Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer poses a significant challenge in terms of treatment due to its aggressive nature and low median survival rates, making accurate early diagnosis and prognosis prediction crucial for improving patient outcomes. Advances in statistics and computer engineering have led to the application of computational methods, including multivariate statistical analysis, to analyze cancer prognosis. Artificial intelligence (AI) has emerged as a transformative force in the healthcare industry, leveraging intricate pattern recognition in medical data to enhance the precision, efficacy, quality, and accuracy of radiation treatment for cancer patients. AI finds application across various critical areas in healthcare, including neurology, cardiology, and oncology, utilizing both structured and unstructured healthcare data. Its roles extend to early detection, diagnosis, treatment, outcome prediction, and prognosis evaluation, particularly in the context of cancer. Despite the potential benefits, integrating AI into clinical practice in radiation oncology faces obstacles that must be overcome. The incorporation of AI, particularly machine learning and deep learning, into clinical cancer research has significantly improved predictive performance. This review explores the literature on the application of AI in cancer diagnosis and prognosis, emphasizing the inherent advantages it offers. While recognizing the importance of rigorous validation, the studies highlight ongoing efforts to integrate AI technology into clinical settings, shaping the future of cancer care. Moreover, the review delves into future directions for AI in cancer therapy, providing insights into upcoming trends, potential developments, and emerging technologies within the AI landscape. By acknowledging the necessity for continued research and validation, the article underscores the momentum toward leveraging AI in clinical oncology and its potential to redefine the landscape of cancer diagnosis and treatment.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947301672240528061642
2025-07-01
2026-02-13
Loading full text...

Full text loading...

References

  1. ShimizuH. NakayamaK.I. Artificial intelligence in oncology.Cancer Sci.202011151452146010.1111/cas.14377 32133724
    [Google Scholar]
  2. FarinaE. NabhenJ.J. DacoregioM.I. BataliniF. MoraesF.Y. An overview of artificial intelligence in oncology.Future Sci. OA202284FSO78710.2144/fsoa‑2021‑0074 35369274
    [Google Scholar]
  3. ChuaI.S. Gaziel-YablowitzM. KorachZ.T. Artificial intelligence in oncology: Path to implementation.Cancer Med.202110124138414910.1002/cam4.3935 33960708
    [Google Scholar]
  4. MillerD.D. BrownE.W. Artificial intelligence in medical practice: the question to the answer?Am. J. Med.2018131212913310.1016/j.amjmed.2017.10.035 29126825
    [Google Scholar]
  5. KirchD.G. PetelleK. Addressing the physician shortage: the peril of ignoring demography.JAMA2017317191947194810.1001/jama.2017.2714 28319233
    [Google Scholar]
  6. HametP. TremblayJ. Artificial intelligence in medicine.Metabolism201769S36S4010.1016/j.metabol.2017.01.011 28126242
    [Google Scholar]
  7. PearsonT. How to replicate Watson hardware and systems design for your own use in your basement.Available from: https://www.ibm.com/developerworks/community/blogs/InsideSystemStorage/entry/ibm_watson_how_to_build_your_own_watson_jr_in_your_basement7?lang=en (accessed 1 Jun 2017).2011
  8. NeillD.B. Using artificial intelligence to improve hospital inpatient care.IEEE Intell. Syst.2013282929510.1109/MIS.2013.51
    [Google Scholar]
  9. LewisS.J. GandomkarZ. BrennanP.C. Artificial Intelligence in medical imaging practice: Looking to the future.J. Med. Radiat. Sci.201966429229510.1002/jmrs.369 31709775
