting miR -142-3p/ SOX6 axis.Environ Toxicol2023tox.2407610.1002/tox.24076 38124441
    [Google Scholar]
  143. WangQ. CangZ. ShenL. circ_0037128/miR-17-3p/AKT3 axis promotes the development of diabetic nephropathy.Gene202176514507610.1016/j.gene.2020.145076 32860899
    [Google Scholar]
  144. ChangJ FangZ WangD Disrupting circ-GNB4 mitigates high glucose-induced human mesangial cells injury by regulating the proliferation, ECM accumulation, inflammation and oxidative stress through circ-GNB4/miR- 23c/EGR1 pathway.J Cardiovasc Pharmacol 2022;202210.1097/FJC.0000000000001234 35170486
    [Google Scholar]
  145. WangW. FengJ. ZhouH. LiQ. Circ_0123996 promotes cell proliferation and fibrosis in mouse mesangial cells through sponging miR-149-5p and inducing Bach1 expression.Gene202076114497110.1016/j.gene.2020.144971 32707301
    [Google Scholar]
  146. XuB. WangQ. LiW. Circular RNA circEIF4G2 aggravates renal fibrosis in diabetic nephropathy by sponging miR-218.J. Cell. Mol. Med.20222661799180510.1111/jcmm.16129 33615661
    [Google Scholar]
  147. HuW. HanQ. ZhaoL. WangL. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1.J. Cell. Physiol.201923421469147610.1002/jcp.26959 30054916
    [Google Scholar]
  148. MouX. ChenvJ. ZhouD. A novel identified circular RNA, circ_0000491, aggravates the extracellular matrix of diabetic nephropathy glomerular mesangial cells through suppressing miR 101b by targeting TGFβRI.Mol. Med. Rep.20202253785379410.3892/mmr.2020.11486 32901868
    [Google Scholar]
  149. ChenB. LiY. LiuY. XuZ. circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells.J. Cell. Physiol.201923411212492125910.1002/jcp.28730 31087368
    [Google Scholar]
  150. LiuQ. CuiY. DingN. ZhouC. Knockdown of circ_0003928 ameliorates high glucose-induced dysfunction of human tubular epithelial cells through the miR-506-3p/HDAC4 pathway in diabetic nephropathy.Eur. J. Med. Res.20222715510.1186/s40001‑022‑00679‑y 35392987
    [Google Scholar]
  151. FangR. CaoX. ZhuY. ChenQ. Hsa_circ_0037128 aggravates high glucose-induced podocytes injury in diabetic nephropathy through mediating miR-31-5p/KLF9.Autoimmunity202255425426310.1080/08916934.2022.2037128 35285770
    [Google Scholar]
  152. LiuX. JiangL. ZengH. Circ-0000953 deficiency exacerbates podocyte injury and autophagy disorder by targeting Mir665-3p-Atg4b in diabetic nephropathy.Autophagy2023202312610.1080/15548627.2023.2286128 38050963
    [Google Scholar]
  153. LinZ. LvD. LiaoX. CircUBXN7 promotes macrophage infiltration and renal fibrosis associated with the IGF2BP2-dependent SP1 mRNA stability in diabetic kidney disease.Front. Immunol.202314122696210.3389/fimmu.2023.1226962 37744330
    [Google Scholar]
  154. LiuM. ZhaoJ. Circular RNAs in diabetic nephropathy: Updates and perspectives.Aging Dis.20221351365138010.14336/AD.2022.0203 36186139
    [Google Scholar]
  155. LiuJ. DuanP. XuC. XuD. LiuY. JiangJ. CircRNA circ-ITCH improves renal inflammation and fibrosis in streptozotocin-induced diabetic mice by regulating the miR-33a-5p/SIRT6 axis.Inflamm. Res.202170783584610.1007/s00011‑021‑01485‑8 34216220
    [Google Scholar]
  156. LingL. TanZ. ZhangC. CircRNAs in exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells.Am. J. Transl. Res.201911846674682 31497190
    [Google Scholar]
