Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Background

The consumption of tobacco and alcohol has been correlated with the development of oral cancer, impacting various areas such as the mouth, lips, tongue, cheeks, and throat. This condition is marked by irregular cell proliferation involving intricate genetic and epigenetic alterations that drive tumorigenesis. Traditional treatments face limitations, necessitating a comprehensive multidisciplinary strategy. Novel Drug Delivery Systems (NDDS) offer groundbreaking therapeutic possibilities in addressing this complex health challenge.

Objective

This review emphasizes the use of NDDS in the treatment of oral cancer.

Methods

The review entailed a comprehensive exploration of scientific databases and pertinent publications, encompassing studies conducted up to Specify date/month/year sourced from PubMed, ScienceDirect, and Google Scholar. The search terms incorporated “oral cancer”, “novel drug delivery system”, “chemotherapy”, “nanotechnology”, and “conventional therapy”. Selected studies were rigorously assessed for methodological robustness and the importance of their findings.

Results

NDDS serves an important role in targeted medication delivery by increasing drug bioavailability and reducing adverse effects. By addressing challenges such as low drug solubility, NDDS enables sustained release, thereby supporting long-term therapeutic outcomes. Its versatility extends to the encapsulation of various anticancer agents, offering a potential option for oral cancer treatment that is both efficacious and well-tolerated. This novel technique has the potential to transform treatment approaches, improving the efficacy and tolerability of oral cancer drugs.

Conclusion

In oral cancer treatment, a spectrum of drug delivery systems is employed, encompassing conventional methods like oral and intravenous administration alongside innovative approaches such as vesicular systems, polymeric systems, and targeted strategies. Recent breakthroughs in oral cancer therapy, including immunotherapy (checkpoint inhibitors, CAR-T cell therapy) and gene therapy (siRNA, miRNA, CRISPR-Cas9), offer exciting prospects. These advancements hold the potential for enhanced therapeutic efficacy, minimized side effects, and personalized treatment options.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947315782240524073802
2024-06-05
2026-02-15
Loading full text...

Full text loading...

References

  1. AlqahtaniM.S. KaziM. AlsenaidyM.A. AhmadM.Z. Advances in oral drug delivery.Front. Pharmacol.20211261841110.3389/fphar.2021.618411 33679401
    [Google Scholar]
  2. XiangY. GuoZ. ZhuP. ChenJ. HuangY. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science.Cancer Med.2019851958197510.1002/cam4.2108 30945475
    [Google Scholar]
  3. SudhakarK. FuloriaS. SubramaniyanV. Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system.Nanomaterials (Basel)20211110255710.3390/nano11102557 34685005
    [Google Scholar]
  4. GigliobiancoM. CasadidioC. CensiR. Di MartinoP. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability.Pharmaceutics201810313410.3390/pharmaceutics10030134 30134537
    [Google Scholar]
  5. DesaiK.G.H. Polymeric drug delivery systems for intraoral site‐specific chemoprevention of oral cancer.J. Biomed. Mater. Res. B Appl. Biomater.201810631383141310.1002/jbm.b.33943 28650116
    [Google Scholar]
  6. PandeyM. ChoudhuryH. YingJ.N.S. Mucoadhesive nanocarriers as a promising strategy to enhance intracellular delivery against oral cavity carcinoma.Pharmaceutics202214479510.3390/pharmaceutics14040795 35456629
