Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Breast Cancer (BC) is one of the most frequently occuring diseases in women, accounting for 90% of cancer-related deaths in women. Tumor cells can invade nearby tissues and spread to distant organs by metastasis. The epithelial-mesenchymal transition or EMT, which involves a number of transcription factors and signaling pathways, is a mechanism by which cells of the epithelium change into mesenchymal type capable of motility, invasion, and metastasis. EMT has grown to be a more intriguing target for developing cutting-edge treatment approaches since it is involved in diverse malignant transformation-related activities. Besides preventing tumor cell invasion and spread and the development of metastatic lesions, anti-EMT treatment methods also lessen cancer stemness and improve the efficacy of more traditional chemotherapeutics. EMT is, therefore, a desirable target in oncology. This review gives an overview of EMT, various markers of EMT, and different inhibitors used in therapies targeting EMT in BC.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240310780240805114133
2024-08-19
2025-09-03
Loading full text...

Full text loading...

References

  1. AlkabbanF.M. FergusonT. Breast Cancer.StatPearls.StatPearls Publishing2023http://www.ncbi.nlm.nih.gov/books/NBK482286/
    [Google Scholar]
  2. AzamjahN. Soltan-ZadehY. ZayeriF. Global trend of breast cancer mortality rate: A 25-year study.Asian Pac. J. Cancer Prev.20192072015202010.31557/APJCP.2019.20.7.201531350959
    [Google Scholar]
  3. ŁukasiewiczS. CzeczelewskiM. FormaA. BajJ. SitarzR. StanisławekA. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review.Cancers20211317428710.3390/cancers1317428734503097
    [Google Scholar]
  4. HassanpourS.H. DehghaniM. Review of cancer from perspective of molecular.J. Cancer Res. Pract.20174412712910.1016/j.jcrpr.2017.07.001
    [Google Scholar]
  5. HuangZ. ZhangZ. ZhouC. LiuL. HuangC. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities.MedComm202232e14410.1002/mco2.14435601657
    [Google Scholar]
  6. MittalV. Epithelial mesenchymal transition in tumor metastasis.Annu. Rev. Pathol.201813139541210.1146/annurev‑pathol‑020117‑04385429414248
    [Google Scholar]
  7. LaiX. LiQ. WuF. LinJ. ChenJ. ZhengH. GuoL. Epithelial-mesenchymal transition and metabolic switching in cancer: Lessons from somatic cell reprogramming.Front. Cell Dev. Biol.2020876010.3389/fcell.2020.0076032850862
    [Google Scholar]
  8. RibattiD. TammaR. AnneseT. Epithelial-mesenchymal transition in cancer: A historical overview.Transl. Oncol.202013610077310.1016/j.tranon.2020.10077332334405
    [Google Scholar]
  9. KimD. XingT. YangZ. DudekR. LuQ. ChenY.H. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: A comprehensive overview.J. Clin. Med.201771110.3390/jcm701000129271928
    [Google Scholar]
  10. NewgreenD.F. RittermanM. PetersE.A. Morphology and behaviour of neural crest cells of chick embryo in vitro.Cell Tissue Res.1979203111514010.1007/BF00234333509508
    [Google Scholar]
  11. KalluriR. EMT: When epithelial cells decide to become mesenchymal-like cells.J. Clin. Invest.200911961417141910.1172/JCI3967519487817
    [Google Scholar]
  12. MarconiG.D. FonticoliL. RajanT.S. PierdomenicoS.D. TrubianiO. PizzicannellaJ. DiomedeF. Epithelial-mesenchymal transition (EMT): The type-2 EMT in wound healing, tissue regeneration and organ fibrosis.Cells2021107158710.3390/cells1007158734201858
    [Google Scholar]
  13. YaoD. DaiC. PengS. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation.Mol. Cancer Res.20119121608162010.1158/1541‑7786.MCR‑10‑056821840933
    [Google Scholar]
  14. GoncharovA.P. VashakidzeN. KharaishviliG. Epithelial-mesenchymal transition: A fundamental cellular and microenvironmental process in benign and malignant prostate pathologies.Biomedicines202412241810.3390/biomedicines1202041838398019
    [Google Scholar]
  15. Celià-TerrassaT. KangY. How important is EMT for cancer metastasis?PLoS Biol.2024222e300248710.1371/journal.pbio.300248738324529
    [Google Scholar]
  16. LuW. KangY. Epithelial-mesenchymal plasticity in cancer progression and metastasis.Dev. Cell201949336137410.1016/j.devcel.2019.04.01031063755
    [Google Scholar]
  17. ManiS.A. GuoW. LiaoM.J. EatonE.N. AyyananA. ZhouA.Y. BrooksM. ReinhardF. ZhangC.C. ShipitsinM. CampbellL.L. PolyakK. BriskenC. YangJ. WeinbergR.A. The epithelial-mesenchymal transition generates cells with properties of stem cells.Cell2008133470471510.1016/j.cell.2008.03.02718485877
    [Google Scholar]
  18. Kudo-SaitoC. ShirakoH. TakeuchiT. KawakamiY. Cancer metastasis is accelerated through immunosuppression during snail-induced EMT of cancer cells.Cancer Cell200915319520610.1016/j.ccr.2009.01.02319249678
    [Google Scholar]
  19. OlmedaD. Moreno-BuenoG. FloresJ.M. FabraA. PortilloF. CanoA. SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells.Cancer Res.20076724117211173110.1158/0008‑5472.CAN‑07‑231818089802
    [Google Scholar]
  20. YuanZ. LiY. ZhangS. WangX. DouH. YuX. ZhangZ. YangS. XiaoM. Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments.Mol. Cancer20232214810.1186/s12943‑023‑01744‑836906534
    [Google Scholar]
  21. WickW. PlattenM. WellerM. Glioma cell invasion: Regulation of metalloproteinase activity by TGF-beta.J. Neurooncol.200153217718510.1023/A:101220951884311716069
    [Google Scholar]
  22. KalluriR. WeinbergR.A. The basics of epithelial-mesenchymal transition.J. Clin. Invest.200911961420142810.1172/JCI3910419487818
