Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Histotripsy is an innovative non-invasive modality utilizing high-intensity focused ultrasound to induce mechanical tissue disruption controlled cavitation. It represents a promising approach in oncology, offering a targeted alternative to conventional cancer therapies. The method relies on precise acoustic energy to create microbubbles that implode, causing cellular destruction within the targeted area while sparing surrounding tissues. In this review, we have explored the foundational principles underlying histotripsy, outlining how it leverages the physics of sound and cavitation to achieve precise tissue disruption. We have delved into the specific mechanisms by which histotripsy induces cell death. This review provides an overview of the current clinical applications of histotripsy in the treatment of various cancers, highlighting its benefits and the clinical outcomes reported thus far. Further, the review examines the breadth of ongoing research related to histotripsy. Looking to the future, the review discusses the promising implications of histotripsy for revolutionizing cancer care.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947330950240906075443
2024-09-19
2025-12-05
Loading full text...

Full text loading...

References

  1. AltafA. BaqaiM.W.S. UroojF. AlamM.S. AzizH.F. MubarakF. KnoppE.A. SiddiquiK.M. EnamS.A. Utilization of an ultra-low-field, portable magnetic resonance imaging for brain tumor assessment in lower middle-income countries.Surg. Neurol. Int.20231426026010.25259/SNI_123_202337560587
    [Google Scholar]
  2. AnnakibS. RigauV. DarlixA. GozéC. DuffauH. BauchetL. JarlierM. FabbroM. Bevacizumab in recurrent WHO grades II–III glioma.Front. Oncol.202313121271410.3389/fonc.2023.121271437534252
    [Google Scholar]
  3. ArifiS. ConstantinidouA. Editorial: Precision medicine in sarcomas: the road to an effective biomarker-driven-care strategy.Front. Oncol.202313119459310.3389/fonc.2023.119459337091172
    [Google Scholar]
  4. RugerL. YangE. Coutermarsh-OttS. VickersE. GannonJ. NightengaleM. HsuehA. CiepluchB. DervisisN. VlaisavljevichE. KlahnS. Histotripsy ablation for the treatment of feline injection site sarcomas: a first-in-cat in vivo feasibility study.Int. J. Hyperthermia2023401221027210.1080/02656736.2023.221027237196996
    [Google Scholar]
  5. AunanJ.R. ChoW.C. SøreideK. The biology of aging and cancer: A brief overview of shared and divergent molecular hallmarks.Aging Dis.20178562864210.14336/AD.2017.010328966806
    [Google Scholar]
  6. BaiR.L. ChenN.F. LiL.Y. CuiJ.W. A brand new era of cancer immunotherapy: breakthroughs and challenges.Chin. Med. J. (Engl.)2021134111267127510.1097/CM9.000000000000149034039862
    [Google Scholar]
  7. BourneC.M. TaabazuingC.Y. Harnessing pyroptosis for cancer immunotherapy.Cells202413434610.3390/cells1304034638391959
    [Google Scholar]
  8. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  9. CasazzaA. Van HelleputteL. Van RenterghemB. PokreiszP. De GeestN. De PetriniM. JanssensT. PellensM. DiricxM. Riera-DomingoC. WozniakA. MazzoneM. SchöffskiP. DefertO. ReynsG. KindtN. PhAc-ALGP-Dox, a novel anticancer prodrug with targeted activation and improved therapeutic index.Mol. Cancer Ther.202221456858110.1158/1535‑7163.MCT‑21‑051835149549
    [Google Scholar]
  10. ChavdaV.P. SolankiH.K. DavidsonM. ApostolopoulosV. BojarskaJ. Peptide-drug conjugates: A New Hope for cancer management.Molecules20222721723210.3390/molecules2721723236364057
    [Google Scholar]
  11. ChmielewskiM. AbkenH. TRUCKS, the fourth‐generation CAR T cells: Current developments and clinical translation.Adv. Cell Gene Ther.202033[Internet].10.1002/acg2.84