    [Google Scholar]
  10. ArtificialintelligenceinmedicalimagingG.J.C. Magn. Reson. Imaging202068A1A410.1016/j.mri.2019.12.006 31857130
    [Google Scholar]
  11. HuangS. YangJ. FongS. ZhaoQ. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges.Cancer Lett.2020471617110.1016/j.canlet.2019.12.007 31830558
    [Google Scholar]
  12. GilliesR.J. KinahanP.E. HricakH. Radiomics: Images are more than pictures, they are data.Radiology2016278256357710.1148/radiol.2015151169 26579733
    [Google Scholar]
  13. AllahyarA. UbelsJ. de RidderJ. A data-driven interactome of synergistic genes improves network-based cancer outcome prediction.PLOS Comput. Biol.2019152e100665710.1371/journal.pcbi.1006657 30726216
    [Google Scholar]
  14. MitchellM.J. JainR.K. LangerR. Engineering and physical sciences in oncology: Challenges and opportunities.Nat. Rev. Cancer2017171165967510.1038/nrc.2017.83 29026204
    [Google Scholar]
  15. HosnyA. ParmarC. QuackenbushJ. SchwartzL.H. AertsH.J.W.L. Artificial intelligence in radiology.Nat. Rev. Cancer201818850051010.1038/s41568‑018‑0016‑5 29777175
    [Google Scholar]
  16. DeoR.C. Machine learning in medicine.Circulation201513219201930
    [Google Scholar]
  17. JhaS. TopolE.J. Adapting to artificial intelligence.JAMA2016316222353235410.1001/jama.2016.17438 27898975
    [Google Scholar]
  18. WongD YipS Machine learning classifies cancer.nature20185554467
    [Google Scholar]
  19. JhaS. TopolE.J. Adapting to artificial intelligence: radiologists and pathologists as information specialists.JAMA2016316222353235410.1001/jama.2016.17438 27898975
    [Google Scholar]
  20. BiW.L. HosnyA. SchabathM.B. Artificial intelligence in cancer imaging: Clinical challenges and applications.CA Cancer J. Clin.201969212715710.3322/caac.21552 30720861
    [Google Scholar]
  21. GhoshA. Artificial intelligence using open source BI-RADS data exemplifying potential future use.J. Am. Coll. Radiol.2019161647210.1016/j.jacr.2018.09.040 30337213
    [Google Scholar]
  22. SchaffterT. BuistD.S.M. LeeC.I. Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms.JAMA Netw. Open202033e20026510.1001/jamanetworkopen.2020.0265 32119094
    [Google Scholar]
  23. SchultheissM. SchoberS.A. LoddeM. A robust convolutional neural network for lung nodule detection in the presence of foreign bodies.Sci. Rep.20201011298710.1038/s41598‑020‑69789‑z 32737389
    [Google Scholar]
  24. ZhangM. YoungG.S. ChenH. Deep-learning detection of cancer metastases to the brain on MRI.J. Magn. Reson. Imaging20205241227123610.1002/jmri.27129 32167652
    [Google Scholar]
  25. LiuX. Deep learning analysis for automatic lung nodule detection.J. Glob. Oncol.20195Suppl.2710.1200/JGO.2019.5.suppl.27
    [Google Scholar]
  26. ShaverM. KohantebP. ChiouC. Optimizing neuro-oncology imaging: A review of deep learning approaches for glioma imaging.Cancers201911682910.3390/cancers11060829 31207930
    [Google Scholar]
  27. AvanzoM. StancanelloJ. PirroneG. SartorG. Radiomics and deep learning in lung cancer.Strahlenther. Onkol.20201961087988710.1007/s00066‑020‑01625‑9 32367456
    [Google Scholar]
  28. LynchC.J. ListonC. New machine-learning technologies for computer-aided diagnosis.Nat. Med.20182491304130510.1038/s41591‑018‑0178‑4 30177823
    [Google Scholar]
  29. MiottoR. WangF. WangS. JiangX. DudleyJ.T. Deep learning for healthcare: Review, opportunities and challenges.Brief. Bioinform.20181961236124610.1093/bib/bbx044 28481991
    [Google Scholar]
  30. MinS. LeeB. YoonS. Deep learning in bioinformatics.Brief. Bioinform.2017185851869 27473064
    [Google Scholar]
  31. AngermuellerC. PärnamaaT. PartsL. StegleO. Deep learning for computational biology.Mol. Syst. Biol.201612787810.15252/msb.20156651 27474269
    [Google Scholar]