    [Google Scholar]
  7. CuiX. LiangZ. LuJ. A multifunctional nanodiamond-based nanoplatform for the enhanced mild-temperature photothermal/] chemo combination therapy of triple negative breast cancer via an autophagy regulation strategy.Nanoscale20211331133751338910.1039/D1NR03161A 34477743
    [Google Scholar]
  8. ZhangS.Z. XieL. ShangZ.J. Burden of oral cancer on the 10 most populous countries from 1990 to 2019: Estimates from the Global Burden of Disease study 2019.Int. J. Environ. Res. Public Health202219287510.3390/ijerph19020875 35055693
    [Google Scholar]
  9. AwasthiD DixitA Oral cancer-nicotine and alcohol.Clin Lab Res20231223.007
    [Google Scholar]
  10. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  11. SoniV. Mucoadhesive film for local delivery to oral cancer: Formulation development, box–behnken experimental design, and in vitro characterization.Asian J. Pharm.2022164
    [Google Scholar]
  12. KumarM. NanavatiR. ModiT. DobariyaC. Oral cancer: Etiology and risk factors: A review.J. Cancer Res. Ther.201612245846310.4103/0973‑1482.186696 27461593
    [Google Scholar]
  13. MorshedK. Polz-GruszkaD. SzymańskiM. Polz-DacewiczM. Human Papillomavirus (HPV) – Structure, epidemiology and pathogenesis.Otolaryngol. Pol.201468521321910.1016/j.otpol.2014.06.001 25283316
    [Google Scholar]
  14. Lo NigroC. DenaroN. MerlottiA. MerlanoM. Head and neck cancer: Improving outcomes with a multidisciplinary approach.Cancer Manag. Res.2017936337110.2147/CMAR.S115761 28860859
    [Google Scholar]
  15. GiannittoC. PredaL. ZurloV. FunicelliL. AnsarinM. Di PietroS. Swallowing disorders after oral cavity and pharyngolaryngeal surgery and role of imaging.Gastroenterol. Res. Pract.20172017759203410.1155/2017/7592034
    [Google Scholar]
  16. AzzamP. MrouehM. FrancisM. Abou DaherA. ZeidanY.H. Radiation-induced neuropathies in head and neck cancer: Prevention and treatment modalities.Ecancer MedSci202014113310.3332/ecancer.2020.1133 33281925
    [Google Scholar]
  17. AbelE. Effects on quality of life of new radiotherapy techniques in treatment of head and neck cancerAvailable from: https://gupea.ub.gu.se/handle/2077/71508 2022
  18. SchirrmacherV. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review).Int. J. Oncol.201854240741910.3892/ijo.2018.4661 30570109
    [Google Scholar]
  19. KwakmanJ.J.M. ElshotY.S. PuntC.J.A. KoopmanM. Management of cytotoxic chemotherapy-induced hand-foot syndrome.Oncol. Rev.202014144210.4081/oncol.2020.442 32431787
    [Google Scholar]
  20. D’CruzA.K. VaishR. DharH. Oral cancers: Current status.Oral Oncol.201887646910.1016/j.oraloncology.2018.10.013 30527245
    [Google Scholar]
  21. GaleazC. TotisC. BisioA. Radiation resistance: A matter of transcription factors.Front. Oncol.20211166284010.3389/fonc.2021.662840 34141616
    [Google Scholar]
  22. MahajanA. AhujaA. SableN. StambukH.E. Imaging in oral cancers: A comprehensive review.Oral Oncol.202010410465810.1016/j.oraloncology.2020.104658 32208340
    [Google Scholar]
  23. AlawdiS. SolankiA.B. Mucoadhesive drug delivery systems: A review of recent developments.J Sci Res Med Bio Sci202121506410.47631/jsrmbs.v2i1.213
    [Google Scholar]
  24. LealJ. SmythH.D.C. GhoshD. Physicochemical properties of mucus and their impact on transmucosal drug delivery.Int. J. Pharm.2017532155557210.1016/j.ijpharm.2017.09.018 28917986
    [Google Scholar]
