Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Ribosomal DNA (rDNA) is important in the nucleolus and nuclear organization of human cells. Defective rDNA repeat maintenance has been reported to be closely associated with neurological disorders, such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, depression, suicide, etc. However, there has not been a comprehensive review on the role of rDNA in these disorders. In this review, we have summarized the role of rDNA in major neurological disorders to sort out the correlation between rDNA and neurological diseases and provided insights for therapy with rDNA as a target.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240292079240513093708
2024-05-21
2025-12-08
Loading full text...

Full text loading...

References

  1. MossT. StefanovskyV.Y. At the center of eukaryotic life.Cell2002109554554810.1016/S0092‑8674(02)00761‑4 12062097
    [Google Scholar]
  2. HendersonA.S. WarburtonD. AtwoodK.C. Location of ribosomal DNA in the human chromosome complement.Proc. Natl. Acad. Sci. USA197269113394339810.1073/pnas.69.11.3394 4508329
    [Google Scholar]
  3. LongE.O. DawidI.B. Repeated genes in eukaryotes.Annu. Rev. Biochem.198049172776410.1146/annurev.bi.49.070180.003455 6996571
    [Google Scholar]
  4. GrummtI. Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes.Hum. Mol. Genet.200716R1R21R2710.1093/hmg/ddm020 17613545
    [Google Scholar]
  5. GrummtI. Wisely chosen paths regulation of rRNA synthesis.FEBS J.2010277224626463910.1111/j.1742‑4658.2010.07892.x 20977666
    [Google Scholar]
  6. LearnedR.M. LearnedT.K. HaltinerM.M. TjianR.T. Human rRNA transcription is modulated by the coordinate binding of two factors to an upstream control element.Cell198645684785710.1016/0092‑8674(86)90559‑3 3708692
    [Google Scholar]
  7. PanovK.I. FriedrichJ.K. RussellJ. ZomerdijkJ.C.B.M. UBF activates RNA polymerase I transcription by stimulating promoter escape.EMBO J.200625143310332210.1038/sj.emboj.7601221 16858408
    [Google Scholar]
  8. LiJ. SantoroR. KobernaK. GrummtI. The chromatin remodeling complex NoRC controls replication timing of rRNA genes.EMBO J.200524112012710.1038/sj.emboj.7600492 15577942
    [Google Scholar]
  9. StrohnerR. NémethA. NightingaleK.P. GrummtI. BeckerP.B. LängstG. Recruitment of the nucleolar remodeling complex NoRC establishes ribosomal DNA silencing in chromatin.Mol. Cell. Biol.20042441791179810.1128/MCB.24.4.1791‑1798.2004 14749393
    [Google Scholar]
  10. GrummtI. PikaardC.S. Epigenetic silencing of RNA polymerase I transcription.Nat. Rev. Mol. Cell Biol.20034864164910.1038/nrm1171 12923526
    [Google Scholar]
  11. McStayB. GrummtI. The epigenetics of rRNA genes: From molecular to chromosome biology.Annu. Rev. Cell Dev. Biol.200824113115710.1146/annurev.cellbio.24.110707.175259 18616426
    [Google Scholar]
  12. SantoroR. GrummtI. Molecular mechanisms mediating methylation-dependent silencing of ribosomal gene transcription.Mol. Cell20018371972510.1016/S1097‑2765(01)00317‑3 11583633
    [Google Scholar]
  13. ZhouY. SantoroR. GrummtI. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription.EMBO J.200221174632464010.1093/emboj/cdf460 12198165
    [Google Scholar]
  14. BoisvertF.M. van KoningsbruggenS. NavascuésJ. LamondA.I. The multifunctional nucleolus.Nat. Rev. Mol. Cell Biol.20078757458510.1038/nrm2184 17519961
    [Google Scholar]
  15. BoulonS. WestmanB.J. HuttenS. BoisvertF.M. LamondA.I. The nucleolus under stress.Mol. Cell201040221622710.1016/j.molcel.2010.09.024 20965417
    [Google Scholar]
  16. HuaL. YanD. WanC. HuB. Nucleolus and nucleolar stress: From cell fate decision to disease development.Cells20221119301710.3390/cells11193017 36230979
    [Google Scholar]