  157. YaoT. ZhaD. HuC. WuX. Circ_0000285 promotes podocyte injury through sponging miR-654-3p and activating MAPK6 in diabetic nephropathy.Gene202074714466110.1016/j.gene.2020.144661 32275999
    [Google Scholar]
  158. ZhaoL. ChenH. ZengY. Circular RNA circ_0000712 regulates high glucose-induced apoptosis, inflammation, oxidative stress, and fibrosis in (DN) by targeting the miR-879-5p/SOX6 axis.Endocr. J.202168101155116410.1507/endocrj.EJ20‑0739 33980772
    [Google Scholar]
  159. WenS. LiS. LiL. FanQ. circACTR2: A novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis.Biol. Pharm. Bull.202043355856410.1248/bpb.b19‑00901 32115515
    [Google Scholar]
  160. LiuR. ZhangM. GeY. Circular RNA HIPK3 exacerbates diabetic nephropathy and promotes proliferation by sponging miR-185.Gene202176514506510.1016/j.gene.2020.145065 32889056
    [Google Scholar]
  161. LiuH. WangX. WangZ.Y. LiL. Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11.J. Cell. Physiol.202023554520452910.1002/jcp.29329 31680239
    [Google Scholar]
  162. AnL. JiD. HuW. Interference of Hsa_circ_0003928 alleviates high glucose-induced cell apoptosis and inflammation in HK-2 cells via miR-151-3p/Anxa2.Diabetes Metab. Syndr. Obes.2020133157316810.2147/DMSO.S265543 32982348
    [Google Scholar]
  163. WangY. QiY. JiT. Circ_LARP4 regulates high glucose-induced cell proliferation, apoptosis, and fibrosis in mouse mesangial cells.Gene202176514511410.1016/j.gene.2020.145114 32891769
    [Google Scholar]
  164. LiG. QinY. QinS. ZhouX. ZhaoW. ZhangD. Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells.Life Sci.202025911826910.1016/j.lfs.2020.118269 32798559
    [Google Scholar]
  165. PengF. GongW. LiS. circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy.Diabetes202170260361510.2337/db20‑0203 33472945
    [Google Scholar]
  166. GeX. XiL. WangQ. Circular RNA Circ_0000064 promotes the proliferation and fibrosis of mesangial cells via miR-143 in diabetic nephropathy.Gene202075814495210.1016/j.gene.2020.144952 32683074
    [Google Scholar]
  167. TangB. LiW. JiT.T. Circ-AKT3 inhibits the accumulation of extracellular matrix of mesangial cells in diabetic nephropathy via modulating miR-296-3p/E-cadherin signals.J. Cell. Mol. Med.202024158779878810.1111/jcmm.15513 32597022
    [Google Scholar]
  168. ChenY. ZhangY. ShanM. ZhouY. HuangY. ShiL. Aerobic exercise-induced inhibition of PKCα;/CaV1.2 pathway enhances the vasodilation of mesenteric arteries in hypertension.Arch. Biochem. Biophys.201967810819110.1016/j.abb.2019.108191 31733216
    [Google Scholar]
  169. FassettR.G. VenuthurupalliS.K. GobeG.C. CoombesJ.S. CooperM.A. HoyW.E. Biomarkers in chronic kidney disease: A review.Kidney Int.201180880682110.1038/ki.2011.198 21697815
    [Google Scholar]
  170. PeplowP.V. MartinezB. MicroRNAs in blood and cerebrospinal fluid as diagnostic biomarkers of multiple sclerosis and to monitor disease progression.Neural Regen. Res.202015460661910.4103/1673‑5374.266905 31638082
    [Google Scholar]
  171. TayelS.I. SalehA.A. El-HefnawyS.M. ElzorkanyK.M.A. ElgarawanyG.E. NoreldinR.I. Simultaneous assessment of microRNAs 126 and 192 in diabetic nephropathy patients and the relation of these microRNAs with urinary albumin.Curr. Mol. Med.202020536137110.2174/1566524019666191019103918 31629394
    [Google Scholar]