    [Google Scholar]
  23. TsaiJ.H. DonaherJ.L. MurphyD.A. ChauS. YangJ. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis.Cancer Cell201222672573610.1016/j.ccr.2012.09.02223201165
    [Google Scholar]
  24. XuZ. ZhangY. DaiH. HanB. Epithelial mesenchymal transition mediated tumor therapeutic resistance.Molecules20222715475010.3390/molecules2715475035897925
    [Google Scholar]
  25. HousmanG. BylerS. HeerbothS. LapinskaK. LongacreM. SnyderN. SarkarS. Drug resistance in cancer: An overview.Cancers2014631769179210.3390/cancers603176925198391
    [Google Scholar]
  26. HillC. WangY. The importance of epithelial-mesenchymal transition and autophagy in cancer drug resistance.Cancer Drug Resist.201931384710.20517/cdr.2019.7532226927
    [Google Scholar]
  27. DhanyamrajuP.K. Drug resistance mechanisms in cancers: Execution of pro-survival strategies.J. Biomed. Res.20243829512110.7555/JBR.37.2023024838413011
    [Google Scholar]
  28. KurreyN.K. JalgaonkarS.P. JoglekarA.V. GhanateA.D. ChaskarP.D. DoiphodeR.Y. BapatS.A. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells.Stem Cells2792059206810.1002/stem.154
    [Google Scholar]
  29. CheY. LiY. ZhengF. ZouK. LiZ. ChenM. HuS. TianC. YuW. GuoW. LuoM. DengW. ZouL. TRIP4 promotes tumor growth and metastasis and regulates radiosensitivity of cervical cancer by activating MAPK, PI3K/AKT, and hTERT signaling.Cancer Lett.201945211310.1016/j.canlet.2019.03.01730905820
    [Google Scholar]
  30. SeoJ. HaJ. KangE. ChoS. The role of epithelial–mesenchymal transition-regulating transcription factors in anti-cancer drug resistance.Arch. Pharm. Res.202144328129210.1007/s12272‑021‑01321‑x33768509
    [Google Scholar]
  31. RadhakrishnanR. NatarajanJ. ChandrashekarC. Critical biomarkers of epithelial-mesenchymal transition in the head and neck cancers.J. Cancer Res. Ther.201410351251810.4103/0973‑1482.13792625313730
    [Google Scholar]
  32. SiegelR.L. MillerK.D. JemalA. Cancer statistics.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  33. ShiY. WuH. ZhangM. DingL. MengF. FanX. Expression of the epithelial-mesenchymal transition-related proteins and their clinical significance in lung adenocarcinoma.Diagn. Pathol.2013818910.1186/1746‑1596‑8‑8923706092
    [Google Scholar]
  34. AndersonR.L. BalasasT. CallaghanJ. CoombesR.C. EvansJ. HallJ.A. KinradeS. JonesD. JonesP.S. JonesR. MarshallJ.F. PanicoM.B. ShawJ.A. SteegP.S. SullivanM. TongW. WestwellA.D. RitchieJ.W.A. Cancer research uk and cancer therapeutics crc australia metastasis working group.A framework for the development of effective anti-metastatic agents.Nat. Rev. Clin. Oncol.201916318520410.1038/s41571‑018‑0134‑830514977
    [Google Scholar]
  35. GuoL-L. WangH-Y. ZhengL-S. WangM-D. CaoY. LiY. LiuZ-J. PengL-X. HuangB-J. ShaoJ-Y. QianC-N. Metastasis of nasopharyngeal carcinoma: What we know and do not know.Visualized Cancer Medicine202124410.1051/vcm/2021003
    [Google Scholar]
  36. RomanoN. MacinoG. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences.Mol. Microbiol.19926223343335310.1111/j.1365‑2958.1992.tb02202.x1484489
    [Google Scholar]
  37. TianZ. LiangG. CuiK. LiangY. WangQ. LvS. ChengX. ZhangL. Insight into the prospects for rnai therapy of cancer.Front. Pharmacol.20211264471810.3389/fphar.2021.64471833796026
    [Google Scholar]
  38. BobbinM.L. RossiJ.J. RNA interference (RNAi)-based therapeutics: Delivering on the promise?Annu. Rev. Pharmacol. Toxicol.201656110312210.1146/annurev‑pharmtox‑010715‑10363326738473
    [Google Scholar]
  39. GoodallG.J. WickramasingheV.O. RNA in cancer.Nat. Rev. Cancer2021211223610.1038/s41568‑020‑00306‑033082563
    [Google Scholar]
  40. MacfarlaneL-A. MurphyP.R. MicroRNA: Biogenesis, function and role in cancer.Curr. Genomics201011753756110.2174/13892021079317589521532838
    [Google Scholar]
  41. ArdekaniA.M. NaeiniM.M. The role of micrornas in human diseases.Avicenna J. Med. Biotechnol.20102416117923407304
    [Google Scholar]
  42. PengY. CroceC.M. The role of micrornas in human cancer.Signal Transduct. Target. Ther.2016111500410.1038/sigtrans.2015.429263891
    [Google Scholar]
  43. Ghafouri-FardS. Khanbabapour SasiA. AbakA. ShooreiH. KhoshkarA. TaheriM. Contribution of miRNAs in the pathogenesis of breast cancer.Front. Oncol.20211176894910.3389/fonc.2021.76894934804971
    [Google Scholar]
  44. MaF. LiW. LiuC. LiW. YuH. LeiB. RenY. LiZ. PangD. QianC. MiR-23a promotes TGF-β1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/β-catenin signaling.Oncotarget2017841695386955010.18632/oncotarget.1842229050223
    [Google Scholar]
  45. ZhangJ. CaoZ. YangG. YouL. ZhangT. ZhaoY. MicroRNA-27a (miR-27a) in solid tumors: A review based on mechanisms and clinical observations.Front. Oncol.2019989310.3389/fonc.2019.0089331572683
    [Google Scholar]
  46. JiangG. ShiW. FangH. ZhangX. miR‑27a promotes human breast cancer cell migration by inducing EMT in a FBXW7‑dependent manner.Mol. Med. Rep.20181865417542610.3892/mmr.2018.958730365154
    [Google Scholar]
  47. PeiY. LeiY. LiuX. MiR-29a promotes cell proliferation and EMT in breast cancer by targeting ten eleven translocation 1.Biochim. Biophys. Acta Mol. Basis Dis.20161862112177218510.1016/j.bbadis.2016.08.01427555295
    [Google Scholar]
  48. StatelloL. GuoC.J. ChenL.L. HuarteM. Gene regulation by long non-coding RNAs and its biological functions.Nat. Rev. Mol. Cell Biol.20212229611810.1038/s41580‑020‑00315‑933353982
    [Google Scholar]