  17. SchoeflG.I. The effect of actinomycin D on the fine structure of the nucleolus.J. Ultrastruct. Res.1964103-422424310.1016/S0022‑5320(64)80007‑1 14166291
    [Google Scholar]
  18. RubbiC.P. MilnerJ. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses.EMBO J.200322226068607710.1093/emboj/cdg579 14609953
    [Google Scholar]
  19. ParlatoR. KreinerG. Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle?J. Mol. Med. (Berl.)201391554154710.1007/s00109‑012‑0981‑1 23179684
    [Google Scholar]
  20. QureshiI.A. MehlerM.F. Impact of nuclear organization and dynamics on epigenetic regulation in the central nervous system: implications for neurological disease states.Ann. N. Y. Acad. Sci.20101204s1Suppl.203710.1111/j.1749‑6632.2010.05718.x 20840166
    [Google Scholar]
  21. KakotiS. YamauchiM. GuW. p53 deficiency augments nucleolar instability after ionizing irradiation.Oncol. Rep.20194262293230210.3892/or.2019.7341 31578593
    [Google Scholar]
  22. JordanB.A. FernholzB.D. KhatriL. ZiffE.B. Activity-dependent AIDA-1 nuclear signaling regulates nucleolar numbers and protein synthesis in neurons.Nat. Neurosci.200710442743510.1038/nn1867 17334360
    [Google Scholar]
  23. García MorenoL.M. CimadevillaJ.M. González PardoH. ZahoneroM.C. AriasJ.L. NOR activity in hippocampal areas during the postnatal development and ageing.Mech. Ageing Dev.199797217318110.1016/S0047‑6374(97)00054‑7 9226635
    [Google Scholar]
  24. MattsonM.P. MagnusT. Ageing and neuronal vulnerability.Nat. Rev. Neurosci.20067427829410.1038/nrn1886 16552414
    [Google Scholar]
  25. NyhusC. PihlM. HyttelP. HallV.J. Evidence for nucleolar dysfunction in Alzheimer’s disease.Rev. Neurosci.201930768570010.1515/revneuro‑2018‑0104 30849050
    [Google Scholar]
  26. LeeJ. HwangY.J. RyuH. KowallN.W. RyuH. Nucleolar dysfunction in Huntington’s disease.Biochim. Biophys. Acta Mol. Basis Dis.20141842678579010.1016/j.bbadis.2013.09.017 24184605
    [Google Scholar]
  27. HerrmannD. ParlatoR. C9orf72-associated neurodegeneration in ALS-FTD: breaking new ground in ribosomal RNA and nucleolar dysfunction.Cell Tissue Res.2018373235136010.1007/s00441‑018‑2806‑1 29450726
    [Google Scholar]
  28. ParlatoR. LissB. How Parkinson’s disease meets nucleolar stress.Biochim. Biophys. Acta Mol. Basis Dis.20141842679179710.1016/j.bbadis.2013.12.014 24412806
    [Google Scholar]
  29. KarykaE. Berrueta RamirezN. WebsterC.P. SMN-deficient cells exhibit increased ribosomal DNA damage.Life Sci. Alliance202258e20210114510.26508/lsa.202101145 35440492
    [Google Scholar]
  30. KirykA. SowodniokK. KreinerG. Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons.Front. Cell. Neurosci.2013720710.3389/fncel.2013.00207 24273493
    [Google Scholar]
  31. RiekerC. EngblomD. KreinerG. Nucleolar disruption in dopaminergic neurons leads to oxidative damage and parkinsonism through repression of mammalian target of rapamycin signaling.J. Neurosci.201131245346010.1523/JNEUROSCI.0590‑10.2011 21228155
    [Google Scholar]
  32. DeJesus-HernandezM. MackenzieI.R. BoeveB.F. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.Neuron201172224525610.1016/j.neuron.2011.09.011 21944778
    [Google Scholar]
  33. TuortoF. ParlatoR. Rrna and trna bridges to neuronal homeostasis in health and disease.J. Mol. Biol.201943191763177910.1016/j.jmb.2019.03.004 30876917
    [Google Scholar]
  34. ScheltensP. De StrooperB. KivipeltoM. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  35. RasmussenL. de LabioR. VianiG. Differential expression of ribosomal genes in brain and blood of alzheimer’s disease patients.Curr. Alzheimer Res.2015121098498910.2174/1567205012666151027124017 26502820
    [Google Scholar]
