Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Hypoxia, characterized by insufficient oxygen supply to tissues, is a significant factor in tumor growth and resistance to treatment. The hypoxia-inducible factor (HIF) signaling pathway is activated when oxygen levels decline, influencing cell activities and promoting tumor progression. HIF-1α and HIF-2α are the main targets for therapeutic intervention in tumors. Nevertheless, the significance of HIF-2α is often overlooked. This review examines the physiological role of HIF-2α in tumor growth and its involvement in tumor growth. HIFs, composed of hypoxia-responsive α and oxygen-insensitive β subunits, play a crucial role in controlling gene expression in both normal and solid tumor tissues under low oxygen levels. HIF-3α, formerly considered a detrimental modulator of HIF-regulated genes, exerts a transcriptional regulatory role by inhibiting gene expression through competition with HIF-1α and HIF-2α for binding to transcriptional sites in target genes under hypoxia. Recent research indicates that various HIF-3 variants exhibit distinct and potentially contrasting functionalities. Hypoxia often occurs during the initiation and progression of cancer formation. Recent research has discovered that HIF-2α, also known as endothelial PAS domain protein 1, has a significant impact on tumors. HIF-2α is a significant cancer-causing gene and a crucial predictor of prognosis in non-small cell lung cancer. However, due to limited research investigating the relationship between HIF-2α and small-cell lung cancer, it is not possible to reach a definitive conclusion. HIF-2α plays a vital function in cancer by preserving the stemness of cancer cells. This review provides a comprehensive overview of HIF-2 and the role of HIF-3 in various cancer-related processes, as well as its potential as a targeted therapeutic approach.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240303179240427071748
2024-05-17
2025-09-04
Loading full text...

Full text loading...

References

  1. ChenZ. HanF. DuY. ShiH. ZhouW. Hypoxic micro-environment in cancer: Molecular mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.2023817010.1038/s41392‑023‑01332‑8 36797231
    [Google Scholar]
  2. ZielloJ.E. JovinI.S. HuangY. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia.Yale J. Biol. Med.20078025160 18160990
    [Google Scholar]
  3. KohM.Y. PowisG. Passing the baton: The HIF switch.Trends Biochem. Sci.201237936437210.1016/j.tibs.2012.06.004 22818162
    [Google Scholar]
  4. MukherjeeS. RayS.K. Targeting tumor hypoxia and hypoxia-inducible factors (HIFs) for the treatment of cancer- A story of transcription factors with novel approach in molecular medicine.Curr. Mol. Med.202222428528610.2174/156652402204220325161921 35603885
    [Google Scholar]
  5. AlbadariN. DengS. LiW. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy.Expert Opin. Drug Discov.201914766768210.1080/17460441.2019.1613370 31070059
    [Google Scholar]
  6. RayS.K. MukherjeeS. Directing hypoxic tumor micro-environment and HIF to illuminate cancer immunotherapy’s existing prospects and challenges in drug targets.Curr. Drug Targets202223547148510.2174/1389450123666220111114649 35021970
    [Google Scholar]
  7. WigerupC. PåhlmanS. BexellD. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer.Pharmacol. Ther.201616415216910.1016/j.pharmthera.2016.04.009 27139518
    [Google Scholar]
  8. HuC.J. WangL.Y. ChodoshL.A. KeithB. SimonM.C. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation.Mol. Cell. Biol.200323249361937410.1128/MCB.23.24.9361‑9374.2003 14645546
    [Google Scholar]