  49. JarrouxJ. MorillonA. PinskayaM. History, discovery, and classification of lncRNAs.Adv. Exp. Med. Biol.2017100814610.1007/978‑981‑10‑5203‑3_128815535
    [Google Scholar]
  50. WangK.C. ChangH.Y. Molecular mechanisms of long noncoding RNAs.Mol. Cell201143690491410.1016/j.molcel.2011.08.01821925379
    [Google Scholar]
  51. JiangM-C. NiJ-J. CuiW-Y. WangB-Y. ZhuoW. Emerging roles of lncRNA in cancer and therapeutic opportunities.Am. J. Cancer Res.2019971354136631392074
    [Google Scholar]
  52. BatistaP.J. ChangH.Y. Long noncoding RNAs: Cellular address codes in development and disease.Cell201315261298130710.1016/j.cell.2013.02.01223498938
    [Google Scholar]
  53. LiJ. RiedtT. GoossensS. Carrillo GarcíaC. SzczepanskiS. BrandesM. PietersT. DobroschL. GütgemannI. FarlaN. RadaelliE. HulpiauP. MallelaN. FröhlichH. La StarzaR. MatteucciC. ChenT. BrossartP. MecucciC. HuylebroeckD. HaighJ.J. JanzenV. The EMT transcription factor Zeb2 controls adult murine hematopoietic differentiation by regulating cytokine signaling.Blood2017129446047210.1182/blood‑2016‑05‑71465927683414
    [Google Scholar]
  54. ZhangG. LiH. SunR. LiP. YangZ. LiuY. WangZ. YangY. YinC. Long non‐coding RNA ZEB2‐AS1 promotes the proliferation, metastasis and epithelial mesenchymal transition in triple‐negative breast cancer by epigenetically activating ZEB2.J. Cell. Mol. Med.20192353271327910.1111/jcmm.1421330825262
    [Google Scholar]
  55. WangJ. XiC. YangX. LuX. YuK. ZhangY. GaoR. LncRNA WT1-AS inhibits triple-negative breast cancer cell migration and invasion by downregulating transforming growth factor β1.Cancer Biother. Radiopharm.2019341067167510.1089/cbr.2019.292531621381
    [Google Scholar]
  56. LiangY. HuJ. LiJ. LiuY. YuJ. ZhuangX. MuL. KongX. HongD. YangQ. HuG. Epigenetic activation of TWIST1 by MTDH promotes cancer stem–like cell traits in breast cancer.Cancer Res.201575173672368010.1158/0008‑5472.CAN‑15‑093026141861
    [Google Scholar]
  57. LuoL. TangH. LingL. LiN. JiaX. ZhangZ. WangX. ShiL. YinJ. QiuN. LiuH. SongY. LuoK. LiH. HeZ. ZhengG. XieX. LINC01638 lncRNA activates MTDH-Twist1 signaling by preventing SPOP-mediated c-Myc degradation in triple-negative breast cancer.Oncogene201837476166617910.1038/s41388‑018‑0396‑830002443
    [Google Scholar]
  58. BinX. HongjianY. XipingZ. BoC. ShifengY. BinbinT. Research progresses in roles of LncRNA and its relationships with breast cancer.Cancer Cell Int.201818117910.1186/s12935‑018‑0674‑030459529
    [Google Scholar]
  59. ZhangM. WuW-B. WangZ-W. WangX-H. lncRNA NEAT1 is closely related with progression of breast cancer via promoting proliferation and EMT.Eur. Rev. Med. Pharmacol. Sci.20172151020102628338194
    [Google Scholar]
  60. WanQ. TangM. SunS-L. HuJ. SunZ-J. FangY-T. HeT-C. ZhangY. SNHG3 promotes migration, invasion, and epithelial-mesenchymal transition of breast cancer cells through the miR-186-5p/ZEB1 axis.Am. J. Transl. Res.202113258560033594311
    [Google Scholar]
  61. WengW. LiH. GoelA. Piwi-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications.Biochim. Biophys. Acta Rev. Cancer20191871116016910.1016/j.bbcan.2018.12.00530599187
    [Google Scholar]
  62. ChengY. WangQ. JiangW. BianY. zhouY. GouA. ZhangW. FuK. ShiW. Emerging roles of piRNAs in cancer: Challenges and prospects.Aging201911219932994610.18632/aging.10241731727866
    [Google Scholar]
  63. OuB. LiuY. GaoZ. XuJ. YanY. LiY. ZhangJ. Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer via FTO-mediated m6A demethylation.Cell Death Dis.2022131090510.1038/s41419‑022‑05317‑336302751
    [Google Scholar]
  64. ÖnerÇ. ÇolakE. PIWI interacting RNA-651 inhibition transforms the genetic features of MCF-7 breast cancer cells.Oncologie202123339340710.32604/Oncologie.2021.016958
    [Google Scholar]
  65. XiaoM.S. AiY. WiluszJ.E. Biogenesis and functions of circular RNAs come into focus.Trends Cell Biol.202030322624010.1016/j.tcb.2019.12.00431973951
    [Google Scholar]
  66. ZengY. ZouY. GaoG. ZhengS. WuS. XieX. TangH. The biogenesis, function and clinical significance of circular RNAs in breast cancer.Cancer Biol. Med.202118-010.20892/j.issn.2095‑3941.2020.048534110722
    [Google Scholar]
  67. JungJ.Y. LeeD.W. RyuS.B. HwangI. SchachtmanD.P. SCYL2 genes are involved in clathrin-mediated vesicle trafficking and essential for plant growth.Plant Physiol.2017175119420910.1104/pp.17.0082428751315
    [Google Scholar]
  68. YuanC. LuoX. ZhanX. ZengH. DuanS. EMT related circular RNA expression profiles identify circSCYL2 as a novel molecule in breast tumor metastasis.Int. J. Mol. Med.20204561697171010.3892/ijmm.2020.455032236616
    [Google Scholar]
  69. RenS. LiuJ. FengY. LiZ. HeL. LiL. CaoX. WangZ. ZhangY. Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia.J. Exp. Clin. Cancer Res.201938138810.1186/s13046‑019‑1398‑231488193
    [Google Scholar]
  70. ZengK. HeB. YangB.B. XuT. ChenX. XuM. LiuX. SunH. PanY. WangS. The pro-metastasis effect of circANKS1B in breast cancer.Mol. Cancer201817116010.1186/s12943‑018‑0914‑x30454010
    [Google Scholar]
  71. LiangJ. WenJ. HuangZ. ChenX. ZhangB. ChuL. Small nucleolar RNAs: Insight into their function in cancer.Front. Oncol.2019958710.3389/fonc.2019.0058731338327
    [Google Scholar]
  72. HuangZ. DuY. WenJ. LuB. ZhaoY. snoRNAs: Functions and mechanisms in biological processes, and roles in tumor pathophysiology.Cell Death Discov.20228125910.1038/s41420‑022‑01056‑835552378
    [Google Scholar]