  32. SvozilD. KvasnickaV. PospichalJ. Introduction to multi-layer feed-forward neural networks.Chemom. Intell. Lab. Syst.1997391436210.1016/S0169‑7439(97)00061‑0
    [Google Scholar]
  33. VincentP. LarochelleH. LajoieI. BengioY. ManzagolP-A. BottouL. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.J. Mach. Learn. Res.20101133713408
    [Google Scholar]
  34. HintonG.E. SalakhutdinovR.R. Reducing the dimensionality of data with neural networks.Science2006313578650450710.1126/science.1127647 16873662
    [Google Scholar]
  35. LawrenceS. GilesC.L. BackA.D. BackA.D. Face recognition: A convolutional neural-network approach.IEEE Trans. Neural Netw.1997819811310.1109/72.554195 18255614
    [Google Scholar]
  36. KrizhevskyA. SutskeverI. HintonG.E. Imagenet classification with deep convolutional neural networks.Adv. Neural Inf. Process. Syst.20122510971105
    [Google Scholar]
  37. HochreiterS. SchmidhuberJ. Long short-term memory.Neural Comput.1997981735178010.1162/neco.1997.9.8.1735 9377276
    [Google Scholar]
  38. GersF.A. SchmidhuberJ. CumminsF. Learning to forget: Continual prediction with LSTM.Neural Comput.200012102451247110.1162/089976600300015015 11032042
    [Google Scholar]
  39. Shalev-ShwartzS. Ben-DavidS. Understanding machine learning: From theory to algorithms.Cambridge University Press2014
    [Google Scholar]
  40. WalshS. de JongE.E.C. van TimmerenJ.E. Decision support systems in oncology.JCO Clin. Cancer Inform.2019331910.1200/CCI.18.00001 30730766
    [Google Scholar]
  41. KhananiS. Editorial comment: Artificial intelligence in mammography-our new reality.AJR Am. J. Roentgenol.2022219338110.2214/AJR.22.27345 35018799
    [Google Scholar]
  42. LambL.R. LehmanC.D. GastouniotiA. ConantE.F. BahlM. Artificial intelligence (ai) for screening mammography, from the AI Special Series on AI Applications.AJR Am. J. Roentgenol.2022219336938010.2214/AJR.21.27071 35018795
    [Google Scholar]
  43. StabileA. GigantiF. RosenkrantzA.B. Multiparametric MRI for prostate cancer diagnosis: current status and future directions.Nat. Rev. Urol.2020171416110.1038/s41585‑019‑0212‑4 31316185
    [Google Scholar]
  44. McKinneyS.M. SieniekM. GodboleV. International evaluation of an AI system for breast cancer screening.Nature20205777788899410.1038/s41586‑019‑1799‑6 31894144
    [Google Scholar]
  45. TwiltJ.J. van LeeuwenK.G. HuismanH.J. FüttererJ.J. de RooijM. Artificial intelligence based algorithms for prostate cancer classification and detection on magnetic resonance imaging: A narrative review.Diagnostics202111695910.3390/diagnostics11060959 34073627
    [Google Scholar]
  46. PesapaneF. CodariM. SardanelliF. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine.Eur. Radiol. Exp.2018213510.1186/s41747‑018‑0061‑6 30353365
    [Google Scholar]
  47. LeeJ.G. JunS. ChoY.W. Deep learning in medical imaging: General overview.Korean J. Radiol.201718457058410.3348/kjr.2017.18.4.570 28670152
    [Google Scholar]
  48. AertsH.J.W.L. VelazquezE.R. LeijenaarR.T.H. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.Nat. Commun.201451400610.1038/ncomms5006 24892406
    [Google Scholar]
  49. WangJ. YangP. ZhaoY. A Predictive model of radiation-related fibrosis based on radiomic features of Magnetic Resonance Imaging.Int. J. Radiat. Oncol. Biol. Phys.20191051E59910.1016/j.ijrobp.2019.06.1206
    [Google Scholar]
  50. MahdaviS.R. TavakolA. SaneiM. Use of artificial neural network for pretreatment verification of intensity modulation radiation therapy fields.Br. J. Radiol.20199211022019035510.1259/bjr.20190355 31317765
    [Google Scholar]
  51. TomoriS. KadoyaN. TakayamaY. A deep learning‐based prediction model for gamma evaluation in patient‐specific quality assurance.Med. Phys.20184594055406510.1002/mp.13112 30066388
    [Google Scholar]