  9. DavisL. RecktenwaldM. HuttE. Targeting HIF-2α in the tumor microenvironment: Redefining the role of HIF-2α for solid cancer therapy.Cancers2022145125910.3390/cancers14051259 35267567
    [Google Scholar]
  10. MandlM. DeppingR. Hypoxia-inducible aryl hydrocarbon receptor nuclear translocator (ARNT) (HIF-1β): Is it a rare exception?Mol. Med.201420121522010.2119/molmed.2014.00032 24849811
    [Google Scholar]
  11. ZelzerE. WappnerP. ShiloB.Z. The PAS domain confers target gene specificity of Drosophila bHLH/PAS proteins.Genes Dev.199711162079208910.1101/gad.11.16.2079 9284047
    [Google Scholar]
  12. MengelbierH.L. FredlundE. LöfstedtT. Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype.Cancer Cell200610541342310.1016/j.ccr.2006.08.026 17097563
    [Google Scholar]
  13. SemenzaG.L. Perspectives on oxygen sensing.Cell199998328128410.1016/S0092‑8674(00)81957‑1 10458603
    [Google Scholar]
  14. KaelinW.G.Jr RatcliffeP.J. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway.Mol. Cell200830439340210.1016/j.molcel.2008.04.009 18498744
    [Google Scholar]
  15. WangG.L. JiangB.H. RueE.A. SemenzaG.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension.Proc. Natl. Acad. Sci.199592125510551410.1073/pnas.92.12.5510 7539918
    [Google Scholar]
  16. KallioP.J. OkamotoK. O’BrienS. Signal transduction in hypoxic cells: Inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha.EMBO J.199817226573658610.1093/emboj/17.22.6573 9822602
    [Google Scholar]
  17. LobodaA. JozkowiczA. DulakJ. HIF-1 versus HIF-2 — Is one more important than the other?Vascul. Pharmacol.2012565-624525110.1016/j.vph.2012.02.006 22366374
    [Google Scholar]
  18. JasieckaJ.A. BartoszewskaS. KochanK. miR-429 regulates the transition between Hypoxia-Inducible Factor (HIF)1A and HIF3A expression in human endothelial cells.Sci. Rep.2016612277510.1038/srep22775 26954587
    [Google Scholar]
  19. MaynardM.A. EvansA.J. HosomiT. HaraS. JewettM.A.S. OhhM. Human HIF‐3α4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma.FASEB J.200519111396140610.1096/fj.05‑3788com 16126907
    [Google Scholar]
  20. ZhangP. YaoQ. LuL. LiY. ChenP.J. DuanC. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia.Cell Rep.2014661110112110.1016/j.celrep.2014.02.011 24613356
    [Google Scholar]
  21. ChenY. WangW. JiangB. YaoL. XiaF. LiX. Integrating tumor stroma biomarkers with clinical indicators for colon cancer survival stratification.Front. Med.2020758474710.3389/fmed.2020.584747 33365318
    [Google Scholar]
  22. SundM. KalluriR. Tumor stroma derived biomarkers in cancer.Cancer Metastasis Rev.2009281-217718310.1007/s10555‑008‑9175‑2 19259624
    [Google Scholar]
  23. RoigM.E. YarominaA. HoubenR. GrootA.J. DuboisL. VooijsM. Prognostic role of hypoxia-inducible factor-2α tumor cell expression in cancer patients: A meta-analysis.Front. Oncol.2018822410.3389/fonc.2018.00224 29942795
    [Google Scholar]
  24. JarmanE.J. WardC. TurnbullA.K. HER2 regulates HIF-2α and drives an increased hypoxic response in breast cancer.Breast Cancer Res.20192111010.1186/s13058‑019‑1097‑0 30670058
    [Google Scholar]
  25. YangH. GengY.H. WangP. Extracellular ATP promotes breast cancer invasion and epithelial-mesenchymal transition via hypoxia-inducible factor 2α signaling.Cancer Sci.201911082456247010.1111/cas.14086 31148343
    [Google Scholar]
  26. MartinS.A. RíosM.J. PatlánC.M.C. Functional interaction of hypoxia-inducible factor 2-alpha and autophagy mediates drug resistance in colon cancer cells.Cancers201911675510.3390/cancers11060755 31151160
    [Google Scholar]
  27. CaoM.Q. YouA.B. CuiW. Cross talk between oxidative stress and hypoxia via thioredoxin and HIF-2α drives metastasis of hepatocellular carcinoma.FASEB J.20203445892590510.1096/fj.202000082R 32157720