  172. WangJ. WangG. LiangY. ZhouX. Expression profiling and clinical significance of plasma microRNAs in diabetic nephropathy.J. Diabetes Res.2019201911210.1155/2019/5204394 31218232
    [Google Scholar]
  173. KimH. BaeY.U. JeonJ.S. The circulating exosomal microRNAs related to albuminuria in patients with diabetic nephropathy.J. Transl. Med.201917123610.1186/s12967‑019‑1983‑3 31331349
    [Google Scholar]
  174. PrabuP. RomeS. SathishkumarC. MicroRNAs from urinary extracellular vesicles are non-invasive early biomarkers of diabetic nephropathy in type 2 diabetes patients with the ‘Asian Indian phenotype’.Diabetes Metab.201945327628510.1016/j.diabet.2018.08.004 30165157
    [Google Scholar]
  175. ConservaF. BarozzinoM. PesceF. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of kidney fibrosis in diabetic nephropathy.Sci. Rep.2019911135710.1038/s41598‑019‑47778‑1 31388051
    [Google Scholar]
  176. MengL LiG LiuX JiangJ ZhuM SunY. Decreased Urine miR-199-3p may be a potential biomarker for diabetic nephropathy via targeting zinc finger e-box-binding protein 1.Clin Lab20186407+08/20181177118210.7754/Clin.Lab.2018.180126 30146830
    [Google Scholar]
  177. BeltramiC. SimpsonK. JeskyM. Association of elevated urinary miR-126, miR-155, and miR-29b with diabetic kidney disease.Am. J. Pathol.201818891982199210.1016/j.ajpath.2018.06.006 29981742
    [Google Scholar]
  178. YangY. LvX. FanQ. Analysis of circulating lncRNA expression profiles in patients with diabetes mellitus and diabetic nephropathy: Differential expression profile of circulating lncRNA.Clin. Nephrol.2019921253510.5414/CN109525 31079598
    [Google Scholar]
  179. OhyashikiJH UmezuT OhyashikiK Extracellular vesiclemediated cell–cell communication in haematological neoplasms.Philos Trans R Soc Lond B Biol Sci201837317372016048410.1098/rstb.2016.0484 29158313
    [Google Scholar]
  180. Regev-RudzkiN. WilsonD.W. CarvalhoT.G. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles.Cell201315351120113310.1016/j.cell.2013.04.029 23683579
    [Google Scholar]
  181. RoyS. KimD. LimR. Cell-cell communication in diabetic retinopathy.Vision Res.201713911512210.1016/j.visres.2017.04.014 28583293
    [Google Scholar]
  182. ChoiJ.W. UmJ.H. ChoJ.H. LeeH.J. Tiny RNAs and their voyage via extracellular vesicles: Secretion of bacterial small RNA and eukaryotic microRNA.Exp. Biol. Med.2017242151475148110.1177/1535370217723166 28741379
    [Google Scholar]
  183. MathieuM. JaularM.L. LavieuG. ThéryC. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication.Nat. Cell Biol.201921191710.1038/s41556‑018‑0250‑9 30602770
    [Google Scholar]
  184. MerchantM.L. RoodI.M. DeegensJ.K.J. KleinJ.B. Isolation and characterization of urinary extracellular vesicles: Implications for biomarker discovery.Nat. Rev. Nephrol.2017131273174910.1038/nrneph.2017.148 29081510
    [Google Scholar]
  185. BermúdezP.P. BlesaJ. SorianoJ.M. MarcillaA. Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits.Eur. J. Pharm. Sci.2017984050
    [Google Scholar]
  186. TodorovaD. SimonciniS. LacroixR. SabatierF. GeorgeD.F. Extracellular vesicles in angiogenesis.Circ. Res.2017120101658167310.1161/CIRCRESAHA.117.309681 28495996
    [Google Scholar]
  187. CianciarusoC. PhelpsE.A. PasquierM. Primary human and rat β-cells release the intracellular autoantigens GAD65, IA-2, and proinsulin in exosomes together with cytokine-induced enhancers of immunity.Diabetes201766246047310.2337/db16‑0671 27872147