  25. HomayunB. LinX. ChoiH.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals.Pharmaceutics201911312910.3390/pharmaceutics11030129 30893852
    [Google Scholar]
  26. AlvesA. DielL. RamosG. Tumor microenvironment and oral squamous cell carcinoma: A crosstalk between the inflammatory state and tumor cell migration.Oral Oncol.202111210503810.1016/j.oraloncology.2020.105038 33129055
    [Google Scholar]
  27. PeltanovaB. RaudenskaM. MasarikM. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: A systematic review.Mol. Cancer20191816310.1186/s12943‑019‑0983‑5 30927923
    [Google Scholar]
  28. HaistM. StegeH. GrabbeS. BrosM. The functional crosstalk between myeloid-derived suppressor cells and regulatory T cells within the immunosuppressive tumor microenvironment.Cancers (Basel)202113221010.3390/cancers13020210 33430105
    [Google Scholar]
  29. PerdomoS.J. Fonseca-BenítezA. Cardona-MendozaA. Romero-SánchezC. PárragaJ. Nano drug delivery strategies for the treatment and diagnosis of oral and throat cancers.Nano Drug Delivery Strategies for the Treatment of Cancers.London, United KingdomAcademic Press20217510610.1016/B978‑0‑12‑819793‑6.00004‑7
    [Google Scholar]
  30. NavyaP.N. KaphleA. SrinivasS.P. BhargavaS.K. RotelloV.M. DaimaH.K. Current trends and challenges in cancer management and therapy using designer nanomaterials.Nano Converg.2019612310.1186/s40580‑019‑0193‑2 31304563
    [Google Scholar]
  31. ZhouK. FountzilasC. Outcomes and quality of life of systemic therapy in advanced hepatocellular carcinoma.Cancers (Basel)201911686110.3390/cancers11060861 31234316
    [Google Scholar]
  32. GoetzL.H. SchorkN.J. Personalized medicine: Motivation, challenges, and progress.Fertil. Steril.2018109695296310.1016/j.fertnstert.2018.05.006 29935653
    [Google Scholar]
  33. DoestzadaM. VilaA.V. ZhernakovaA. Pharmacomicrobiomics: A novel route towards personalized medicine?Protein Cell20189543244510.1007/s13238‑018‑0547‑2 29705929
    [Google Scholar]
  34. KetabatF. PundirM. MohabatpourF. Controlled drug delivery systems for oral cancer treatment—current status and future perspectives.Pharmaceutics201911730210.3390/pharmaceutics11070302 31262096
    [Google Scholar]
  35. BrownA. KumarS. TchounwouP.B. Cisplatin-based chemotherapy of human cancers.J. Cancer Sci. Ther.201911497 32148661
    [Google Scholar]
  36. TchounwouP.B. DasariS. NoubissiF.K. RayP. KumarS. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy.J. Exp. Pharmacol.20211330332810.2147/JEP.S267383 33776489
    [Google Scholar]
  37. Moradzadeh KhiaviM. RostamiA. HamishekarH. Therapeutic efficacy of orally delivered doxorubicin nanoparticles in rat tongue cancer induced by 4-nitroquinoline 1-oxide.Adv. Pharm. Bull.20155220921610.15171/apb.2015.029 26236659
    [Google Scholar]
  38. VyasM. SimboD.A. MursalinM. MishraV. BasharyR. KhatikG.L. Drug delivery approaches for doxorubicin in the management of cancers.Curr. Cancer Ther. Rev.202016432033110.2174/1573394716666191216114950
    [Google Scholar]
  39. WoolfR. SmithC. Methotrexate.Handbook of Systemic Drug Treatment in Dermatology.Boca Raton, FloridaCRC Press2023195202
    [Google Scholar]
  40. SooV. KwanB. QuezadaH. Repurposing of anticancer drugs for the treatment of bacterial infections.Curr. Top. Med. Chem.201717101157117610.2174/1568026616666160930131737 27697046
    [Google Scholar]
  41. DangY. GuanJ. Nanoparticle-based drug delivery systems for cancer therapy.Smart Materials in Medicine20201101910.1016/j.smaim.2020.04.001 34553138
    [Google Scholar]