  73. WuF. ZhangL. WuP. WuY. ZhangT. ZhangD. TianJ. The potential role of small nucleolar RNAs in cancers – An evidence map.Int. J. Gen. Med.2022153851386410.2147/IJGM.S35233335431571
    [Google Scholar]
  74. van der WerfJ. ChinC. FlemingN. SnoRNA in cancer progression, metastasis and immunotherapy response.Biology202110880910.3390/biology1008080934440039
    [Google Scholar]
  75. HuT. LuC. XiaY. WuL. SongJ. ChenC. WangQ. Small nucleolar RNA SNORA71A promotes epithelial‐mesenchymal transition by maintaining ROCK2 mRNA stability in breast cancer.Mol. Oncol.20221691947196510.1002/1878‑0261.1318635100495
    [Google Scholar]
  76. DongareP.N. MotuleA.S. MoreM.P. PatingeP.A. BakalR. AN overview on anticancer drugs from marine souRCE.World J. Pharm. Res.n.d.101
    [Google Scholar]
  77. KhanT. GuravP. PhytoNanotechnology: Enhancing delivery of plant based anti-cancer drugs.Front. Pharmacol.20188100210.3389/fphar.2017.0100229479316
    [Google Scholar]
  78. AwareC.B. PatilD.N. SuryawanshiS.S. MaliP.R. RaneM.R. GuravR.G. JadhavJ.P. Natural bioactive products as promising therapeutics: A review of natural product-based drug development.S. Afr. J. Bot.202215151252810.1016/j.sajb.2022.05.028
    [Google Scholar]
  79. HashemS. AliT. A. AkhtarS. NisarS. SageenaG. AliS. Al-MannaiS. TherachiyilL. MirR. ElfakiI. MirM. M. JamalF. MasoodiT. UddinS. SinghM. HarisM. MachaM. BhatA. A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents.Biomed Pharmacother202215011305410.1016/j.biopha.2022.11305435658225
    [Google Scholar]
  80. ChiuK.J. ChiouH.Y.C. HuangC.H. LuP.C. KuoH.R. WangJ.W. LinM.H. Natural compounds targeting cancer-associated fibroblasts against digestive system tumor progression: Therapeutic insights.Biomedicines202210371310.3390/biomedicines1003071335327514
    [Google Scholar]
  81. AnwarS. MalikJ.A. AhmedS. KameshwarV.A. AlanaziJ. AlamriA. AhemadN. Can natural products targeting emt serve as the future anticancer therapeutics?Molecules20222722766810.3390/molecules2722766836431766
    [Google Scholar]
  82. LuJ.J. BaoJ.L. ChenX.P. HuangM. WangY.T. Alkaloids isolated from natural herbs as the anticancer agents.Evid. Based Complement. Alternat. Med.2012201211210.1155/2012/48504222988474
    [Google Scholar]
  83. MondalA. GandhiA. FimognariC. AtanasovA.G. BishayeeA. Alkaloids for cancer prevention and therapy: Current progress and future perspectives.Eur. J. Pharmacol.201985817247210.1016/j.ejphar.2019.17247231228447
    [Google Scholar]
  84. LiM. LiP. ZhangM. MaF. Brucine suppresses breast cancer metastasis via inhibiting epithelial mesenchymal transition and matrix metalloproteinases expressions.Chin. J. Integr. Med.2018241404610.1007/s11655‑017‑2805‑128795388
    [Google Scholar]
  85. SiY. WangJ. LiuX. ZhouT. XiangY. ZhangT. WangX. FengT. XuL. YuQ. ZhaoH. LiuY. Ethoxysanguinarine, a novel direct activator of amp-activated protein kinase, induces autophagy and exhibits therapeutic potential in breast cancer cells.Front. Pharmacol.202010150310.3389/fphar.2019.0150331969821
    [Google Scholar]
  86. MaL. XuanX.J. ChenX.M. FanM.H. LiuJ. HuangG.Z. LiuZ. Ethoxysanguinarine induces apoptosis, inhibits metastasis and sensitizes cells to docetaxel in breast cancer cells through inhibition of hakai.Chem. Biodivers.2023202e20220028410.1002/cbdv.20220028436633334
    [Google Scholar]
  87. SinghR. Chemotaxonomy of medicinal plants: Possibilities and limitations.In: Natural Products and Drug DiscoveryElsevier201811913610.1016/B978‑0‑08‑102081‑4.00006‑X
    [Google Scholar]
  88. KytidouK. ArtolaM. OverkleeftH.S. AertsJ.M.F.G. Plant glycosides and glycosidases: A treasure-trove for therapeutics.Front. Plant Sci.20201135710.3389/fpls.2020.0035732318081
    [Google Scholar]
  89. MaX. ZhangW. JiangY. WenJ. WeiS. ZhaoY. Paeoniflorin, a natural product with multiple targets in liver diseases—a mini review.Front. Pharmacol.20201153110.3389/fphar.2020.0053132410996
    [Google Scholar]
  90. ZhouZ. WangS. SongC. HuZ. Paeoniflorin prevents hypoxia-induced epithelial–mesenchymal transition in human breast cancer cells.OncoTargets Ther.201692511251810.2147/OTT.S10242227175085
    [Google Scholar]
  91. VelesiotisC. KanellakisM. VyniosD.H. Steviol glycosides affect functional properties and macromolecular expression of breast cancer cells.IUBMB Life202274101012102810.1002/iub.266936054915
    [Google Scholar]
  92. ReyesM.E. RiquelmeI. SalvoT. ZanellaL. LetelierP. BrebiP. Brown seaweed fucoidan in cancer: Implications in metastasis and drug resistance.Mar. Drugs202018523210.3390/md1805023232354032
    [Google Scholar]
  93. HsuH.Y. LinT.Y. HwangP.A. TsengL.M. ChenR.H. TsaoS.M. HsuJ. Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGF receptor degradation in breast cancer.Carcinogenesis201334487488410.1093/carcin/bgs39623275155
    [Google Scholar]
  94. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules2522524333187049
    [Google Scholar]
  95. LinD. KuangG. WanJ. ZhangX. LiH. GongX. LiH. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression.Oncol. Rep.201737289590210.3892/or.2016.531127959422
    [Google Scholar]
  96. HuangW. LiuC. LiuF. LiuZ. LaiG. YiJ. Hinokiflavone induces apoptosis and inhibits migration of breast cancer cells via EMT signalling pathway.Cell Biochem. Funct.202038324925610.1002/cbf.344332107809
    [Google Scholar]
  97. BhosaleP.B. HaS.E. VetrivelP. KimH.H. KimS.M. KimG.S. Functions of polyphenols and its anticancer properties in biomedical research: A narrative review.Transl. Cancer Res.20209127619763110.21037/tcr‑20‑235935117361