    [Google Scholar]
  12. ChoiH.Y. ChangJ.E. Targeted therapy for cancers: From ongoing clinical trials to FDA-approved drugs.Int. J. Mol. Sci.202324171361810.3390/ijms24171361837686423
    [Google Scholar]
  13. GuptaD. RoyP. SharmaR. KasanaR. RathoreP. GuptaT.K. Recent nanotheranostic approaches in cancer research.Clin. Exp. Med.2024241810.1007/s10238‑023‑01262‑338240834
    [Google Scholar]
  14. Mullick ChowdhuryS. LeeT. WillmannJ.K. Ultrasound-guided drug delivery in cancer.Ultrasonography201736317118410.14366/usg.1702128607323
    [Google Scholar]
  15. DarrowD.P. Focused ultrasound for neuromodulation.Neurotherapeutics2019161889910.1007/s13311‑018‑00691‑330488340
    [Google Scholar]
  16. DunneM. DouY.N. DrakeD.M. SpenceT. GontijoS.M.L. WellsP.G. AllenC. Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer.J. Control. Release2018282354510.1016/j.jconrel.2018.04.02929673642
    [Google Scholar]
  17. FengY. QinD. WanM. Photoacoustic cavitation for theranostics: mechanism, current progress and applications.J. Phys. Conf. Ser.201565601200810.1088/1742‑6596/656/1/012008
    [Google Scholar]
  18. FetahuI.S. Taschner-MandlS. Neuroblastoma and the epigenome.Cancer Metastasis Rev.202140117318910.1007/s10555‑020‑09946‑y33404859
    [Google Scholar]
  19. FroghiS. HallA. Hanafi Bin JalalA. AndradeM.O. Mohammad HadiL. RashidiH. GélatP. SaffariN. DavidsonB. QuagliaA. Ultrasound histotripsy on a viable perfused whole porcine liver: Histological aspects, including 3D reconstruction of the histotripsy site.Bioengineering (Basel)202310327810.3390/bioengineering1003027836978669
    [Google Scholar]
  20. GhoshA. GhartimagarD. ThapaS. Oncogenes - the basics.J. Biomed. Sci.201834353710.3126/jbs.v3i4.19939
    [Google Scholar]
  21. GundermanA. MontayreR. RanjanA. ChenY. Review of robot-assisted HIFU therapy.Sensors (Basel)2023237370710.3390/s2307370737050766
    [Google Scholar]
  22. KrzyszczykP AcevedoA DavidoffEJ TimminsLM Marrero-BerriosI PatelM The growing role of precision and personalized medicine for cancer treatment.Technology201863-47910010.1142/S2339547818300020
    [Google Scholar]
  23. SatoF. JojoM. MatsukiH. Operation of the magnetic micro-machine with the hyperthermia mechanism and its exothermic characteristic.IEEE International Digest of Technical Papers on Magnetics ConferenceIEEE2003
    [Google Scholar]
  24. HaskellS.C. LuN. StockerG.E. XuZ. SukovichJ.R. Monitoring cavitation dynamics evolution in tissue mimicking hydrogels for repeated exposures via acoustic cavitation emissions.J. Acoust. Soc. Am.2023153123724710.1121/10.001684936732269
    [Google Scholar]
  25. Hendricks-WengerA. HutchisonR. VlaisavljevichE. AllenI.C. Immunological effects of histotripsy for cancer therapy.Front. Oncol.20211168162910.3389/fonc.2021.68162934136405
    [Google Scholar]
  26. Hendricks-WengerA. ArnoldL. GannonJ. SimonA. SinghN. SheppardH. Nagai-SingerM.A. ImranK.M. LeeK. Clark-DeenerS. ByronC. EdwardsM.R. LarsonM.M. RossmeislJ.H. Coutermarsh-OttS.L. EdenK. DervisisN. KlahnS. TuohyJ. AllenI.C. VlaisavljevichE. Histotripsy ablation in preclinical animal models of cancer and spontaneous tumors in veterinary patients: A review.IEEE Trans. Ultrason. Ferroelectr. Freq. Control202269152610.1109/TUFFC.2021.311008334478363
    [Google Scholar]
  27. KentishS.E. Engineering principles of ultrasound technology.Ultrasound: Advances for Food Processing and Preservation.Elsevier201711310.1016/B978‑0‑12‑804581‑7.00001‑4
    [Google Scholar]