  42. WangF. PorterM. KonstantopoulosA. ZhangP. CuiH. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy.J. Control. Release201726710011810.1016/j.jconrel.2017.09.026 28958854
    [Google Scholar]
  43. YeW. LiuY. LiuW.F. LiX.L. FeiY. GaoX. Comparison of efficacy and safety between oral and intravenous administration of tranexamic acid for primary total knee/hip replacement: A meta-analysis of randomized controlled trial.J. Orthop. Surg. Res.20201512110.1186/s13018‑019‑1528‑8 31959199
    [Google Scholar]
  44. CalixtoG. Fonseca-SantosB. ChorilliM. BernegossiJ. Nanotechnology-based drug delivery systems for treatment of oral cancer: A review.Int. J. Nanomedicine201493719373510.2147/IJN.S61670 25143724
    [Google Scholar]
  45. LiM. DuC. GuoN. Composition design and medical application of liposomes.Eur. J. Med. Chem.201916464065310.1016/j.ejmech.2019.01.007 30640028
    [Google Scholar]
  46. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  47. ZhangM. LiangJ. YangY. LiangH. JiaH. LiD. Current trends of targeted drug delivery for oral cancer therapy.Front. Bioeng. Biotechnol.2020861893110.3389/fbioe.2020.618931 33425881
    [Google Scholar]
  48. BelobrovS. SeersC. ReynoldsE. CirilloN. McCulloughM. Functional and molecular effects of a green tea constituent on oral cancer cells.J. Oral Pathol. Med.201948760461010.1111/jop.12914 31188490
    [Google Scholar]
  49. RenH. HeY. LiangJ. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy.ACS Appl. Mater. Interfaces20191122203042031510.1021/acsami.8b22693 31056910
    [Google Scholar]
  50. YazdiJ.R. TafaghodiM. SadriK. Folate targeted PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies.Colloids Surf. B Biointerfaces202019411120310.1016/j.colsurfb.2020.111203 32585538
    [Google Scholar]
  51. HeiserC. HofauerB. SchererE. SchukraftJ. KnopfA. Liposomal treatment of xerostomia, odor, and taste abnormalities in patients with head and neck cancer.Head Neck201638S1Suppl. 1E1232E123710.1002/hed.24198 26315309
    [Google Scholar]
  52. El-HamidE.S.A. Gamal-EldeenA.M. Sharaf EldeenA.M. Liposome-coated nano doxorubicin induces apoptosis on oral squamous cell carcinoma CAL-27 cells.Arch. Oral Biol.2019103475410.1016/j.archoralbio.2019.05.011 31132617
    [Google Scholar]
  53. FigueiredoM.L. KimY. St JohnM.A. WongD.T. p12CDK2-AP1 gene therapy strategy inhibits tumor growth in an in vivo mouse model of head and neck cancer.Clin. Cancer Res.200511103939394810.1158/1078‑0432.CCR‑04‑2085 15897596
    [Google Scholar]
  54. SarafS. GuptaM.K. Itraconazole loaded ethosomal gel system for efficient treatment of skin cancer.Int. J. Drug Deliv.20181011219
    [Google Scholar]
  55. Paiva-SantosA.C. SilvaA.L. GuerraC. Ethosomes as nanocarriers for the development of skin delivery formulations.Pharm. Res.202138694797010.1007/s11095‑021‑03053‑5 34036520
    [Google Scholar]
  56. ShafiqueU. DinF. SohailS. Quality by design for sumatriptan loaded nano-ethosomal mucoadhesive gel for the therapeutic management of nitroglycerin induced migraine.Int. J. Pharm.202364612348010.1016/j.ijpharm.2023.123480 37797784
    [Google Scholar]
  57. ShabreenR. SangeethaS. Ethosomes: A novel drug delivery system and their therapeutic applications-A review.Res J Pharm Technol20201341972198010.5958/0974‑360X.2020.00355.8
    [Google Scholar]
  58. RajanPK HariharS DunnaNR KumarA PrabakaranNN VenkatabalasubramanianS S. Methyl gallic acid entrapped ethosomal nano-vesicular system augments cytotoxicity against squamous cell carcinoma.3 Biotech2023137229
    [Google Scholar]