  36. Garcia-EsparciaP. Sideris-LampretsasG. Hernandez-OrtegaK. Altered mechanisms of protein synthesis in frontal cortex in Alzheimer disease and a mouse model.Am. J. Neurodegener. Dis.2017621525 28695061
    [Google Scholar]
  37. SchaefferE.L. CatanoziS. Stereological investigation of the CA1 pyramidal cell layer in untreated and lithium-treated 3xTg-AD and wild-type mice.Ann. Anat.2017209516010.1016/j.aanat.2016.10.002
    [Google Scholar]
  38. PadurariuM. CiobicaA. MavroudisI. FotiouD. BaloyannisS. Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer’s disease patients.Psychiatr. Danub.2012242152158 22706413
    [Google Scholar]
  39. PietrzakM. SmithS.C. GeraldsJ.T. HaggT. GomesC. HetmanM. Nucleolar disruption and apoptosis are distinct neuronal responses to etoposide‐induced DNA damage.J. Neurochem.201111761033104610.1111/j.1471‑4159.2011.07279.x 21517844
    [Google Scholar]
  40. PietrzakM. RempalaG. NelsonP.T. ZhengJ.J. HetmanM. Epigenetic silencing of nucleolar rRNA genes in Alzheimer’s disease.PLoS One201167e2258510.1371/journal.pone.0022585 21799908
    [Google Scholar]
  41. CaiafaP. GuastafierroT. ZampieriM. Epigenetics: poly(ADP‐ribosyl)ation of PARP‐1 regulates genomic methylation patterns.FASEB J.200923367267810.1096/fj.08‑123265 19001527
    [Google Scholar]
  42. Cohen-ArmonM. VisochekL. KatzoffA. Long-term memory requires polyADP-ribosylation.Science200430456781820182210.1126/science.1096775 15205535
    [Google Scholar]
  43. ZengJ. LibienJ. ShaikF. Nucleolar PARP-1 expression is decreased in Alzheimer’s disease: Consequences for epigenetic regulation of rDNA and cognition.Neural Plast.20162016898792810.1155/2016/8987928
    [Google Scholar]
  44. RegierM. LiangJ. ChoiA. Evidence for decreased nucleolar PARP-1 as an early marker of cognitive impairment.Neural Plast.20192019438325810.1155/2019/4383258
    [Google Scholar]
  45. Hernández-OrtegaK. Garcia-EsparciaP. GilL. LucasJ.J. FerrerI. Altered machinery of protein synthesis in alzheimer’s: From the nucleolus to the ribosome.Brain Pathol.201626559360510.1111/bpa.12335 26512942
    [Google Scholar]
  46. FariaT.C. MaldonadoH.L. SantosL.C. Characterization of cerebellum-specific ribosomal DNA epigenetic modifications in Alzheimer’s disease: Should the cerebellum serve as a control tissue after all?Mol. Neurobiol.20205762563257110.1007/s12035‑020‑01902‑9 32232768
    [Google Scholar]
  47. SperançaM.A. BatistaL.M. da Silva LourençoR. Can the rDNA methylation pattern be used as a marker for Alzheimer’s disease?Alzheimers Dement.20084643844210.1016/j.jalz.2008.03.010 19012869
    [Google Scholar]
  48. CongR. DasS. UgrinovaI. Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription.Nucleic Acids Res.201240199441945410.1093/nar/gks720 22859736
    [Google Scholar]
  49. TamadaH. ThuanN.V. ReedP. Chromatin decondensation and nuclear reprogramming by nucleoplasmin.Mol. Cell. Biol.20062641259127110.1128/MCB.26.4.1259‑1271.2006 16449640
    [Google Scholar]
  50. StokerT.B. MasonS.L. GreenlandJ.C. HoldenS.T. SantiniH. BarkerR.A. Huntington’s disease: diagnosis and management.Pract. Neurol.2022221324110.1136/practneurol‑2021‑003074 34413240
    [Google Scholar]
  51. WalkerF.O. Huntington’s disease.Lancet2007369955721822810.1016/S0140‑6736(07)60111‑1 17240289
    [Google Scholar]
  52. SnellR.G. MacMillanJ.C. CheadleJ.P. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease.Nat. Genet.19934439339710.1038/ng0893‑393 8401588
    [Google Scholar]
  53. RozeE. SaudouF. CabocheJ. Pathophysiology of Huntingtonʼs disease: From huntingtin functions to potential treatments.Curr. Opin. Neurol.200824449750310.1097/WCO.0b013e328304b692 18607213
    [Google Scholar]
  54. SönmezA. MustafaR. RyllS.T. Nucleolar stress controls mutant Huntington toxicity and monitors Huntington’s disease progression.Cell Death Dis.20211212113910.1038/s41419‑021‑04432‑x 34880223