  28. SudaharH. KurupP.G.G. MuraliV. MahadevP. VelmuruganJ. Equivalent normalized total dose estimates in cyberknife radiotherapy dose delivery in prostate cancer hypofractionation regimens.J. Med. Phys.2012372909610.4103/0971‑6203.9474322557798
    [Google Scholar]
  29. ShepherdJ.H. MillikenD.A. Conservative surgery for carcinoma of the cervix.Clin. Oncol. (R. Coll. Radiol.)200820639540010.1016/j.clon.2008.05.00218606356
    [Google Scholar]
  30. HilabiB.S. AlghamdiS.A. AlmanaaM. Impact of magnetic resonance imaging on healthcare in low- and middle-income countries.Cureus2023154e3769810.7759/cureus.3769837081900
    [Google Scholar]
  31. ZakariaR. DasK. BhojakM. RadonM. WalkerC. JenkinsonM.D. The role of magnetic resonance imaging in the management of brain metastases: diagnosis to prognosis.Cancer Imaging2014141810.1186/1470‑7330‑14‑825608557
    [Google Scholar]
  32. HongL. LiW. LiY. YinS. Nanoparticle-based drug delivery systems targeting cancer cell surfaces.RSC Advances20231331213652138210.1039/D3RA02969G37465582
    [Google Scholar]
  33. KayalS. Cancer therapy: A brief outline.Ann. Natl. Acad. Med. Sci.20195503138144[Internet].10.1055/s‑0039‑3399406
    [Google Scholar]
  34. SurB.W. SharmaA. Transarterial chemoembolization for hepatocellular carcinoma.J. Radiol. Nurs.201837210711110.1016/j.jradnu.2017.12.00430017783
    [Google Scholar]
  35. LiF. ZhangX.Q. HoW. TangM. LiZ. BuL. XuX. mRNA lipid nanoparticle-mediated pyroptosis sensitizes immunologically cold tumors to checkpoint immunotherapy.Nat. Commun.2023141422310.1038/s41467‑023‑39938‑937454146
    [Google Scholar]
  36. ChenQ. XuL. LiangC. WangC. PengR. LiuZ. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy.Nat. Commun.2016711319310.1038/ncomms1319327767031
    [Google Scholar]
  37. KhokhlovaV.A. FowlkesJ.B. RobertsW.W. SchadeG.R. XuZ. KhokhlovaT.D. HallT.L. MaxwellA.D. WangY.N. CainC.A. Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications.Int. J. Hyperthermia201531214516210.3109/02656736.2015.100753825707817
    [Google Scholar]
  38. KhokhlovaT.D. WangY.N. SimonJ.C. CunitzB.W. StarrF. PaunM. CrumL.A. BaileyM.R. KhokhlovaV.A. Ultrasound-guided tissue fractionation by high intensity focused ultrasound in an in vivo porcine liver model.Proc. Natl. Acad. Sci. USA2014111228161816610.1073/pnas.131835511124843132
    [Google Scholar]
  39. XuZ. HallT.L. VlaisavljevichE. LeeF.T.Jr Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound.Int. J. Hyperthermia202138156157510.1080/02656736.2021.190518933827375
    [Google Scholar]
  40. KimN.J. YoonJ.H. TuomiA.C. LeeJ. KimD. In-situ tumor vaccination by percutaneous ablative therapy and its synergy with immunotherapeutics: An update on combination therapy.Front. Immunol.202314111884510.3389/fimmu.2023.111884536969248
    [Google Scholar]
  41. KimO.H. JeonT.J. ShinY.K. LeeH.J. Role of extrinsic physical cues in cancer progression.BMB Rep.202356528729510.5483/BMBRep.2023‑003137037673
    [Google Scholar]
  42. KohnD.B. ChenY.Y. SpencerM.J. Successes and challenges in clinical gene therapy.Gene Ther.20233010-1173874610.1038/s41434‑023‑00390‑537935854
    [Google Scholar]
  43. KumarK. SrivastavS. SharanagatV.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review.Ultrason. Sonochem.20217010532510532510.1016/j.ultsonch.2020.10532532920300
    [Google Scholar]
  44. KumarP. Recent advancement in cancer treatment.Design of Nanostructures for Theranostics Applications.Elsevier2018621651
    [Google Scholar]
  45. KumarM. Precision Oncology bringing a paradigm shift in the treatment of cancer.Academia Letters202210.20935/AL2490
    [Google Scholar]
  46. LiY. WangR. LuM. ZhangL. LiuY. HanD. WangX. GengY. WanM. Histotripsy using fundamental and second harmonic superposition combined with hundred-microsecond ultrasound pulses.Ultrasound Med. Biol.201844102089210410.1016/j.ultrasmedbio.2018.05.02430054023