  59. ChaurasiaS. DograS.S. Transfersomes: Novel approach for intranasal delivery.Eur. J. Pharm. Med. Res.201743192203
    [Google Scholar]
  60. KumarA. Transferosome: A recent approach for transdermal drug delivery.J. Drug Deliv. Ther.201885-s10010410.22270/jddt.v8i5‑s.1981
    [Google Scholar]
  61. BnyanR. KhanI. EhtezaziT. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic.J. Pharm. Pharmacol.201971101508151910.1111/jphp.13149 31373700
    [Google Scholar]
  62. BollareddyS.R. KrishnaV. RoyG. DasariD. DharA. VenugantiV.V.K. Transfersome hydrogel containing 5-fluorouracil and etodolac combination for synergistic oral cancer treatment.AAPS PharmSciTech20222327010.1208/s12249‑022‑02221‑z 35132496
    [Google Scholar]
  63. PourhajibagherM. Etemad-MoghadamS. AlaeddiniM. BahadorA. Modulation of the triggered apoptosis by nano emodin transfersome-mediated sonodynamic therapy on head and neck squamous cell carcinoma cell lines.Photodiagn. Photodyn. Ther.20213410225310.1016/j.pdpdt.2021.102253 33711532
    [Google Scholar]
  64. KumbhamS. PaulM. BhattH. GhoshB. BiswasS. Oleanolic acid-conjugated poly (D, l-lactide)-based micelles for effective delivery of doxorubicin and combination chemotherapy in oral cancer.J. Mol. Liq.202032011438910.1016/j.molliq.2020.114389
    [Google Scholar]
  65. KumbarV.M. MuddapurU. Bin MuhsinahA. Curcumin-encapsulated nanomicelles improve cellular uptake and cytotoxicity in cisplatin-resistant human oral cancer cells.J. Funct. Biomater.202213415810.3390/jfb13040158 36278627
    [Google Scholar]
  66. QinL. WuJ. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles.Environ. Res.2023239Pt 111675110.1016/j.envres.2023.116751 37507044
    [Google Scholar]
  67. IslamM.M. RaikwarS. Enhancement of oral bioavailability of protein and peptide by polysaccharide-based nanoparticles.Protein Pept. Lett.202431320922810.2174/0109298665292469240228064739 38509673
    [Google Scholar]
  68. KalyaneD. RavalN. MaheshwariR. TambeV. KaliaK. TekadeR.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer.Mater. Sci. Eng. C2019981252127610.1016/j.msec.2019.01.066 30813007
    [Google Scholar]
  69. DingZ. SigdelK. YangL. Nanotechnology-based drug delivery systems for enhanced diagnosis and therapy of oral cancer.J. Mater. Chem. B Mater. Biol. Med.20208388781879310.1039/D0TB00957A 33026383
    [Google Scholar]
  70. HolpuchA.S. HummelG.J. TongM. Nanoparticles for local drug delivery to the oral mucosa: Proof of principle studies.Pharm. Res.20102771224123610.1007/s11095‑010‑0121‑y 20354767
    [Google Scholar]
  71. ShiL.L. LuJ. CaoY. Gastrointestinal stability, physicochemical characterization and oral bioavailability of chitosan or its derivative-modified solid lipid nanoparticles loading docetaxel.Drug Dev. Ind. Pharm.201743583984610.1080/03639045.2016.1220571 27487431
    [Google Scholar]
  72. LeggeC.J. ColleyH.E. LawsonM.A. RawlingsA.E. Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer.J. Oral Pathol. Med.201948980380910.1111/jop.12921 31309616
    [Google Scholar]
  73. SatoI. UmemuraM. MitsudoK. Hyperthermia generated with ferucarbotran (Resovist®) in an alternating magnetic field enhances cisplatin-induced apoptosis of cultured human oral cancer cells.J. Physiol. Sci.201464317718310.1007/s12576‑014‑0309‑8 24619404
    [Google Scholar]
  74. WangD. XuX. ZhangK. Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment.Int. J. Nanomedicine20171318719810.2147/IJN.S150610 29343957
    [Google Scholar]