    [Google Scholar]
  55. LeeJ. HwangY.J. BooJ.H. Dysregulation of upstream binding factor-1 acetylation at K352 is linked to impaired ribosomal DNA transcription in Huntington’s disease.Cell Death Differ.201118111726173510.1038/cdd.2011.38 21546905
    [Google Scholar]
  56. SanijE. HannanR.D. The role of UBF in regulating the structure and dynamics of transcriptionally active rDNA chromatin.Epigenetics20094637438210.4161/epi.4.6.9449 19717978
    [Google Scholar]
  57. JesseS. BayerH. AlupeiM.C. Ribosomal transcription is regulated by PGC-1alpha and disturbed in Huntington’s disease.Sci. Rep.201771851310.1038/s41598‑017‑09148‑7 28819135
    [Google Scholar]
  58. YangL. XiaL. WuD.Y. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor.Oncogene200221114815210.1038/sj.onc.1204998 11791185
    [Google Scholar]
  59. FerranteR.J. RyuH. KubilusJ.K. Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease.J. Neurosci.20042446103351034210.1523/JNEUROSCI.2599‑04.2004 15548647
    [Google Scholar]
  60. GardianG. BrowneS.E. ChoiD.K. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease.J. Biol. Chem.2005280155656310.1074/jbc.M410210200 15494404
    [Google Scholar]
  61. HayesM.T. Parkinson’s disease and parkinsonism.Am. J. Med.2019132780280710.1016/j.amjmed.2019.03.001 30890425
    [Google Scholar]
  62. CaudleW.M. KitsouE. LiJ. BradnerJ. ZhangJ. A role for a novel protein, nucleolin, in Parkinson’s disease.Neurosci. Lett.20094591111510.1016/j.neulet.2009.04.060 19409963
    [Google Scholar]
  63. MayerC. GrummtI. Cellular stress and nucleolar function.Cell Cycle2005481036103810.4161/cc.4.8.1925 16205120
    [Google Scholar]
  64. KreinerG. BierhoffH. ArmentanoM. A neuroprotective phase precedes striatal degeneration upon nucleolar stress.Cell Death Differ.201320111455146410.1038/cdd.2013.66 23764776
    [Google Scholar]
  65. Healy-StoffelM. AhmadS.O. StanfordJ.A. LevantB. Altered nucleolar morphology in substantia nigra dopamine neurons following 6-hydroxydopamine lesion in rats.Neurosci. Lett.2013546263010.1016/j.neulet.2013.04.033 23643997
    [Google Scholar]
  66. KangH. ShinJ.H. Repression of rRNA transcription by PARIS contributes to Parkinson’s disease.Neurobiol. Dis.20157322022810.1016/j.nbd.2014.10.003 25315684
    [Google Scholar]
  67. EvsyukovV DomanskyiA BierhoffH Genetic mutations linked to Parkinson’s disease differentially control nucleolar activity in pre-symptomatic mouse models.Dis Model Mech2017105dmm.02809210.1242/dmm.028092 28360124
    [Google Scholar]
  68. SzebényiK. WengerL.M.D. SunY. Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology.Nat. Neurosci.202124111542155410.1038/s41593‑021‑00923‑4 34675437
    [Google Scholar]
  69. GaoF.B. AlmeidaS. Lopez-GonzalezR. Dysregulated molecular pathways in amyotrophic lateral sclerosis–frontotemporal dementia spectrum disorder.EMBO J.201736202931295010.15252/embj.201797568 28916614
    [Google Scholar]
  70. MoriK. ArzbergerT. GrässerF.A. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins.Acta Neuropathol.2013126688189310.1007/s00401‑013‑1189‑3 24132570
    [Google Scholar]
  71. MoriK. WengS.M. ArzbergerT. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS.Science201333961251335133810.1126/science.1232927 23393093
    [Google Scholar]
  72. KwonI. XiangS. KatoM. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells.Science201434562011139114510.1126/science.1254917 25081482
    [Google Scholar]
  73. MizielinskaS. RidlerC.E. BalendraR. Bidirectional nucleolar dysfunction in C9orf72 frontotemporal lobar degeneration.Acta Neuropathol. Commun.2017512910.1186/s40478‑017‑0432‑x 28420437
    [Google Scholar]