    [Google Scholar]
  28. HolmquistL. JögiA. PåhlmanS. Phenotypic persistence after reoxygenation of hypoxic neuroblastoma cells.Int. J. Cancer2005116221822510.1002/ijc.21024 15800931
    [Google Scholar]
  29. NilssonH. JögiA. BeckmanS. HarrisA.L. PoellingerL. PåhlmanS. HIF-2α expression in human fetal paraganglia and neuroblastoma: Relation to sympathetic differentiation, glucose deficiency, and hypoxia.Exp. Cell Res.2005303244745610.1016/j.yexcr.2004.10.003 15652356
    [Google Scholar]
  30. LinQ. CongX. YunZ. Differential hypoxic regulation of hypoxia-inducible factors 1alpha and 2alpha.Mol. Cancer Res.20119675776510.1158/1541‑7786.MCR‑11‑0053 21571835
    [Google Scholar]
  31. HaoT. LiC.X. DingX.Y. XingX.J. MicroRNA-363-3p/p21(Cip1/Waf1) axis is regulated by HIF-2α in mediating stemness of melanoma cells.Neoplasma201966342743610.4149/neo_2018_180828N655 30784290
    [Google Scholar]
  32. GkagkalidisK. KampantaisS. DimitriadisG. GourvasV. KapoukranidouD. TzouvelekiM.M. Expression of HIF-2a in clear-cell renal cell carcinoma independently predicts overall survival.Med. Mol. Morphol.202053422923710.1007/s00795‑020‑00249‑3 32219604
    [Google Scholar]
  33. BiswasS. TroyH. LeekR. Effects of HIF-1 and HIF2 on growth and metabolism of clear-cell renal cell carcinoma 786-0 xenografts.J. Oncol.2010201011410.1155/2010/757908 20652061
    [Google Scholar]
  34. HanQ. HanF. FanY. Notch3 is involved in the proliferation of renal cancer cells via regulation of cell cycle progression and HIF-2α.Oncol. Lett.2020206110.3892/ol.2020.12242 33154777
    [Google Scholar]
  35. RenfrowJ.J. SoikeM.H. WestJ.L. Attenuating hypoxia driven malignant behavior in glioblastoma with a novel hypoxia-inducible factor 2 alpha inhibitor.Sci. Rep.20201011519510.1038/s41598‑020‑72290‑2 32938997
    [Google Scholar]
  36. SeidelS. GarvalovB.K. WirtaV. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2α.Brain2010133498399510.1093/brain/awq042 20375133
    [Google Scholar]
  37. YuS. LiY. RenH. PDK4 promotes tumorigenesis and cisplatin resistance in lung adenocarcinoma via transcriptional regulation of EPAS1.Cancer Chemother. Pharmacol.202187220721510.1007/s00280‑020‑04188‑9 33221963
    [Google Scholar]
  38. ZhenQ. ZhangY. GaoL. EPAS1 promotes peritoneal carcinomatosis of non-small-cell lung cancer by enhancing mesothelial–mesenchymal transition.Strahlenther. Onkol.2021197214114910.1007/s00066‑020‑01665‑1 32681351
    [Google Scholar]
  39. SteunouA.L. PetitD.M. LazarI. Identification of the hypoxia-inducible factor 2α nuclear interactome in melanoma cells reveals master proteins involved in melanoma development.Mol. Cell. Proteomics201312373674810.1074/mcp.M112.020727 23275444
    [Google Scholar]
  40. MuriJ. KopfM. The thioredoxin system: Balancing redox responses in immune cells and tumors.Eur. J. Immunol.2023531224994810.1002/eji.202249948 36285367
    [Google Scholar]
  41. ZhaoL. LiW. ZhouY. The overexpression and nuclear translocation of Trx-1 during hypoxia confers on HepG2 cells resistance to DDP, and GL-V9 reverses the resistance by suppressing the Trx-1/Ref-1 axis.Free Radic. Biol. Med.201582294110.1016/j.freeradbiomed.2015.01.014 25656992
    [Google Scholar]
  42. SkuliN. LiuL. RungeA. Endothelial deletion of hypoxia-inducible factor–2α (HIF-2α) alters vascular function and tumor angiogenesis.Blood2009114246947710.1182/blood‑2008‑12‑193581 19439736
    [Google Scholar]
  43. DvorakH.F. Tumors: Wounds that do not heal-redux.Cancer Immunol. Res.20153111110.1158/2326‑6066.CIR‑14‑0209 25568067
    [Google Scholar]