  75. ChauhanA. Dendrimers for drug delivery.Molecules201823493810.3390/molecules23040938 29670005
    [Google Scholar]
  76. FernandesG. PandeyA. KulkarniS. Supramolecular dendrimers based novel platforms for effective oral delivery of therapeutic moieties.J. Drug Deliv. Sci. Technol.20216410264710.1016/j.jddst.2021.102647
    [Google Scholar]
  77. FatimaM. SheikhA. HasanN. SahebkarA. RiadiY. KesharwaniP. Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors.Eur. Polym. J.202217011115610.1016/j.eurpolymj.2022.111156
    [Google Scholar]
  78. ZhengW. ZhouQ. YuanC. Nanoparticles for oral cancer diagnosis and therapy.Bioinorg. Chem. Appl.20212021997713110.1155/2021/9977131
    [Google Scholar]
  79. XuL. YeudallW.A. YangH. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: Its utility for local siRNA delivery.Acta Biomater.20175725126110.1016/j.actbio.2017.04.023 28438704
    [Google Scholar]
  80. LangL. ShayC. XiongY. Combating head and neck cancer metastases by targeting Src using multifunctional nanoparticle-based saracatinib.J. Hematol. Oncol.20181118510.1186/s13045‑018‑0623‑3 29925404
    [Google Scholar]
  81. SuhailM. RosenholmJ.M. MinhasM.U. Nanogels as drug-delivery systems: A comprehensive overview.Ther. Deliv.2019101169771710.4155/tde‑2019‑0010 31789106
    [Google Scholar]
  82. AttamaA.A. NnamaniP.O. OnokalaO.B. UgwuA.A. OnugwuA.L. Nanogels as target drug delivery systems in cancer therapy: A review of the last decade.Front. Pharmacol.20221387451010.3389/fphar.2022.874510 36160424
    [Google Scholar]
  83. PatelG. DalwadiC. Cytotoxicity and cellular uptake of 5-fluorouracil loaded methylcellulose nanohydrogel for treatment of oral cancer.Lett Appl NanoBioSci20211019041918
    [Google Scholar]
  84. PandeyP. DahiyaM. A brief review on inorganic nanoparticles.J Crit Rev2016331826
    [Google Scholar]
  85. TernaA.D. ElemikeE.E. MbonuJ.I. OsafileO.E. EzeaniR.O. The future of semiconductors nanoparticles: Synthesis, properties and applications.Mater. Sci. Eng. B202127211536310.1016/j.mseb.2021.115363
    [Google Scholar]
  86. ThomasS. HarshitaB.S.P. MishraP. TalegaonkarS. Ceramic nanoparticles: Fabrication methods and applications in drug delivery.Curr. Pharm. Des.201521426165618810.2174/1381612821666151027153246 26503144
    [Google Scholar]
  87. SubramanyamG.K. GaddamS.A. KotakadiV.S. PalithyaS. PenchalaneniJ. ChallagundlaV.N. Argyreia nervosa (Samudra pala) leaf extract mediated silver nanoparticles and evaluation of their antioxidant, antibacterial activity, in vitro anticancer and apoptotic studies in KB oral cancer cell lines.Artif. Cells Nanomed. Biotechnol.202149163464910.1080/21691401.2021.1996384 34738487
    [Google Scholar]
  88. SubramanyamG.K. GaddamS.A. KotakadiV.S. Green Fabrication of silver nanoparticles by leaf extract of Byttneria Herbacea Roxb and their promising therapeutic applications and its interesting insightful observations in oral cancer.Artif. Cells Nanomed. Biotechnol.2023511839410.1080/21691401.2023.2173218 36752159
    [Google Scholar]
  89. EssawyM.M. El-SheikhS.M. RaslanH.S. Function of gold nanoparticles in oral cancer beyond drug delivery: Implications in cell apoptosis.Oral Dis.202127225126510.1111/odi.13551 32657515
    [Google Scholar]
  90. AfrasiabiM. SeydiE. RahimiS. TahmasebiG. JahanbaniJ. PourahmadJ. The selective toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) on oral squamous cell carcinoma (OSCC) by targeting their mitochondria.J. Biochem. Mol. Toxicol.20213561810.1002/jbt.22769 33704875
    [Google Scholar]