    [Google Scholar]
  98. Cháirez-RamírezM.H. de la Cruz-LópezK.G. García-CarrancáA. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways.Front. Pharmacol.20211271030410.3389/fphar.2021.71030434744708
    [Google Scholar]
  99. MileoA.M. MiccadeiS. Polyphenols as modulator of oxidative stress in cancer disease: New therapeutic strategies.Oxid. Med. Cell. Longev.2016201611710.1155/2016/647562426649142
    [Google Scholar]
  100. KoJ.H. SethiG. UmJ.Y. ShanmugamM.K. ArfusoF. KumarA.P. BishayeeA. AhnK.S. The role of resveratrol in cancer therapy.Int. J. Mol. Sci.20171812258910.3390/ijms1812258929194365
    [Google Scholar]
  101. SunY. ZhouQ.M. LuY.Y. ZhangH. ChenQ.L. ZhaoM. SuS.B. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition.Molecules2019246113110.3390/molecules2406113130901941
    [Google Scholar]
  102. OngC.P. LeeW.L. TangY.Q. YapW.H. Honokiol: A review of its anticancer potential and mechanisms.Cancers20191214810.3390/cancers1201004831877856
    [Google Scholar]
  103. AvtanskiD.B. NagalingamA. BonnerM.Y. ArbiserJ.L. SaxenaN.K. SharmaD. Honokiol inhibits epithelial—mesenchymal transition in breast cancer cells by targeting signal transducer and activator of transcription 3/Zeb1/E‐cadherin axis.Mol. Oncol.20148356558010.1016/j.molonc.2014.01.00424508063
    [Google Scholar]
  104. WangL.S. StonerG.D. Anthocyanins and their role in cancer prevention.Cancer Lett.2008269228129010.1016/j.canlet.2008.05.02018571839
    [Google Scholar]
  105. PojerE. MattiviF. JohnsonD. StockleyC.S. The case for anthocyanin consumption to promote human health: A review.Compr. Rev. Food Sci. Food Saf.201312548350810.1111/1541‑4337.1202433412667
    [Google Scholar]
  106. ChenD. YuanM. YeQ. WangX. XuJ. ShiG. HuZ. Cyanidin-3-O-glucoside inhibits epithelial-to-mesenchymal transition, and migration and invasion of breast cancer cells by upregulating KLF4.Food Nutr20206410.29219/fnr.v64.4240.33240028
    [Google Scholar]
  107. ZhuR. ZhangF. PengY. XieT. WangY. LanY. Current progress in cancer treatment using nanomaterials.Front. Oncol.20221293012510.3389/fonc.2022.93012535912195
    [Google Scholar]
  108. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  109. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: Current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑034059100
    [Google Scholar]
  110. AdeelM. DuzagacF. CanzonieriV. RizzolioF. Self-therapeutic nanomaterials for cancer therapy: A review.ACS Appl. Nano Mater.2020364962497110.1021/acsanm.0c00762
    [Google Scholar]
  111. GampaS.C. GarimellaS.V. PandrangiS. Nano-TRAIL: A promising path to cancer therapy.Cancer Drug Resist.2023617910310.20517/cdr.2022.8237065863
    [Google Scholar]
  112. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  113. SarbadhikaryP. GeorgeB.P. AbrahamseH. Recent advances in photosensitizers as multifunctional theranostic agents for imaging-guided photodynamic therapy of cancer.Theranostics202111189054908810.7150/thno.6247934522227
    [Google Scholar]
  114. MontaseriH. KrugerC.A. AbrahamseH. Review: Organic nanoparticle based active targeting for photodynamic therapy treatment of breast cancer cells.Oncotarget202011222120213610.18632/oncotarget.2759632547709
    [Google Scholar]
  115. ParvaniJ.G. GujratiM.D. MackM.A. SchiemannW.P. LuZ.R. Silencing β3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast cancer.Cancer Res.201575112316232510.1158/0008‑5472.CAN‑14‑348525858145
    [Google Scholar]
  116. AteeqH. ZiaA. HusainQ. KhanM.S. Role of inorganic nanocomposite materials in drug delivery systems.Synthesis and Applications of Nanomaterials and Nanocomposites. UddinI. AhmadI. Springer Nature202317119510.1007/978‑981‑99‑1350‑3_7
    [Google Scholar]
  117. BrommaK. ChithraniD.B. Advances in gold nanoparticle-based combined cancer therapy.Nanomaterials2020109167110.3390/nano1009167132858957
    [Google Scholar]
  118. WuY. AliM.R.K. DongB. HanT. ChenK. ChenJ. TangY. FangN. WangF. El-SayedM.A. Gold nanorod photothermal therapy alters cell junctions and actin network in inhibiting cancer cell collective migration.ACS Nano20181299279929010.1021/acsnano.8b0412830118603
    [Google Scholar]
  119. FernandesN.B. ShenoyR.U.K. KajampadyM.K. DCruzC.E.M. ShirodkarR.K. KumarL. VermaR. Fullerenes for the treatment of cancer: An emerging tool.Environ. Sci. Pollut. Res. Int.20222939586075862710.1007/s11356‑022‑21449‑735790637
    [Google Scholar]
  120. LiuY. ChenC. QianP. LuX. SunB. ZhangX. WangL. GaoX. LiH. ChenZ. TangJ. ZhangW. DongJ. BaiR. LobieP.E. WuQ. LiuS. ZhangH. ZhaoF. WichaM.S. ZhuT. ZhaoY. Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor.Nat. Commun.201561598810.1038/ncomms698825612916
    [Google Scholar]
  121. XuC. LeiC. YuC. Mesoporous silica nanoparticles for protein protection and delivery.Front Chem.2019729010.3389/fchem.2019.0029031119124
    [Google Scholar]
  122. FanJ.X. ZhengD.W. RongL. ZhuJ.Y. HongS. LiC. XuZ.S. ChengS.X. ZhangX.Z. Targeting epithelial-mesenchymal transition: Metal organic network nano-complexes for preventing tumor metastasis.Biomaterials201713911612610.1016/j.biomaterials.2017.06.00728600977
    [Google Scholar]
  123. MukherjeeA. WatersA.K. KalyanP. AchrolA.S. KesariS. YenugondaV.M. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives.Int. J. Nanomedicine2019141937195210.2147/IJN.S19835330936695
    [Google Scholar]
  124. BochicchioS. LambertiG. BarbaA.A. Polymer–lipid pharmaceutical nanocarriers: Innovations by new formulations and production technologies.Pharmaceutics202113219810.3390/pharmaceutics1302019833540659