  44. xue BRONG, guang XCAI, ying SYANG, Wei LI, juan ZMING. EphA2-dependent molecular targeting therapy for malignant tumors.Curr. Cancer Drug Targets20111191082109710.2174/156800911798073050 21933105
    [Google Scholar]
  45. SkuliN. MajmundarA.J. KrockB.L. Endothelial HIF-2α regulates murine pathological angiogenesis and revascularization processes.J. Clin. Invest.201212241427144310.1172/JCI57322 22426208
    [Google Scholar]
  46. CovelloK.L. KehlerJ. YuH. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth.Genes Dev.200620555757010.1101/gad.1399906 16510872
    [Google Scholar]
  47. QiH. WangS. WuJ. EGFR-AS1/HIF2A regulates the expression of FOXP3 to impact the cancer stemness of smoking-related non-small cell lung cancer.Ther. Adv. Med. Oncol.201911175883591985522810.1177/1758835919855228 31275431
    [Google Scholar]
  48. GaoZ.J. WangY. YuanW. YuanJ. YuanK. HIF-2α not HIF-1α overexpression confers poor prognosis in non–small cell lung cancer.Tumour Biol.2017396101042831770963710.1177/1010428317709637 28653893
    [Google Scholar]
  49. PughC.W. RatcliffeP.J. Regulation of angiogenesis by hypoxia: Role of the HIF system.Nat. Med.20039667768410.1038/nm0603‑677 12778166
    [Google Scholar]
  50. BertoutJ.A. PatelS.A. SimonM.C. The impact of O2 availability on human cancer.Nat. Rev. Cancer200881296797510.1038/nrc2540 18987634
    [Google Scholar]
  51. KrawczykE. KitlińskaJ. Preclinical models of neuroblastoma—current status and perspectives.Cancers20231513331410.3390/cancers15133314 37444423
    [Google Scholar]
  52. KondoK. KimW.Y. LechpammerM. KaelinW.G.Jr Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth.PLoS Biol.200313e8310.1371/journal.pbio.0000083 14691554
    [Google Scholar]
  53. HainautP. HernandezT. RobinsonA. IARC Database of p53 gene mutations in human tumors and cell lines: Updated compilation, revised formats and new visualisation tools.Nucleic Acids Res.199826120521310.1093/nar/26.1.205 9399837
    [Google Scholar]
  54. BertoutJ.A. MajmundarA.J. GordanJ.D. HIF2α inhibition promotes p53 pathway activity, tumor cell death, and radiation responses.Proc. Natl. Acad. Sci.200910634143911439610.1073/pnas.0907357106 19706526
    [Google Scholar]
  55. YangS.L. WuC. XiongZ.F. FangX. Progress on hypoxia-inducible factor-3: Its structure, gene regulation and biological function (Review).Mol. Med. Rep.20151222411241610.3892/mmr.2015.3689 25936862
    [Google Scholar]
  56. HeidbrederM. QadriF. JöhrenO. Non-hypoxic induction of HIF-3α by 2-deoxy-d-glucose and insulin.Biochem. Biophys. Res. Commun.2007352243744310.1016/j.bbrc.2006.11.027 17125738
    [Google Scholar]
  57. HastingsM.L. KrainerA.R. Pre-mRNA splicing in the new millennium.Curr. Opin. Cell Biol.200113330230910.1016/S0955‑0674(00)00212‑X 11343900
    [Google Scholar]
  58. KulshreshthaR. FerracinM. WojcikS.E. A microRNA signature of hypoxia.Mol. Cell. Biol.20072751859186710.1128/MCB.01395‑06 17194750
    [Google Scholar]
  59. MadaneckiP. KapoorN. BebokZ. OchockaR. CollawnJ. BartoszewskiR. Regulation of angiogenesis by hypoxia: The role of microRNA.Cell. Mol. Biol. Lett.2013181475710.2478/s11658‑012‑0037‑0 23124858
    [Google Scholar]
  60. GrecoS. GaetanoC. MartelliF. HypoxamiR regulation and function in ischemic cardiovascular diseases.Antioxid. Redox Signal.20142181202121910.1089/ars.2013.5403 24053126
    [Google Scholar]
  61. HoJ.J.D. MetcalfJ.L. YanM.S. Functional importance of Dicer protein in the adaptive cellular response to hypoxia.J. Biol. Chem.201228734290032902010.1074/jbc.M112.373365 22745131
    [Google Scholar]
  62. SerockiM. BartoszewskaS. JasieckaJ.A. OchockaR.J. CollawnJ.F. BartoszewskiR. miRNAs regulate the HIF switch during hypoxia: A novel therapeutic target.Angiogenesis201821218320210.1007/s10456‑018‑9600‑2 29383635