  91. CuiW. LiJ. DecherG. Self‐assembled smart nanocarriers for targeted drug delivery.Adv. Mater.20162861302131110.1002/adma.201502479 26436442
    [Google Scholar]
  92. SinghA.P. BiswasA. ShuklaA. MaitiP. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles.Signal Transduct. Target. Ther.2019413310.1038/s41392‑019‑0068‑3 31637012
    [Google Scholar]
  93. JahanS.T. SadatS.M.A. WalliserM. HaddadiA. Targeted therapeutic nanoparticles: An immense promise to fight against cancer.J. Drug Deliv.2017201712410.1155/2017/9090325 29464123
    [Google Scholar]
  94. GanipineniL.P. DanhierF. PréatV. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment.J. Control. Release2018281425710.1016/j.jconrel.2018.05.008 29753958
    [Google Scholar]
  95. SrinivasaraoM. LowP.S. Ligand-targeted drug delivery.Chem. Rev.201711719121331216410.1021/acs.chemrev.7b00013 28898067
    [Google Scholar]
  96. YoungO. NgoN. LinL. Folate receptor as a biomarker and therapeutic target in solid tumors.Curr. Probl. Cancer202347110091710.1016/j.currproblcancer.2022.100917 36508886
    [Google Scholar]
  97. SunM. WangT. LiL. The application of inorganic nanoparticles in molecular targeted cancer therapy: EGFR targeting.Front. Pharmacol.20211270244510.3389/fphar.2021.702445 34322025
    [Google Scholar]
  98. Mojarad-JabaliS. MahdinlooS. FarshbafM. Transferrin receptor-mediated liposomal drug delivery: Recent trends in targeted therapy of cancer.Expert Opin. Drug Deliv.202219668570510.1080/17425247.2022.2083106 35698794
    [Google Scholar]
  99. ZhaoZ. UkidveA. KimJ. MitragotriS. Targeting strategies for tissue-specific drug delivery.Cell2020181115116710.1016/j.cell.2020.02.001 32243788
    [Google Scholar]
  100. HirabayashiF. IwanagaK. OkinagaT. Epidermal growth factor receptor-targeted sonoporation with microbubbles enhances therapeutic efficacy in a squamous cell carcinoma model.PLoS One2017129e018529310.1371/journal.pone.0185293 28938010
    [Google Scholar]
  101. LiZ. SongN. YangY.W. Stimuli-responsive drug-delivery systems based on supramolecular nanovalves.Matter20191234536810.1016/j.matt.2019.05.019 34104881
    [Google Scholar]
  102. RahimM.A. JanN. KhanS. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting.Cancers (Basel)202113467010.3390/cancers13040670 33562376
    [Google Scholar]
  103. RazaA. RasheedT. NabeelF. HayatU. BilalM. IqbalH. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release.Molecules2019246111710.3390/molecules24061117 30901827
    [Google Scholar]
  104. MartinJ.D. CabralH. StylianopoulosT. JainR.K. Improving cancer immunotherapy using nanomedicines: Progress, opportunities and challenges.Nat. Rev. Clin. Oncol.202017425126610.1038/s41571‑019‑0308‑z 32034288
    [Google Scholar]
  105. FukumuraD. KloepperJ. AmoozgarZ. DudaD.G. JainR.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges.Nat. Rev. Clin. Oncol.201815532534010.1038/nrclinonc.2018.29 29508855
    [Google Scholar]
  106. FaresJ. FaresY. FaresM. Immune checkpoint inhibitors: Advances and impact in neuro-oncology.Surg. Neurol. Int.2019101910.4103/sni.sni_366_18 30783540
    [Google Scholar]
  107. LiB. ChanH.L. ChenP. Immune checkpoint inhibitors: Basics and challenges.Curr. Med. Chem.201926173009302510.2174/0929867324666170804143706 28782469
    [Google Scholar]
  108. ZhangH. DaiZ. WuW. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer.J. Exp. Clin. Cancer Res.202140118410.1186/s13046‑021‑01987‑7 34088360
    [Google Scholar]
  109. de MiguelM. CalvoE. Clinical challenges of immune checkpoint inhibitors.Cancer Cell202038332633310.1016/j.ccell.2020.07.004 32750319