    [Google Scholar]
  188. JelonekK. WidlakP. PietrowskaM. The influence of ionizing radiation on exosome composition, secretion and intercellular communication.Protein Pept. Lett.201623765666310.2174/0929866523666160427105138 27117741
    [Google Scholar]
  189. KucharzewskaP. BeltingM. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress.J. Extracell. Vesicles2013212030410.3402/jev.v2i0.20304 24009895
    [Google Scholar]
  190. ParoliniI. FedericiC. RaggiC. Microenvironmental pH is a key factor for exosome traffic in tumor cells.J. Biol. Chem.200928449342113422210.1074/jbc.M109.041152 19801663
    [Google Scholar]
  191. YuM. SongW. TianF. Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels.Proc. Natl. Acad. Sci. USA2019116125362536910.1073/pnas.1818924116 30837316
    [Google Scholar]
  192. HauserP. WangS. DidenkoV.V. Apoptotic bodies: Selective detection in extracellular vesicles.Methods Mol. Biol.2017155419320010.1007/978‑1‑4939‑6759‑9_12 28185192
    [Google Scholar]
  193. PegtelD.M. GouldS.J. Exosomes.Annu. Rev. Biochem.201988148751410.1146/annurev‑biochem‑013118‑111902 31220978
    [Google Scholar]
  194. ReiterK. AguilarP.P. WetterV. SteppertP. ToverA. JungbauerA. Separation of virus-like particles and extracellular vesicles by flow-through and heparin affinity chromatography.J. Chromatogr. A20191588778410.1016/j.chroma.2018.12.035 30616980
    [Google Scholar]
  195. StahlP.D. RaposoG. Extracellular vesicles: Exosomes and microvesicles, integrators of homeostasis.Physiology201934316917710.1152/physiol.00045.2018 30968753
    [Google Scholar]
  196. van der PolE. BöingA.N. HarrisonP. SturkA. NieuwlandR. Classification, functions, and clinical relevance of extracellular vesicles.Pharmacol. Rev.201264367670510.1124/pr.112.005983 22722893
    [Google Scholar]
  197. ColomboM. RaposoG. ThéryC. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu. Rev. Cell Dev. Biol.201430125528910.1146/annurev‑cellbio‑101512‑122326 25288114
    [Google Scholar]
  198. RaposoG. StoorvogelW. Extracellular vesicles: Exosomes, microvesicles, and friends.J. Cell Biol.2013200437338310.1083/jcb.201211138 23420871
    [Google Scholar]
  199. AdellA.Y.M. MiglianoS.M. TeisD. ESCRT-III and Vps4: A dynamic multipurpose tool for membrane budding and scission.FEBS J.2016283183288330210.1111/febs.13688 26910595
    [Google Scholar]
  200. DreyerF. BaurA. Biogenesis and functions of exosomes and extracellular vesicles.Methods Mol. Biol.2016144820121610.1007/978‑1‑4939‑3753‑0_15 27317183
    [Google Scholar]
  201. JuanT. FürthauerM. Biogenesis and function of ESCRT-dependent extracellular vesicles.Semin. Cell Dev. Biol.201874667710.1016/j.semcdb.2017.08.022 28807885
    [Google Scholar]
  202. BabstM. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between.Curr. Opin. Cell Biol.201123445245710.1016/j.ceb.2011.04.008 21570275
    [Google Scholar]
  203. van NielG. CharrinS. SimoesS. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis.Dev. Cell201121470872110.1016/j.devcel.2011.08.019 21962903
    [Google Scholar]
  204. DelićD. EiseleC. SchmidR. Urinary exosomal miRNA signature in type II diabetic nephropathy patients.PLoS One2016113e015015410.1371/journal.pone.0150154 26930277