    [Google Scholar]
  63. RamakrishnanS. HIF-2 in cancer-associated fibroblasts polarizes macrophages and creates an immunosuppressive tumor microenvironment in pancreatic cancer.Gastroenterology202216271835183710.1053/j.gastro.2022.03.035 35358506
    [Google Scholar]
  64. WalshJ.C. LebedevA. AtenE. MadsenK. MarcianoL. KolbH.C. The clinical importance of assessing tumor hypoxia: Relationship of tumor hypoxia to prognosis and therapeutic opportunities.Antioxid. Redox Signal.201421101516155410.1089/ars.2013.5378 24512032
    [Google Scholar]
  65. LiY. ZhaoL. LiX.F. Targeting hypoxia: hypoxia-activated prodrugs in cancer therapy.Front. Oncol.20211170040710.3389/fonc.2021.700407 34395270
    [Google Scholar]
  66. DennyW.A. The role of hypoxia-activated prodrugs in cancer therapy.Lancet Oncol.200011252910.1016/S1470‑2045(00)00006‑1 11905684
    [Google Scholar]
  67. BuiB.P. NguyenP.L. LeeK. ChoJ. Hypoxia-inducible factor-1: a novel therapeutic target for the management of cancer, drug resistance, and cancer-related pain.Cancers20221424605410.3390/cancers14246054 36551540
    [Google Scholar]
  68. LequeuxA. NomanM.Z. XiaoM. Impact of hypoxic tumor microenvironment and tumor cell plasticity on the expression of immune checkpoints.Cancer Lett.2019458132010.1016/j.canlet.2019.05.021 31136782
    [Google Scholar]
  69. PardollD.M. The blockade of immune checkpoints in cancer immunotherapy.Nat. Rev. Cancer201212425226410.1038/nrc3239 22437870
    [Google Scholar]
  70. RayS.K. MukherjeeS. Current headway in cancer immunotherapy emphasizing the practice of genetically engineered T cells to target selected tumor antigens.Crit. Rev. Immunol.2021411234010.1615/CritRevImmunol.2020037044 33822523
    [Google Scholar]
  71. MukherjeeS. RayS.K. Imitating hypoxia and tumor microenvironment with immune evasion by employing three dimensional in vitro cellular models: impressive tool in drug discovery.Recent Patents Anticancer Drug Discov.2022171809110.2174/1574892816666210728115605 34323197
    [Google Scholar]
  72. DinM.U.S. StreitS.G. HuynhB.T. HanaC. AbrahamA.N. HusseinA. Therapeutic targeting of hypoxia-inducible factors in cancer.Int. J. Mol. Sci.2024254206010.3390/ijms25042060 38396737
    [Google Scholar]
  73. CourtneyK.D. InfanteJ.R. LamE.T. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible Factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma.J. Clin. Oncol.201836986787410.1200/JCO.2017.74.2627 29257710
    [Google Scholar]
  74. NguyenC.B. OhE. BaharP. VaishampayanU.N. ElseT. AlvaA.S. Novel approaches with HIF-2α targeted therapies in metastatic renal cell carcinoma.Cancers202416360110.3390/cancers16030601 38339352
    [Google Scholar]
  75. BeckJ. HenschelC. ChouJ. LinA. del BalzoU. Evaluation of the carcinogenic potential of roxadustat (FG-4592), a small molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase in CD-1 mice and sprague dawley rats.Int. J. Toxicol.201736642743910.1177/1091581817737232 29153032
    [Google Scholar]
  76. HanF. WuG. HanS. Hypoxia-inducible factor prolyl-hydroxylase inhibitor roxadustat (FG-4592) alleviates sepsis-induced acute lung injury.Respir. Physiol. Neurobiol.202028110350610.1016/j.resp.2020.103506 32726645
    [Google Scholar]
  77. ZhuangY. LiuK. HeQ. GuX. JiangC. WuJ. Hypoxia signaling in cancer: Implications for therapeutic interventions.MedComm202041e203
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240303179240427071748
Loading
/content/journals/cmm/10.2174/0115665240303179240427071748
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test