    [Google Scholar]
  125. MohantyA. UthamanS. ParkI.K. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy.Molecules20202519437710.3390/molecules2519437732977707
    [Google Scholar]
  126. PersanoF. GigliG. LeporattiS. Lipid-polymer hybrid nanoparticles in cancer therapy: Current overview and future directions.Nano Express20212101200610.1088/2632‑959X/abeb4b
    [Google Scholar]
  127. ZouT. LanM. LiuF. LiL. CaiT. TianH. CaiY. Emodin-loaded polymer-lipid hybrid nanoparticles enhance the sensitivity of breast cancer to doxorubicin by inhibiting epithelial–mesenchymal transition.Cancer Nanotechnol.20211212210.1186/s12645‑021‑00093‑9
    [Google Scholar]
  128. LembergK.M. GoriS.S. TsukamotoT. RaisR. SlusherB.S. Clinical development of metabolic inhibitors for oncology.J. Clin. Invest.20221321e14855010.1172/JCI14855034981784
    [Google Scholar]
  129. RameshV. BrabletzT. CeppiP. Targeting EMT in cancer with repurposed metabolic inhibitors.Trends Cancer202061194295010.1016/j.trecan.2020.06.00532680650
    [Google Scholar]
  130. SahooB.M. Ravi KumarB.V.V. SrutiJ. MahapatraM.K. BanikB.K. BorahP. Drug repurposing strategy (DRS): Emerging approach to identify potential therapeutics for treatment of novel coronavirus infection.Front. Mol. Biosci.2021862814410.3389/fmolb.2021.62814433718434
    [Google Scholar]
  131. RodriguesR. DuarteD. ValeN. Drug repurposing in cancer therapy: Influence of patient’s genetic background in breast cancer treatment.Int. J. Mol. Sci.2022238428010.3390/ijms2308428035457144
    [Google Scholar]
  132. CorcoranC. JacobsT.F. Metformin.StatPearls.StatPearls Publishing2023http://www.ncbi.nlm.nih.gov/books/NBK518983/
    [Google Scholar]
  133. Esparza-LópezJ. Alvarado-MuñozJ.F. Escobar-ArriagaE. Ulloa-AguirreA. de Jesús Ibarra-SánchezM. Metformin reverses mesenchymal phenotype of primary breast cancer cells through STAT3/NF-κB pathways.BMC Cancer201919172810.1186/s12885‑019‑5945‑131337349
    [Google Scholar]
  134. QuC. ZhangW. ZhengG. ZhangZ. YinJ. HeZ. Metformin reverses multidrug resistance and epithelial–mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells.Mol. Cell. Biochem.20143861-2637110.1007/s11010‑013‑1845‑x24096736
    [Google Scholar]
  135. HanD. WuG. ChangC. ZhuF. XiaoY. LiQ. ZhangT. ZhangL. Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway.Oncotarget2015638409074091910.18632/oncotarget.572326517513
    [Google Scholar]
  136. YinL. HeZ. YiB. XueL. SunJ. Simvastatin suppresses human breast cancer cell invasion by decreasing the expression of pituitary tumor-transforming gene 1.Front. Pharmacol.20201157406810.3389/fphar.2020.57406833250768
    [Google Scholar]
  137. Granados-PrincipalS. LiuY. GuevaraM.L. BlancoE. ChoiD.S. QianW. PatelT. RodriguezA.A. CusimanoJ. WeissH.L. ZhaoH. LandisM.D. DaveB. GrossS.S. ChangJ.C. Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer.Breast Cancer Res.20151712510.1186/s13058‑015‑0527‑x25849745
    [Google Scholar]
  138. NeilJ.R. JohnsonK.M. NemenoffR.A. SchiemannW.P. Cox-2 inactivates smad signaling and enhances emt stimulated by TGF- through a PGE2-dependent mechanisms.Carcinogenesis200829112227223510.1093/carcin/bgn20218725385
    [Google Scholar]
  139. ShaashuaL. Shabat-SimonM. HaldarR. MatznerP. ZmoraO. ShabtaiM. SharonE. AllweisT. BarshackI. HaymanL. ArevaloJ. MaJ. HorowitzM. ColeS. Ben-EliyahuS. Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial.Clin. Cancer Res.201723164651466110.1158/1078‑0432.CCR‑17‑015228490464
    [Google Scholar]
  140. PucciS. ZonettiM.J. FiscoT. PolidoroC. BocchinfusoG. PalleschiA. NovelliG. SpagnoliL.G. MazzarelliP. Carnitine palmitoyl transferase-1A (CPT1A): A new tumor specific target in human breast cancer.Oncotarget2016715199821999610.18632/oncotarget.696426799588
    [Google Scholar]
  141. HanS. WeiR. ZhangX. JiangN. FanM. HuangJ.H. XieB. ZhangL. MiaoW. ButlerA.C.P. ColemanM.A. VaughanA.T. WangY. ChenH.W. LiuJ. LiJ.J. CPT1A/2-mediated fao enhancement—a metabolic target in radioresistant breast cancer.Front. Oncol.20199120110.3389/fonc.2019.0120131803610
    [Google Scholar]
  142. LykoF. The DNA methyltransferase family: A versatile toolkit for epigenetic regulation.Nat. Rev. Genet.2018192819210.1038/nrg.2017.8029033456
    [Google Scholar]
  143. LakshminarasimhanR. LiangG. The role of DNA methylation in cancer.Adv Exp. Med. Biol.201694515117210.1007/978‑3‑319‑43624‑1_727826838
    [Google Scholar]
  144. FukagawaA. IshiiH. MiyazawaK. SaitohM. δ EF1 associates with DNMT1 and maintains DNA methylation of the E‐cadherin promoter in breast cancer cells.Cancer Med.20154112513510.1002/cam4.34725315069
    [Google Scholar]
  145. DongC. WuY. YaoJ. WangY. YuY. RychahouP.G. EversB.M. ZhouB.P. G9a interacts with snail and is critical for snail-mediated E-cadherin repression in human breast cancer.J. Clin. Invest.201212241469148610.1172/JCI5734922406531
    [Google Scholar]
  146. DongC. WuY. WangY. WangC. KangT. RychahouP.G. ChiY-I. EversB.M. ZhouB.P. Interaction with Suv39H1 is critical for snail-mediated e-cadherin repression in breast cancer.Oncogene201332111351136210.1038/onc.2012.16922562246
    [Google Scholar]
  147. SetoE. YoshidaM. Erasers of histone acetylation: The histone deacetylase enzymes.Cold Spring Harb. Perspect. Biol.201464a01871310.1101/cshperspect.a01871324691964
    [Google Scholar]
  148. GlozakM.A. SetoE. Histone deacetylases and cancer.Oncogene200726375420543210.1038/sj.onc.121061017694083