  52. NikolovS. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy.arXiv:1809044302018
    [Google Scholar]
  53. TsengH.H. LuoY. CuiS. ChienJ.T. Ten HakenR.K. NaqaI.E. Deep reinforcement learning for automated radiation adaptation in lung cancer.Med. Phys.201744126690670510.1002/mp.12625 29034482
    [Google Scholar]
  54. LudwigJ.A. WeinsteinJ.N. Biomarkers in cancer staging, prognosis and treatment selection.Nat. Rev. Cancer200551184585610.1038/nrc1739 16239904
    [Google Scholar]
  55. McPhailS. JohnsonS. GreenbergD. PeakeM. RousB. Stage at diagnosis and early mortality from cancer in England.Br. J. Cancer2015112S1Suppl. 1S108S11510.1038/bjc.2015.49 25734389
    [Google Scholar]
  56. SasieniP. Evaluation of the UK breast screening programmes.Ann. Oncol.20031481206120810.1093/annonc/mdg325 12881379
    [Google Scholar]
  57. MaroniR. MassatN.J. ParmarD. A case-control study to evaluate the impact of the breast screening programme on mortality in England.Br. J. Cancer2021124473674310.1038/s41416‑020‑01163‑2 33223536
    [Google Scholar]
  58. EssermanL.J. Anton-CulverH. BorowskyA. The WISDOM Study: Breaking the deadlock in the breast cancer screening debate.NPJ Breast Cancer2017313410.1038/s41523‑017‑0035‑5 28944288
    [Google Scholar]
  59. DembrowerK. WåhlinE. LiuY. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: A retrospective simulation study.Lancet Digit. Health202029e468e47410.1016/S2589‑7500(20)30185‑0 33328114
    [Google Scholar]
  60. MeystreS.M. HeiderP.M. KimY. AruchD.B. BrittenC.D. Automatic trial eligibility surveillance based on unstructured clinical data.Int. J. Med. Inform.2019129131910.1016/j.ijmedinf.2019.05.018 31445247
    [Google Scholar]
  61. BeckJ.T. RammageM. JacksonG.P. Artificial intelligence tool for optimizing eligibility screening for clinical trials in a large community cancer center.JCO Clin. Cancer Inform.202044505910.1200/CCI.19.00079 31977254
    [Google Scholar]
  62. AberleD.R. AdamsA.M. BergC.D. Reduced lung-cancer mortality with low-dose computed tomographic screening.N. Engl. J. Med.2011365539540910.1056/NEJMoa1102873 21714641
    [Google Scholar]
  63. de KoningH.J. van der AalstC.M. de JongP.A. Reduced lung-cancer mortality with volume CT screening in a randomized trial.N. Engl. J. Med.2020382650351310.1056/NEJMoa1911793 31995683
    [Google Scholar]
  64. WilleminkM.J. KoszekW.A. HardellM.S.C. WuM.S.J. RubinD.L. Preparing medical imaging data for machine learning.Radiology20202951415
    [Google Scholar]
  65. TorinoP. Artificial Intelligence in Medical Imaging2019January2020
    [Google Scholar]
  66. S. M. AA H. E. MT. Breast cancer detection with mammogram segmentation: A qualitative study.Int. J. Adv. Comput. Sci. Appl.2017810117120
    [Google Scholar]
  67. LambinP. Rios-VelazquezE. LeijenaarR. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.036 22257792
    [Google Scholar]
  68. O’ConnorJ.P.B. AboagyeE.O. AdamsJ.E. Imaging biomarker roadmap for cancer studies.Nat. Rev. Clin. Oncol.201714316918610.1038/nrclinonc.2016.162 27725679
    [Google Scholar]
  69. GreenA.R. SoriaD. StephenJ. Nottingham Prognostic Index Plus: Validation of a clinical decision making tool in breast cancer in an independent series.J. Pathol. Clin. Res.201621324010.1002/cjp2.32 27499914
    [Google Scholar]
  70. TylerS. TruongP.T. LesperanceM. Close margins less than 2 mm are not associated with higher risks of 10-year local recurrence and breast cancer mortality compared with negative margins in women treated with breast-conserving therapy.Int. J. Radiat. Oncol. Biol. Phys.2018101366167010.1016/j.ijrobp.2018.03.005 29678525
    [Google Scholar]
  71. BartramG.W. MahadevanS. Integrating heterogeneous information in diagnosis and prognosis.54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,. 2013: 1941.