    [Google Scholar]
  47. DubinskyT.J. CuevasC. DigheM.K. KolokythasO. HwangJ.H. High-intensity focused ultrasound: current potential and oncologic applications.AJR Am. J. Roentgenol.2008190119119910.2214/AJR.07.267118094311
    [Google Scholar]
  48. LiaoJ. XueH. LiJ. Extraction of phenolics and anthocyanins from purple eggplant peels by multi-frequency ultrasound: Effects of different extraction factors and optimization using uniform design.Ultrason. Sonochem.20229010617410617410.1016/j.ultsonch.2022.10617436170772
    [Google Scholar]
  49. SinglaM. SitN. Application of ultrasound in combination with other technologies in food processing: A review.Ultrason. Sonochem.20217310550610550610.1016/j.ultsonch.2021.10550633714087
    [Google Scholar]
  50. LuM. LiY. WangR. Histotripsy produced by dual frequency of fundamental and harmonic superimposition with protocol of hundred-microsecond-length pulses and two stages.2017 IEEE International Ultrasonics Symposium (IUS)IEEE201710.1109/ULTSYM.2017.8091962
    [Google Scholar]
  51. NamG.H. PahkK.J. JeonS. ParkH.J. KimG.B. OhS.J. KimK. KimH. YangY. Investigation of the potential immunological effects of boiling histotripsy for cancer treatment.Adv. Ther. (Weinh.)202038190021410.1002/adtp.201900214
    [Google Scholar]
  52. CoralicV. ColoniusT. Shock-induced collapse of a bubble inside a deformable vessel.Eur. J. Mech. BFluids201340647410.1016/j.euromechflu.2013.01.00324015027
    [Google Scholar]
  53. HołystR. LitniewskiM. GarsteckiP. Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave.Phys. Rev. E Stat. Nonlin. Soft Matter Phys.201285505630310.1103/PhysRevE.85.05630323004859
    [Google Scholar]
  54. KameoY. TsubotaK-I. AdachiT. Microscopic Fluid Flow Analysis in an Osteocyte Canaliculus.Frontiers of Biomechanics.TokyoSpringer Japan20181324
    [Google Scholar]
  55. PhillipJ.M. AifuwaI. WalstonJ. WirtzD. The mechanobiology of aging.Annu. Rev. Biomed. Eng.201517111314110.1146/annurev‑bioeng‑071114‑04082926643020
    [Google Scholar]
  56. PahkK.J. ShinC.H. BaeI.Y. YangY. KimS.H. PahkK. KimH. OhS.J. Boiling histotripsy-induced partial mechanical ablation modulates tumour microenvironment by promoting immunogenic cell death of cancers.Sci. Rep.201991905010.1038/s41598‑019‑45542‑z31227775
    [Google Scholar]
  57. PahkK.J. HeoJ. JoungC. PahkK. Noninvasive mechanical destruction of liver tissue and tissue decellularisation by pressure-modulated shockwave histotripsy.Front. Immunol.202314115041610.3389/fimmu.2023.115041637261363
    [Google Scholar]
  58. PeppleA.L. GuyJ.L. McGinnisR. FelstedA.E. SongB. HubbardR. WorlikarT. GaravagliaH. DibJ. ChaoH. BoyleN. OlszewskiM. XuZ. GangulyA. ChoC.S. Spatiotemporal local and abscopal cell death and immune responses to histotripsy focused ultrasound tumor ablation.Front. Immunol.202314101279910.3389/fimmu.2023.101279936756111
    [Google Scholar]
  59. PrasadR. JainN.K. YadavA.S. ChauhanD.S. DevrukhkarJ. KumawatM.K. ShindeS. GorainM. ThakorA.S. KunduG.C. CondeJ. SrivastavaR. Liposomal nanotheranostics for multimode targeted in vivo bioimaging and near-infrared light mediated cancer therapy.Commun. Biol.20203128410.1038/s42003‑020‑1016‑z32504032
    [Google Scholar]
  60. QinL. CaoJ. ShaoK. TongF. YangZ. LeiT. WangY. HuC. UmeshappaC.S. GaoH. PeppasN.A. A tumor-to-lymph procedure navigated versatile gel system for combinatorial therapy against tumor recurrence and metastasis.Sci. Adv.2020636eabb311610.1126/sciadv.abb311632917616
    [Google Scholar]