    [Google Scholar]
  149. LiG. TianY. ZhuW.G. The roles of histone deacetylases and their inhibitors in cancer therapy.Front. Cell Dev. Biol.2020857694610.3389/fcell.2020.57694633117804
    [Google Scholar]
  150. RamadossS. ChenX. WangC.Y. Histone demethylase KDM6B promotes epithelial-mesenchymal transition.J. Biol. Chem.201228753445084451710.1074/jbc.M112.42490323152497
    [Google Scholar]
  151. LinY. WuY. LiJ. DongC. YeX. ChiY.I. EversB.M. ZhouB.P. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1.EMBO J.201029111803181610.1038/emboj.2010.6320389281
    [Google Scholar]
  152. SahniJ.M. KeriR.A. Targeting bromodomain and extraterminal proteins in breast cancer.Pharmacol. Res.201812915617610.1016/j.phrs.2017.11.01529154989
    [Google Scholar]
  153. LuL. ChenZ. LinX. TianL. SuQ. AnP. LiW. WuY. DuJ. ShanH. ChiangC.M. WangH. Inhibition of BRD4 suppresses the malignancy of breast cancer cells via regulation of snail.Cell Death Differ.202027125526810.1038/s41418‑019‑0353‑231114028
    [Google Scholar]
  154. VázquezR. RiveiroM.E. Astorgues-XerriL. OdoreE. RezaiK. ErbaE. PaniniN. RinaldiA. KweeI. BeltrameL. BekraddaM. CvitkovicE. BertoniF. FrapolliR. D’IncalciM. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus.Oncotarget2017857598761310.18632/oncotarget.1381427935867
    [Google Scholar]
  155. HoelderS. ClarkeP.A. WorkmanP. Discovery of small molecule cancer drugs: Successes, challenges and opportunities.Mol. Oncol.20126215517610.1016/j.molonc.2012.02.00422440008
    [Google Scholar]
  156. VallinayagamL. AdilA. AhmedN. RishiA. JamalS. Small molecule inhibitors as emerging cancer therapeutics.Integr. Cancer Sci. Ther.20141394610.15761/ICST.1000109
    [Google Scholar]
  157. LiuG.H. ChenT. ZhangX. MaX.L. ShiH.S. Small molecule inhibitors targeting the cancers.MedComm202234e18110.1002/mco2.18136254250
    [Google Scholar]
  158. ZhongL. LiY. XiongL. WangW. WuM. YuanT. YangW. TianC. MiaoZ. WangT. YangS. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216120110.1038/s41392‑021‑00572‑w34054126
    [Google Scholar]
  159. Blume-JensenP. HunterT. Oncogenic kinase signalling.Nature2001411683535536510.1038/3507722511357143
    [Google Scholar]
  160. LeeP.Y. YeohY. LowT.Y. A recent update on small-molecule kinase inhibitors for targeted cancer therapy and their therapeutic insights from mass spectrometry-based proteomic analysis.FEBS J.202210.1111/febs.1644235313089
    [Google Scholar]
  161. ZhangJ. YangP.L. GrayN.S. Targeting cancer with small molecule kinase inhibitors.Nat. Rev. Cancer200991283910.1038/nrc255919104514
    [Google Scholar]
  162. PengP. QiangX. LiG. LiL. NiS. YuQ. SourdL. MarangoniE. HuC. WangD. WuD. WuF. Tinengotinib (TT-00420), a novel spectrum-selective small-molecule kinase inhibitor, is highly active against triple-negative breast cancer.Mol. Cancer Ther.202322220521410.1158/1535‑7163.MCT‑22‑001236223547
    [Google Scholar]
  163. HollandS.J. PanA. FranciC. HuY. ChangB. LiW. DuanM. TornerosA. YuJ. HeckrodtT.J. ZhangJ. DingP. ApatiraA. ChuaJ. BrandtR. PineP. GoffD. SinghR. PayanD.G. HitoshiY. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer.Cancer Res.20107041544155410.1158/0008‑5472.CAN‑09‑299720145120
    [Google Scholar]
  164. GoyetteM.A. CôtéJ.F. AXL receptor tyrosine kinase as a promising therapeutic target directing multiple aspects of cancer progression and metastasis.Cancers202214346610.3390/cancers1403046635158733
    [Google Scholar]
  165. CrawfordL.J. WalkerB. IrvineA.E. Proteasome inhibitors in cancer therapy.J. Cell Commun. Signal.20115210111010.1007/s12079‑011‑0121‑721484190
    [Google Scholar]
  166. RaningaP.V. LeeA. SinhaD. DongL. DattaK.K. LuX. Kalita-de CroftP. DuttM. HillM. PouliotN. GowdaH. KalimuthoM. NeuzilJ. KhannaK.K. Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition.Theranostics202010125259527510.7150/thno.4270532373211
    [Google Scholar]
  167. BannoA. GarciaD.A. van BaarselE.D. MetzP.J. FischK. WidjajaC.E. KimS.H. LopezJ. ChangA.N. GeurinkP.P. FloreaB.I. OverkleeftH.S. OvaaH. BuiJ.D. YangJ. ChangJ.T. Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition.Oncotarget2016716215272154110.18632/oncotarget.759626930717
    [Google Scholar]
  168. López-OtínC. BondJ.S. Proteases: Multifunctional enzymes in life and disease.J. Biol. Chem.200828345304333043710.1074/jbc.R80003520018650443
    [Google Scholar]
  169. EatemadiA. AiyelabeganH. T. NegahdariB. MazlomiM. A. DaraeeH. DaraeeN. EatemadiR. SadroddinyE. Role of protease and protease inhibitors in cancer pathogenesis and treatment.Biomed Pharmacother20178622123110.1016/j.biopha.2016.12.02128006747
    [Google Scholar]
  170. KoivunenE. SakselaO. ItkonenO. OsmanS. HuhtalaM.L. StenmanU.H. Human colon carcinoma, fibrosarcoma and leukemia cell lines produce tumor‐associated trypsinogen.Int. J. Cancer199147459259610.1002/ijc.29104704191995487
    [Google Scholar]
  171. KimK.K. TurnerR. KhazanN. KodzaA. JonesA. SinghR.K. MooreR.G. Role of trypsin and protease-activated receptor-2 in ovarian cancer.PLoS One2020155e023225310.1371/journal.pone.023225332365084
    [Google Scholar]
  172. KeJ. HanW. MengF. GuoF. WangY. WangL. CTI-2 Inhibits metastasis and epithelial-mesenchymal transition of breast cancer cells by modulating MAPK signaling pathway.Int. J. Mol. Sci.202122221222910.3390/ijms22221222934830111
    [Google Scholar]