    [Google Scholar]
  72. BerriP.C.C. Dalla VedovaM.D.L. Real-time fault detection and prognostics for aircraft actuation systems.AIAA Scitech 2019 Forum. 2019: 2210.
    [Google Scholar]
  73. AliJ.B. Chebel-MorelloB. SaidiL. Accurate bearing remaining useful life prediction based on Weibull distribution and artifcial neural network.Mech. Syst. Signal Process.201556150172
    [Google Scholar]
  74. PhungM.T. Tin TinS. ElwoodJ.M. Prognostic models for breast cancer: A systematic review.BMC Cancer201919123010.1186/s12885‑019‑5442‑6 30871490
    [Google Scholar]
  75. BibaultJ.E. ChangD.T. XingL. Development and validation of a model to predict survival in colorectal cancer using a gradient-boosted machine.Gut202170588488910.1136/gutjnl‑2020‑321799 32887732
    [Google Scholar]
  76. SendersJ.T. StaplesP. MehrtashA. An online calculator for the prediction of survival in glioblastoma patients using classical statistics and machine learning.Neurosurgery2020862E184E19210.1093/neuros/nyz403 31586211
    [Google Scholar]
  77. KimD.W. LeeS. KwonS. NamW. ChaI.H. KimH.J. Deep learning-based survival prediction of oral cancer patients.Sci. Rep.201991699410.1038/s41598‑019‑43372‑7 31061433
    [Google Scholar]
  78. MatsuoK. MachidaH. ShoupeD. Ovarian conservation and overall survival in young women with early-stage low-grade endometrial cancer.Obstet. Gynecol.2016128476177010.1097/AOG.0000000000001647 27607873
    [Google Scholar]
  79. LiuB. HeH. LuoH. ZhangT. JiangJ. Artificial intelligence and big data facilitated targeted drug discovery.Stroke Vasc. Neurol.20194420621310.1136/svn‑2019‑000290 32030204
    [Google Scholar]
  80. Liu -A-A. Zhai Y, Xu N, Nie W, Li W, Zhang Y. Region-aware image captioning via interaction learning.IEEE Trans. Circ. Syst. Video Tech.202132636853696
    [Google Scholar]
  81. MariottoA.B. Cancer survival: An overview of measures, uses, and interpretation.JNCI Monogr2014145186
    [Google Scholar]
  82. SimmonsC.P.L. Prognostic tools in patients with advanced cancer: A systematic review.J. Pain Sympt Manage.201753962970
    [Google Scholar]
  83. CirilloD. Catuara-SolarzS. MoreyC. Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare.NPJ Digit. Med.2020318110.1038/s41746‑020‑0288‑5 32529043
    [Google Scholar]
  84. MhasawadeV. ZhaoY. ChunaraR. Machine learning and algorithmic fairness in public and population health.Nat. Mach. Intell.20213865966610.1038/s42256‑021‑00373‑4
    [Google Scholar]
  85. WinterJ.S. AI in healthcare: Data governance challenges.J. Hosp. Manag. Health Policy2021575
    [Google Scholar]
  86. MorleyJ. MachadoC.C.V. BurrC. The ethics of AI in health care: A mapping review.Soc. Sci. Med.202026011317210.1016/j.socscimed.2020.113172 32702587
    [Google Scholar]
  87. World Health OrganizationEthics and Governance of Artificial Intelligence for Health: WHO Guidance.Geneva, SwitzerlandWorld Health Organization20211148
    [Google Scholar]
  88. HindochaS. BadeaC. Moral exemplars for the virtuous machine: The clinician’s role in ethical artificial intelligence for healthcare.AI Ethics2021119
    [Google Scholar]
  89. EstevaA. KuprelB. NovoaR.A. Dermatologist-level classification of skin cancer with deep neural networks.Nature2017542763911511810.1038/nature21056 28117445
    [Google Scholar]
  90. ZouJ. SchiebingerL. AI can be sexist and racist it’s time to make it fair.Nature2018559771432432610.1038/d41586‑018‑05707‑8 30018439
    [Google Scholar]
  91. WenD. KhanS.M. Ji XuA. Characteristics of publicly available skin cancer image datasets: A systematic review.Lancet Digit. Health202241e64e7410.1016/S2589‑7500(21)00252‑1 34772649