  74. HaeuslerA.R. DonnellyC.J. PerizG. C9orf72 nucleotide repeat structures initiate molecular cascades of disease.Nature2014507749119520010.1038/nature13124 24598541
    [Google Scholar]
  75. TaoZ. WangH. XiaQ. Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity.Hum. Mol. Genet.20152492426244110.1093/hmg/ddv005 25575510
    [Google Scholar]
  76. O’RourkeJ.G. BogdanikL. MuhammadA.K.M.G. C9orf72 bac transgenic mice display typical pathologic features of als/ftd.Neuron201588589290110.1016/j.neuron.2015.10.027 26637796
    [Google Scholar]
  77. SuzukiH. ShibagakiY. HattoriS. MatsuokaM. The proline–arginine repeat protein linked to C9-ALS/FTD causes neuronal toxicity by inhibiting the DEAD-box RNA helicase-mediated ribosome biogenesis.Cell Death Dis.201891097510.1038/s41419‑018‑1028‑5 30250194
    [Google Scholar]
  78. DumanR.S. AghajanianG.K. Synaptic dysfunction in depression: potential therapeutic targets.Science20123386103687210.1126/science.1222939 23042884
    [Google Scholar]
  79. BremnerJ.D. NarayanM. AndersonE.R. StaibL.H. MillerH.L. CharneyD.S. Hippocampal volume reduction in major depression.Am. J. Psychiatry2000157111511810.1176/ajp.157.1.115 10618023
    [Google Scholar]
  80. KakedaS. WatanabeK. KatsukiA. Relationship between interleukin (IL)-6 and brain morphology in drug-naïve, first-episode major depressive disorder using surface-based morphometry.Sci. Rep.2018811005410.1038/s41598‑018‑28300‑5 29968776
    [Google Scholar]
  81. DioliC. PatrícioP. SousaN. Chronic stress triggers divergent dendritic alterations in immature neurons of the adult hippocampus, depending on their ultimate terminal fields.Transl. Psychiatry20199114310.1038/s41398‑019‑0477‑7 31028242
    [Google Scholar]
  82. KimJ.J. SongE.Y. KimJ.J. SongE.Y. KostenT.A. Stress effects in the hippocampus: Synaptic plasticity and memory.Stress20069111110.1080/10253890600678004 16753928
    [Google Scholar]
  83. GomesC. SmithS.C. YoussefM.N. ZhengJ.J. HaggT. HetmanM. RNA polymerase 1-driven transcription as a mediator of BDNF-induced neurite outgrowth.J. Biol. Chem.201128664357436310.1074/jbc.M110.170134 21098478
    [Google Scholar]
  84. AllenK.D. GourovA.V. HarteC. Nucleolar integrity is required for the maintenance of long-term synaptic plasticity.PLoS One201498e10436410.1371/journal.pone.0104364 25089620
    [Google Scholar]
  85. DingQ. MarkesberyW.R. ChenQ. LiF. KellerJ.N. Ribosome dysfunction is an early event in Alzheimer’s disease.J. Neurosci.200525409171917510.1523/JNEUROSCI.3040‑05.2005 16207876
    [Google Scholar]
  86. McGowanP.O. SzyfM. The epigenetics of social adversity in early life: Implications for mental health outcomes.Neurobiol. Dis.2010391667210.1016/j.nbd.2009.12.026 20053376
    [Google Scholar]
  87. KrzyżanowskaM. SteinerJ. BrischR. Ribosomal DNA transcription in dorsal raphe nucleus neurons is increased in residual Schizophrenia compared to depressed patients with affective disorders.Psychiatry Res2015230223324110.1016/j.psychres.2015.08.045 26350704
    [Google Scholar]
  88. HoriH. NakamuraS. YoshidaF. Integrated profiling of phenotype and blood transcriptome for stress vulnerability and depression.J. Psychiatr. Res.201810420221010.1016/j.jpsychires.2018.08.010 30103068
    [Google Scholar]
  89. DarbyM.M. YolkenR.H. SabunciyanS. Consistently altered expression of gene sets in postmortem brains of individuals with major psychiatric disorders.Transl. Psychiatry201669e89010.1038/tp.2016.173 27622934
    [Google Scholar]
  90. MannJ.J. A current perspective of suicide and attempted suicide.Ann. Intern. Med.2002136430231110.7326/0003‑4819‑136‑4‑200202190‑00010 11848728
    [Google Scholar]
  91. TureckiG. Suicidal behavior: is there a genetic predisposition?Bipolar Disord.20013633534910.1034/j.1399‑5618.2001.30608.x 11843783
    [Google Scholar]