  61. ZhouY. GaoX.W. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).Phys. Med. Biol.201661186651666710.1088/0031‑9155/61/18/665127541633
    [Google Scholar]
  62. Biasiori-PoulangesL. LukicB. SupponenO. Cavitation cloud formation and surface damage of a model stone in a high-intensity focused ultrasound fieldInternet[physics.app-ph]2023http://arxiv.org/abs/2304.12091
  63. YaoR. HuJ. ZhaoW. ChengY. FengC. A review of high-intensity focused ultrasound as a novel and non-invasive interventional radiology technique.Journal of Interventional Medicine20225312713210.1016/j.jimed.2022.06.00436317144
    [Google Scholar]
  64. RahimM.A. JanN. KhanS. ShahH. MadniA. KhanA. JabarA. KhanS. ElhissiA. HussainZ. AzizH.C. SohailM. KhanM. ThuH.E. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting.Cancers (Basel)202113467010.3390/cancers1304067033562376
    [Google Scholar]
  65. VlaisavljevichE. KimY. AllenS. OwensG. PelletierS. CainC. IvesK. XuZ. Image-guided non-invasive ultrasound liver ablation using histotripsy: feasibility study in an in vivo porcine model.Ultrasound Med. Biol.20133981398140910.1016/j.ultrasmedbio.2013.02.00523683406
    [Google Scholar]
  66. European Association For The Study Of The Liver European Organisation For Research And Treatment Of Cancer EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma.J. Hepatol.201256490894310.1016/j.jhep.2011.12.00122424438
    [Google Scholar]
  67. KimN. ChengJ. JungI. LiangJ.D. ShihY.L. HuangW.Y. KimuraT. LeeV.H.F. ZengZ.C. ZhengganR. KayC.S. HeoS.J. WonJ.Y. SeongJ. Stereotactic body radiation therapy vs. radiofrequency ablation in Asian patients with hepatocellular carcinoma.J. Hepatol.202073112112910.1016/j.jhep.2020.03.00532165253
    [Google Scholar]
  68. HeimbachJ.K. KulikL.M. FinnR.S. SirlinC.B. AbecassisM.M. RobertsL.R. ZhuA.X. MuradM.H. MarreroJ.A. AASLD guidelines for the treatment of hepatocellular carcinoma.Hepatology201867135838010.1002/hep.2908628130846
    [Google Scholar]
  69. Hendricks-WengerA. SaunierS. SimonA. GriderD. LuyimbaziD. AllenI.C. VlaisavljevichE. Histotripsy for the treatment of cholangiocarcinoma in a patient-derived xenograft mouse model.Ultrasound Med. Biol.202248229330310.1016/j.ultrasmedbio.2021.10.00234750030
    [Google Scholar]
  70. Hendricks-WengerA. WeberP. SimonA. SaunierS. Coutermarsh-OttS. GriderD. Vidal-JoveJ. AllenI.C. LuyimbaziD. VlaisavljevichE. Histotripsy for the treatment of cholangiocarcinoma liver tumors: in vivo feasibility and ex vivo dosimetry study.IEEE Trans. Ultrason. Ferroelectr. Freq. Control20216892953296410.1109/TUFFC.2021.307356333856990
    [Google Scholar]
  71. WorlikarT. Mendiratta-LalaM. VlaisavljevichE. HubbardR. ShiJ. HallT.L. ChoC.S. LeeF.T. GreveJ. XuZ. Effects of histotripsy on local tumor progression in an in vivo orthotopic rodent liver tumor model.BME Frontiers20202020983030410.34133/2020/983030434327513
    [Google Scholar]
  72. KimY. VlaisavljevichE. OwensG.E. AllenS.P. CainC.A. XuZ. In vivo transcostal histotripsy therapy without aberration correction.Phys. Med. Biol.201459112553256810.1088/0031‑9155/59/11/255324785433
    [Google Scholar]
  73. KnottE.A. LongoK.C. VlaisavljevichE. ZhangX. SwietlikJ.F. XuZ. RodgersA.C. ZlevorA.M. LaesekeP.F. HallT.L. LeeF.T.Jr ZiemlewiczT.J. Transcostal histotripsy ablation in an in vivo acute hepatic porcine model.Cardiovasc. Intervent. Radiol.202144101643165010.1007/s00270‑021‑02914‑134244841
    [Google Scholar]
  74. LinK.W. HallT.L. XuZ. CainC.A. Histotripsy lesion formation using an ultrasound imaging probe enabled by a low-frequency pump transducer.Ultrasound Med. Biol.20154182148216010.1016/j.ultrasmedbio.2015.03.02625929995
    [Google Scholar]