  173. JubinT. KadamA. JariwalaM. BhattS. SutariyaS. GaniA.R. GautamS. BegumR. The PARP family: Insights into functional aspects of poly ( ADP ‐ribose) polymerase‐1 in cell growth and survival.Cell Prolif.201649442143710.1111/cpr.1226827329285
    [Google Scholar]
  174. RoseM. BurgessJ.T. O’ByrneK. RichardD.J. BoldersonE. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance.Front. Cell Dev. Biol.2020856460110.3389/fcell.2020.56460133015058
    [Google Scholar]
  175. SchackeM. KumarJ. ColwellN. HermansonK. FolleG.A. NechaevS. DhasarathyA. Lafon-HughesL. PARP-1/2 Inhibitor olaparib prevents or partially reverts EMT induced by TGF-β in NMuMG cells.Int. J. Mol. Sci.201920351810.3390/ijms2003051830691122
    [Google Scholar]
  176. Cabral-PachecoG.A. Garza-VelozI. Castruita-De la RosaC. Ramirez-AcuñaJ.M. Perez-RomeroB.A. Guerrero-RodriguezJ.F. Martinez-AvilaN. Martinez-FierroM.L. The roles of matrix metalloproteinases and their inhibitors in human diseases.Int. J. Mol. Sci.20202124973910.3390/ijms2124973933419373
    [Google Scholar]
  177. KessenbrockK. PlaksV. WerbZ. Matrix metalloproteinases: Regulators of the tumor microenvironment.Cell20101411526710.1016/j.cell.2010.03.01520371345
    [Google Scholar]
  178. EgawaN. KoshikawaN. TomariT. NabeshimaK. IsobeT. SeikiM. Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRIN) fragment from tumor cells.J. Biol. Chem.200628149375763758510.1074/jbc.M60699320017050542
    [Google Scholar]
  179. BrewK. NagaseH. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity.Biochim. Biophys. Acta Mol. Cell Res.201018031557110.1016/j.bbamcr.2010.01.00320080133
    [Google Scholar]
  180. LeeM.H. AtkinsonS. RaptiM. HandsleyM. CurryV. EdwardsD. MurphyG. The activity of a designer tissue inhibitor of metalloproteinases (TIMP)-1 against native membrane type 1 matrix metalloproteinase (MT1-MMP) in a cell-based environment.Cancer Lett.2010290111412210.1016/j.canlet.2009.08.02919815335
    [Google Scholar]
  181. PeeneyD. JensenS.M. CastroN.P. KumarS. NoonanS. HandlerC. KuznetsovA. ShihJ. TranA.D. SalomonD.S. Stetler-StevensonW.G. TIMP-2 suppresses tumor growth and metastasis in murine model of triple-negative breast cancer.Carcinogenesis202041331332510.1093/carcin/bgz17231621840
    [Google Scholar]
  182. DuC. ZhangX. YaoM. LvK. WangJ. ChenL. ChenY. WangS. FuP. Bcl‑2 promotes metastasis through the epithelial‑to‑mesenchymal transition in the BCap37 medullary breast cancer cell line.Oncol. Lett.20181568991889810.3892/ol.2018.845529844816
    [Google Scholar]
  183. CekanovaM. FernandoR.I. SiriwardhanaN. SukhthankarM. ParraC. WoraratphokaJ. MaloneC. StrömA. BaekS.J. WadeP.A. SaxtonA.M. DonnellR.M. PestellR.G. DharmawardhaneS. WimalasenaJ. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion.Exp. Cell Res.2015331111010.1016/j.yexcr.2014.11.01625499972
    [Google Scholar]
  184. A phase i, first-in-human, multicenter, open-label study of tt-00420, administered orally in adult patients with advanced solid tumors and triple negative breast cancers.Patent NCT04742959, 2021.
  185. A phase ib/ii, multicenter, open-label study of TT-00420 tablet, as monotherapy or in combination regimens, in patients with advanced solid tumors.Patent NCT04742959, 2022.
  186. A phase ib/ii study of tt-00420 tablet, as monotherapy or in combination regimens, to evaluate the safety, tolerability, pharmacokinetics and efficacy in patients with advanced solid tumor.Patent NCT05253053, 2022.
  187. A phase ii, multi centre study of BGB324 in combination with pembrolizumab in patients with previously treated, locally advanced and unresectable or metastatic triple negative breast cancer (TNBC) or triple negative inflammatory breast cancer (TN-IBC).Patent NCT03184558, 2021.
  188. ColavitoS.A. AXL as a target in breast cancer therapy.J. Oncol.2020202011510.1155/2020/529195232148495
    [Google Scholar]
  189. A phase 2 study of olaparib monotherapy in metastatic breast cancer patients with germline or somatic mutations in DNA repair genes (olaparib expanded).Patent NCT03344965, 2022.
  190. Multicenter phase i/ib trial of olaparib in combination with vorinostat in patients with relapsed/refractory and/or metastatic breast cancer.Patent NCT03742245, 2022.
  191. A phase i/ii study of suramin in combination with paclitaxel in advanced (stage iiib or iv) metastatic breast cancer.Patent NCT00054028, 2015.
  192. Evaluation of the effect of metformin on metastatic breast cancer as adjuvant treatment.Patent NCT04143282, 2021.
  193. A randomized phase ii, double blind trial of standard chemotherapy with metformin (vs placebo) in women with metastatic breast cancer receiving first to fourth line chemotherapy.Patent NCT01310231, 2021.
  194. Phase II open labeled trial of disulfiram with copper in metastatic breast cancer.Patent NCT03323346, 2023.
  195. Phase II study of vinorelbine, cisplatin, disulfiram and copper in CTC_EMT positive refractory metastatic breast cancer.Patent NCT04265274, 2021.
  196. OnkD. Vimentin expression-based therapeutic response in triple negative breast cancer receiving combination of simvastatin and NAC: A randomized, double-blind, placebo-controlled trial.Patent NCT05550415, 2022.
  197. Phase II trial of alpelisib with iNOS inhibitor and nab-paclitaxel in patients with HER2 negative metastatic or locally advanced metaplastic breast cancer (MpBC).Patent NCT05660083, 2023.
/content/journals/cmm/10.2174/0115665240310780240805114133
Loading
/content/journals/cmm/10.2174/0115665240310780240805114133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test