    [Google Scholar]
  110. SiuL.L. EvenC. MesíaR. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1–low/] negative recurrent or metastatic HNSCC.JAMA Oncol.20195219520310.1001/jamaoncol.2018.4628 30383184
    [Google Scholar]
  111. SternerR.C. SternerR.M. CAR-T cell therapy: Current limitations and potential strategies.Blood Cancer J.20211146910.1038/s41408‑021‑00459‑7 33824268
    [Google Scholar]
  112. LinY.C. HuaC.H. LuH.M. CAR-T cells targeting HLA-G as potent therapeutic strategy for EGFR-mutated and overexpressed oral cancer.iScience202326310608910.1016/j.isci.2023.106089 36876120
    [Google Scholar]
  113. MeiZ. ZhangK. LamA.K.Y. MUC1 as a target for CAR‐T therapy in head and neck squamous cell carinoma.Cancer Med.20209264065210.1002/cam4.2733 31800160
    [Google Scholar]
  114. ParkY.P. JinL. BennettK.B. CD70 as a target for chimeric antigen receptor T cells in head and neck squamous cell carcinoma.Oral Oncol.20187814515010.1016/j.oraloncology.2018.01.024 29496042
    [Google Scholar]
  115. TaoY. HouX. ZuoF. LiX. PangY. JiangG. Application of nanoparticle-based siRNA and CRISPR/Cas9 delivery systems in gene-targeted therapy.Nanomedicine (Lond.)201914551151410.2217/nnm‑2018‑0522 30806159
    [Google Scholar]
  116. LeeC.S. BishopE.S. ZhangR. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine.Genes Dis.201742436310.1016/j.gendis.2017.04.001 28944281
    [Google Scholar]
  117. ChakrabortyC. SharmaA.R. SharmaG. DossC.G.P. LeeS.S. Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine.Mol. Ther. Nucleic Acids2017813214310.1016/j.omtn.2017.06.005 28918016
    [Google Scholar]
  118. Reda El SayedS. CristanteJ. GuyonL. DenisJ. ChabreO. CherradiN. MicroRNA therapeutics in cancer: Current advances and challenges.Cancers (Basel)20211311268010.3390/cancers13112680 34072348
    [Google Scholar]
  119. BehbahaniG.D. GhahhariN.M. JavidiM.A. MolanA.F. FeiziN. BabashahS. MicroRNA-mediated post-transcriptional regulation of epithelial to mesenchymal transition in cancer.Pathol. Oncol. Res.201723111210.1007/s12253‑016‑0101‑6 27590333
    [Google Scholar]
  120. DoghishA.S. El-HusseinyA.A. KhidrE.G. Decoding the role of miRNAs in oral cancer pathogenesis: A focus on signaling pathways.Pathol. Res. Pract.202325215494910.1016/j.prp.2023.154949 37992507
    [Google Scholar]
  121. DoghishA.S. ElshaerS.S. FathiD. Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of oral cancer.Pathol. Res. Pract.202425315502710.1016/j.prp.2023.155027 38101159
    [Google Scholar]
  122. LiuC. ZhangL. LiuH. ChengK. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.J. Control. Release2017266172610.1016/j.jconrel.2017.09.012 28911805
    [Google Scholar]
  123. AkramF. AhmedZ. KhanH. AliM.S. AliM.S. CRISPR-Cas9, a promising therapeutic tool for cancer therapy: A review.Protein Pept. Lett.2020271093194410.2174/18755305MTA1lNjkA1 32264803
    [Google Scholar]
  124. SzlachtaK. KuscuC. TufanT. CRISPR knockout screening identifies combinatorial drug targets in pancreatic cancer and models cellular drug response.Nat. Commun.201891427510.1038/s41467‑018‑06676‑2 30323222
    [Google Scholar]
  125. ChaiA.W.Y. YeeP.S. PriceS. Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway.eLife20209e5776110.7554/eLife.57761 32990596
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947315782240524073802
Loading
/content/journals/cctr/10.2174/0115733947315782240524073802
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test