  75. StynN. HallT.L. FowlkesJ.B. CainC.A. RobertsW.W. Histotripsy homogenization of the prostate: thresholds for cavitation damage of periprostatic structures.J. Endourol.20112591531153510.1089/end.2010.064821815807
    [Google Scholar]
  76. RobertsW.W. TeofilovicD. JahnkeR.C. PatriJ. RisdahlJ.M. BertolinaJ.A. Histotripsy of the prostate using a commercial system in a canine model.J. Urol.2014191386086510.1016/j.juro.2013.08.07724012583
    [Google Scholar]
  77. SchadeG.R. WangY.N. D’AndreaS. HwangJ.H. LilesW.C. KhokhlovaT.D. Boiling histotripsy ablation of renal cell carcinoma in the Eker rat promotes a systemic inflammatory response.Ultrasound Med. Biol.201945113714710.1016/j.ultrasmedbio.2018.09.00630340920
    [Google Scholar]
  78. RobertsW.W. Development and translation of histotripsy.Curr. Opin. Urol.201424110411010.1097/MOU.000000000000000124231530
    [Google Scholar]
  79. StynN.R. HallT.L. FowlkesJ.B. CainC.A. RobertsW.W. Histotripsy of renal implanted VX-2 tumor in a rabbit model: investigation of metastases.Urology201280372472910.1016/j.urology.2012.06.02022925247
    [Google Scholar]
  80. SwintelskiC. PlazaM. Successful cryoablation of breast cancer.Breast J.201824470470610.1111/tbj.1299629411921
    [Google Scholar]
  81. HendricksAD HowellJ SchmieleyR KozlovS SimonA Coutermarsh-OttSL Histotripsy initiates local and systemic immunological response and reduces tumor burden in breast cancer.J Immunol2019202S119410.4049/jimmunol.202.Supp.194.30
    [Google Scholar]
  82. HendricksA. SchmieleyR. HowellJ. Investigation of the local and systemic immune response to histotripsy ablation of breast cancer in a mouse model.Meeting of the International Society for Therapeutic Ultrasound, Jun 13–15, Barcelona, Catalonia2019
    [Google Scholar]
  83. Hendricks-WengerA. SerenoJ. GannonJ. ZeherA. BrockR.M. Beitel-WhiteN. SimonA. DavalosR.V. Coutermarsh-OttS. VlaisavljevichE. AllenI.C. Histotripsy ablation alters the tumor microenvironment and promotes immune system activation in a subcutaneous model of pancreatic cancer.IEEE Trans. Ultrason. Ferroelectr. Freq. Control20216892987300010.1109/TUFFC.2021.307809433956631
    [Google Scholar]
  84. LiS. WeiY. ZhangB. LiX. Research progress and clinical evaluation of histotripsy: a narrative review.Ann. Transl. Med.202311626326310.21037/atm‑22‑257837082680
    [Google Scholar]
  85. McDannoldN. ZhangY. SupkoJ.G. PowerC. SunT. VykhodtsevaN. GolbyA.J. ReardonD.A. Blood-brain barrier disruption and delivery of irinotecan in a rat model using a clinical transcranial MRI-guided focused ultrasound system.Sci. Rep.2020101876610.1038/s41598‑020‑65617‑632472017
    [Google Scholar]
  86. EliasW.J. HussD. VossT. LoombaJ. KhaledM. ZadicarioE. FrysingerR.C. SperlingS.A. WylieS. MonteithS.J. DruzgalJ. ShahB.B. HarrisonM. WintermarkM. A pilot study of focused ultrasound thalamotomy for essential tremor.N. Engl. J. Med.2013369764064810.1056/NEJMoa130096223944301
    [Google Scholar]
  87. ChangW.S. JungH.H. KweonE.J. ZadicarioE. RachmilevitchI. ChangJ.W. Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes.J. Neurol. Neurosurg. Psychiatry201586325726410.1136/jnnp‑2014‑30764224876191
    [Google Scholar]
  88. ZaghloulM.S. Pediatric neuro-oncology in low-/middle-income countries.Neurooncology - Newer DevelopmentsInTech201610.5772/63111
    [Google Scholar]
  89. WorlikarT. ZhangM. GangulyA. HallT.L. ShiJ. ZhaoL. LeeF.T. Mendiratta-LalaM. ChoC.S. XuZ. Impact of histotripsy on development of intrahepatic metastases in a rodent liver tumor model.Cancers (Basel)2022147161210.3390/cancers1407161235406383
    [Google Scholar]