    [Google Scholar]
  92. WilkinsonM.D. DumontierM. AalbersbergI.J.J. The FAIR guiding principles for scientific data management and stewardship.Sci. Data20163116001810.1038/sdata.2016.18 26978244
    [Google Scholar]
  93. HagendorffT. The ethics of AI ethics–an evaluation of guidelines.arXiv:1903034252019
    [Google Scholar]
  94. SchönbergerD. Artificial intelligence in healthcare: A critical analysis of the legal and ethical implications.Int. J. Law Inf. Technol.201927217120310.1093/ijlit/eaz004
    [Google Scholar]
  95. AndersonM. AndersonS.L. How should AI be developed, validated, and implemented in patient care?AMA J. Ethics2019212E125E13010.1001/amajethics.2019.125 30794121
    [Google Scholar]
  96. OsobaO.A. WelserW.I.V. An intelligence in our image: The risks of bias and errors in artificial intelligence.Available from: https://www.rand.org/pubs/research_reports/RR1744.html 2017
  97. BalthazarP. HarriP. PraterA. SafdarN.M. Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics.J. Am. Coll. Radiol.201815358058610.1016/j.jacr.2017.11.035 29402532
    [Google Scholar]
  98. WachterS. MittelstadtB. A right to reasonable inferences: re-thinking data protection law in the age of big data and AI.Colum Bus L Rev2019
    [Google Scholar]
  99. WachterS. MittelstadtB. RussellC. Counterfactual explanations without opening the black box: automated decisions and the GPDR.SSRN Electr J20173184110.2139/ssrn.3063289
    [Google Scholar]
  100. CathC. Governing artificial intelligence: Ethical, legal and technical opportunities and challenges.Philos. Trans. A Math. Phys. Eng. Sci.201837621332018008010.1098/rsta.2018.0080
    [Google Scholar]
  101. JohnsonK.W. Torres SotoJ. GlicksbergB.S. Artificial intelligence in cardiology.J. Am. Coll. Cardiol.201871232668267910.1016/j.jacc.2018.03.521 29880128
    [Google Scholar]
  102. LopezK. FodehS.J. AllamA. BrandtC.A. KrauthammerM. Reducing annotation burden through multimodal learning.Frontiers in Big Data202031910.3389/fdata.2020.00019 33693393
    [Google Scholar]
  103. SunT.Q. MedagliaR. Mapping the challenges of artificial intelligence in the public sector: Evidence from public healthcare.Govern Inform Quart2018362368383
    [Google Scholar]
  104. JiangF. JiangY. ZhiH. Artificial intelligence in healthcare: Past, present and future.Stroke Vasc. Neurol.20172423024310.1136/svn‑2017‑000101 29507784
    [Google Scholar]
  105. DilsizianS.E. SiegelE.L. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment.Curr. Cardiol. Rep.201416144110.1007/s11886‑013‑0441‑8 24338557
    [Google Scholar]
  106. KleinbergJ. LudwigJ. MullainathanS. SunsteinC.R. Discrimination in the age of algorithms.J. Legal Anal.20181011317410.1093/jla/laz001
    [Google Scholar]
  107. TingD.S.W. CheungC.Y.L. LimG. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes.JAMA2017318222211222310.1001/jama.2017.18152 29234807
    [Google Scholar]
  108. AdeliE. ZhaoQ. PfefferbaumA. Representation learning with statistical independence to mitigate bia.arXiv:1910036762019Avialable from: v.org/abs/1910.03676
    [Google Scholar]
  109. FogelA.L. KvedarJ.C. Artificial intelligence powers digital medicine.NPJ Digit. Med.201811510.1038/s41746‑017‑0012‑2 31304291
    [Google Scholar]
  110. WangF. KaushalR. KhullarD. Should health care demand interpretable artificial intelligence or accept “black box” medicine?Ann. Intern. Med.20201721596010.7326/M19‑2548 31842204
    [Google Scholar]
  111. TopolE.J. High-performance medicine: The convergence of human and artificial intelligence.Nat. Med.2019251445610.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  112. WiensJ. ShenoyE.S. Machine learning for healthcare: On the verge of a major shift in healthcare epidemiology.Clin. Infect. Dis.201866114915310.1093/cid/cix731 29020316