    [Google Scholar]
  205. LuoY. HuG. Analysis on miRNA expression profile of urine in patients with type 2 diabetic nephropathy.Jianyan Yixue Yu Linchuang201714912711274
    [Google Scholar]
  206. LeeW.C. LiL.C. NgH.Y. Urinary exosomal microRNA signatures in nephrotic, biopsy-proven diabetic nephropathy.J. Clin. Med.202094122010.3390/jcm9041220 32340338
    [Google Scholar]
  207. XueM. ChengY. HanF. Triptolide attenuates renal tubular epithelial-mesenchymal transition via the MiR-188-5p-mediated PI3K/AKT pathway in diabetic kidney disease.Int. J. Biol. Sci.201814111545155710.7150/ijbs.24032 30263007
    [Google Scholar]
  208. WangB. YaoK. HuuskesB.M. ShenH.H. ZhuangJ. GodsonC. Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis.Mol. Ther.20162471290130110.1038/mt.2016.90
    [Google Scholar]
  209. XuY.X. PuS.D. LiX. Exosomal ncRNAs: Novel therapeutic target and biomarker for diabetic complications.Pharmacol. Res.202217810613510.1016/j.phrs.2022.106135 35192956
    [Google Scholar]
  210. YangH. BaiY. FuC. LiuW. DiaoZ. Exosomes from high glucose-treated macrophages promote epithelial–mesenchymal transition of renal tubular epithelial cells via long non-coding RNAs.BMC Nephrol.20232412410.1186/s12882‑023‑03065‑w 36717805
    [Google Scholar]
  211. ZangJ. MaxwellA.P. SimpsonD.A. McKayG.J. Differential expression of urinary exosomal microRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease.Sci. Rep.2019911090010.1038/s41598‑019‑47504‑x 31358876
    [Google Scholar]
  212. BaiS. XiongX. TangB. Exosomal circ_DLGAP4 promotes diabetic kidney disease progression by sponging miR-143 and targeting ERBB3/NF-κB/MMP-2 axis.Cell Death Dis.20201111100810.1038/s41419‑020‑03169‑3 33230102
    [Google Scholar]
  213. ChangW. WangJ. Exosomes and their noncoding RNA cargo are emerging as new modulators for diabetes mellitus.Cells20198885310.3390/cells8080853 31398847
    [Google Scholar]
  214. EissaS. MatboliM. BekhetM.M. Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis.Biomed. Pharmacother.2016839299
    [Google Scholar]
  215. MohanA. SinghR.S. KumariM. Urinary exosomal microRNA-451-5p is a potential early biomarker of diabetic nephropathy in rats.PLoS One2016114e015405510.1371/journal.pone.0154055 27101382
    [Google Scholar]
  216. JiaY. GuanM. ZhengZ. miRNAs in urine extracellular vesicles as predictors of early-stage diabetic nephropathy.J. Diabetes Res.2016201611010.1155/2016/7932765 26942205
    [Google Scholar]
  217. XieY. JiaY. CuihuaX. HuF. XueM. XueY. Urinary exosomal MicroRNA profiling in incipient type 2 diabetic kidney disease.J. Diabetes Res.2017201711010.1155/2017/6978984 29038788
    [Google Scholar]
  218. LvL.L. FengY. WuM. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury.Cell Death Differ.202027121022610.1038/s41418‑019‑0349‑y 31097789
    [Google Scholar]
  219. ZhaoY. ShenA. GuoF. Urinary exosomal MiRNA-4534 as a novel diagnostic biomarker for diabetic kidney disease.Front. Endocrinol.20201159010.3389/fendo.2020.00590 32982978
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240287631240321072504
Loading
/content/journals/cmm/10.2174/0115665240287631240321072504
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): circRNA; Diabetic nephropathy; exosome; lncRNA; microRNA; non-coding RNAs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test