  92. McGowanP.O. SasakiA. HuangT.C.T. Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain.PLoS One200835e208510.1371/journal.pone.0002085 18461137
    [Google Scholar]
  93. KrzyżanowskaM. SteinerJ. KarneckiK Decreased ribosomal DNA transcription in dorsal raphe nucleus neurons differentiates between suicidal and non-suicidal death.Eur Arch Psychiatry Clin Neurosci2016266321722410.1007/s00406‑015‑0655‑4 26590846
    [Google Scholar]
  94. KrzyżanowskaM. SteinerJ. BrischR. Decreased ribosomal DNA transcription in dorsal raphe nucleus neurons is specific for suicide regardless of psychiatric diagnosis.Psychiatry Res2016241434610.1016/j.psychres.2016.04.079 27155286
    [Google Scholar]
  95. GosT. KrellD. BrischR. Demonstration of decreased activity of dorsal raphe nucleus neurons in depressed suicidal patients by the AgNOR staining method.J. Affect. Disord.20081112-325126010.1016/j.jad.2008.03.002 18423885
    [Google Scholar]
  96. GosT. KrellD. BrischR. The changes in AgNOR parameters of dorsal raphe nucleus neurons are related to suicide.Leg. Med.20079525125710.1016/j.legalmed.2007.02.001 17459759
    [Google Scholar]
  97. KrzyżanowskaM. SteinerJ. PieśniakD. Ribosomal DNA transcription in prefrontal pyramidal neurons is decreased in suicide.Eur Arch Psychiatry Clin Neurosci2020270785986710.1007/s00406‑019‑00996‑0 30859295
    [Google Scholar]
  98. TeschlerS. GotthardtJ. DammannG. DammannR. Aberrant DNA methylation of rdna and prima1 in borderline personality disorder.Int. J. Mol. Sci.20161716710.3390/ijms17010067 26742039
    [Google Scholar]
  99. ChestkovI.V. JestkovaE.M. ErshovaE.S. Abundance of ribosomal RNA gene copies in the genomes of Schizophrenia patients.Schizophr. Res.201819730531410.1016/j.schres.2018.01.001 29336872
    [Google Scholar]
  100. SalimD. GertonJ.L. Ribosomal DNA instability and genome adaptability.Chromosome Res.2019271-2738710.1007/s10577‑018‑9599‑7
    [Google Scholar]
  101. ZhouH. WangY. WangQ. R‐loops mediate transcription‐associated formation of human rDNA secondary constrictions.J. Cell. Biochem.2021122101517153310.1002/jcb.30074 34224593
    [Google Scholar]
  102. HallgrenJ. PietrzakM. RempalaG. NelsonP.T. HetmanM. Neurodegeneration-associated instability of ribosomal DNA.Biochim. Biophys. Acta Mol. Basis Dis.20141842686086810.1016/j.bbadis.2013.12.012 24389328
    [Google Scholar]
  103. SalviJ.S. ChanJ.N.Y. SzafranskiK. Roles for Pbp1 and caloric restriction in genome and lifespan maintenance via suppression of RNA-DNA hybrids.Dev. Cell201430217719110.1016/j.devcel.2014.05.013 25073155
    [Google Scholar]
  104. StorciG. De CarolisS. PapiA. Genomic stability, anti-inflammatory phenotype, and up-regulation of the RNAseH2 in cells from centenarians.Cell Death Differ.20192691845185810.1038/s41418‑018‑0255‑8 30622304
    [Google Scholar]
  105. TondutiD. FazziE. BadolatoR. OrcesiS. Novel and emerging treatments for Aicardi-Goutières syndrome.Expert Rev. Clin. Immunol.202016218919810.1080/1744666X.2019.1707663 31855085
    [Google Scholar]
  106. MuraE. MasnadaS. AntonelloC. Ruxolitinib in Aicardi-Goutières syndrome.Metab. Brain Dis.202136585986310.1007/s11011‑021‑00716‑5 33721182
    [Google Scholar]
  107. WangW. WangW. HeT.Y. Analysis of clinical characteristics of children with Aicardi-Goutieres syndrome in China.World J. Pediatr.202218749049710.1007/s12519‑022‑00545‑1 35551623
    [Google Scholar]
  108. CrowY.J. ChaseD.S. Lowenstein SchmidtJ. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1.Am. J. Med. Genet. A.2015167A229631210.1002/ajmg.a.36887 25604658
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240292079240513093708
Loading
/content/journals/cmm/10.2174/0115665240292079240513093708
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test