    [Google Scholar]
  113. KrittanawongC. BombackA.S. BaberU. BangaloreS. MesserliF.H. Wilson TangW.H. Future direction for using artificial intelligence to predict and manage hypertension.Curr. Hypertens. Rep.20182097510.1007/s11906‑018‑0875‑x 29980865
    [Google Scholar]
  114. SarmahS.S. Concept of artificial intelligence, its impact and emerging trends.Int Res J Eng Technol201961121642168
    [Google Scholar]
  115. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  116. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.21590 31912902
    [Google Scholar]
  117. MazièresJ. PujolJ.L. KalampalikisN. Perception of lung cancer among the general population and comparison with other cancers.J. Thorac. Oncol.201510342042510.1097/JTO.0000000000000433 25514806
    [Google Scholar]
  118. Le BerreC. Application of Artificial Intelligence to Gastroenterology and Hepatology.Gastroenterology2019 31593701
    [Google Scholar]
  119. Cazacu IrinaM. Artificial intelligence in pancreatic cancer: Toward precision diagnosis.Endosc. Ultrasound201986357359
    [Google Scholar]
  120. SheehanD.F. CrissS.D. ChenY. Lung cancer costs by treatment strategy and phase of care among patients enrolled in Medicare.Cancer Med.2019819410310.1002/cam4.1896 30575329
    [Google Scholar]
  121. Can artificial intelligence help see cancer in new, and better, ways? .(2022).Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2022/artificial-intelligence-cancer-imaging (Accessed: August 15, 2023).
  122. IqbalM.J. JavedZ. SadiaH. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future.Cancer Cell Int.202121127010.1186/s12935‑021‑01981‑1 34020642
    [Google Scholar]
  123. TătaruO.S. VartolomeiM.D. RassweilerJ.J. Artificial intelligence and machine learning in prostatecancer patient management-current trends and future perspectives.Diagnostics202111235410.3390/diagnostics11020354 33672608
    [Google Scholar]
  124. CrewB. Worth the cost? A closer look at the da Vinci robot’s impact on prostate cancer surgery.Nature20205807804S5S710.1038/d41586‑020‑01037‑w
    [Google Scholar]
  125. HuynhE. HosnyA. GuthierC. Artificial intelligence in radiation oncology.Nat. Rev. Clin. Oncol.2020171277178110.1038/s41571‑020‑0417‑8 32843739
    [Google Scholar]
  126. ZarellaM.D. BowmanD. AeffnerF. A practical guide to whole slide imaging: A white paper from the digital pathology association.Arch. Pathol. Lab. Med.2019143222223410.5858/arpa.2018‑0343‑RA 30307746
    [Google Scholar]
  127. CaldonazziN. RizzoP.C. EccherA. Value of artificial intelligence in evaluating lymph node metastases.Cancers2023159249110.3390/cancers15092491 37173958
    [Google Scholar]
  128. KotelukO. WarteckiA. MazurekS. KołodziejczakI. MackiewiczA. How do machines learn? artificial intelligence as a new era in medicine.J. Pers. Med.20211113210.3390/jpm11010032 33430240
    [Google Scholar]
  129. MarlettaS. L’ImperioV. EccherA. Artificial intelligence-based tools applied to pathological diagnosis of microbiological diseases.Pathol. Res. Pract.202324315436210.1016/j.prp.2023.154362 36758417
    [Google Scholar]
  130. MarlettaS. EccherA. MartelliF.M. Artificial intelligence–based algorithms for the diagnosis of prostate cancer: A systematic review.Am. J. Clin. Pathol.202457aqad18210.1093/ajcp/aqad182 38381582
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947301672240528061642
Loading
/content/journals/cctr/10.2174/0115733947301672240528061642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test