  90. JohansenP.M. HansenP.Y. MohamedA.A. GirshfeldS.J. FeldmannM. Lucke-WoldB. Focused ultrasound for treatment of peripheral brain tumors.Exploration of Drug Science20231210712510.37349/eds.2023.00009
    [Google Scholar]
  91. PelkaS. GuhaC. Enhancing immunogenicity in metastatic melanoma: Adjuvant therapies to promote the anti-tumor immune response.Biomedicines2023118224510.3390/biomedicines1108224537626741
    [Google Scholar]
  92. SchadeG.R. KellerJ. IvesK. ChengX. RosolT.J. KellerE. RobertsW.W. Histotripsy focal ablation of implanted prostate tumor in an ACE-1 canine cancer model.J. Urol.201218851957196410.1016/j.juro.2012.07.00622999534
    [Google Scholar]
  93. VermaY. Perera Molligoda ArachchigeA.S. Advances in tumor management: Harnessing the potential of histotripsy.Radiol. Imaging Cancer202463e23015910.1148/rycan.23015938639585
    [Google Scholar]
  94. PeyraudF. ItalianoA. Combined PARP inhibition and immune checkpoint therapy in solid tumors.Cancers (Basel)2020126150210.3390/cancers1206150232526888
    [Google Scholar]
  95. CaoL. SugumarK. ManglaA. MillerM. RothermelL. 729 The impact of immune and targeted therapies for melanoma in asian populations: a national cancer database analysis 2004–2016.J Immunother Cancer20208Suppl 310.1136/jitc‑2020‑SITC2020.0729
    [Google Scholar]
  96. AbdullahM.I. JunitS.M. NgK.L. JayapalanJ.J. KarikalanB. HashimO.H. Papillary thyroid cancer: Genetic alterations and molecular biomarker investigations.Int. J. Med. Sci.201916345046010.7150/ijms.2993530911279
    [Google Scholar]
  97. Le DuF. UenoN.T. Gonzalez-AnguloA.M. Breast cancer biomarkers: Utility in clinical practice.Curr. Breast Cancer Rep.20135428429210.1007/s12609‑013‑0125‑924416469
    [Google Scholar]
  98. NingthoujamS.S. TalukdarA.D. SarkerS.D. NaharL. ChoudhuryM.D. Prediction of medicinal properties using mathematical models and computation, and selection of plant materials.Computational Phytochemistry.Elsevier2018437310.1016/B978‑0‑12‑812364‑5.00002‑X
    [Google Scholar]
  99. Vidal-JoveJ. SerresX. VlaisavljevichE. CannataJ. DuryeaA. MillerR. MerinoX. VelatM. KamY. BolduanR. AmaralJ. HallT. XuZ. LeeF.T.Jr ZiemlewiczT.J. First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study.Int. J. Hyperthermia20223911115112310.1080/02656736.2022.211230936002243
    [Google Scholar]
  100. VlaisavljevichE. Pioneering histotripsy device receives FDA clearance to treat liver cancer.2023Available from: https://news.vt.edu/articles/2023/10/eng-beam-pioneering-histotripsy-device-receives-FDA-clearance-to-treat-liver-cancer.html?utm_campaign=organicVTunirel&utm_medium=Virginia+Tech&utm_source=cmpgn_soc
  101. LakeA.M. HallT.L. KieranK. FowlkesJ.B. CainC.A. RobertsW.W. Histotripsy: minimally invasive technology for prostatic tissue ablation in an in vivo canine model.Urology200872368268610.1016/j.urology.2008.01.03718342918
    [Google Scholar]
  102. FortinD. MestrovicA. AlexanderA. Stereotactic ablative radiation therapy with volumetric modulated arc therapy in flattening filter-free mode for low-, intermediate-, and high-risk prostate cancer patients: Are 2 arcs better than 1?Pract. Radiat. Oncol.201555e489e49710.1016/j.prro.2015.04.00226055612
    [Google Scholar]
  103. AlmåsbakH. AarvakT. VemuriM.C. CAR T cell therapy: A game changer in cancer treatment.J. Immunol. Res.2016201611010.1155/2016/547460227298832
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947330950240906075443
Loading
/content/journals/cctr/10.2174/0115733947330950240906075443
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; cavitation; Histotripsy; microbubbles; targeting; ultrasound
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test