Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer remains a formidable global health challenge, necessitating innovative therapeutic strategies. Traditional small-molecule inhibitors often face limitations in selectively targeting disease associated proteins, leading to side effects and incomplete therapeutic responses. Proteolysis targeting chimeras (PROTACs) have emerged as a promising approach to address these challenges. Unlike traditional inhibitors, PROTACs leverage the cellular ubiquitin-proteasome system to selectively degrade disease-associated proteins. In this review, we discuss PROTACs as a targeted approach for cancer management, highlighting key findings, limitations, and future perspectives. For this, the authors have critically reviewed literature obtained from prime sources comprising Google Scholar, Web of Science, PubMed, and Publons. Additional relevant articles were retrieved from the reference sections of selected papers. Preclinical studies and early-phase clinical trials have demonstrated the efficacy and potential of PROTACs in cancer management. Additionally, the potential of PROTACs in overcoming therapy resistance, tackling tumor heterogeneity, and engaging multiple pathways is explored. As research advances, addressing challenges and refining PROTAC technology will pave the way for their integration into the next generation of cancer therapeutics, marking a transformative era in precision medicine.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947304806240417092449
2024-04-29
2025-09-03
Loading full text...

Full text loading...

References

  1. WangS. LuoD. PuC. Discovery of the GSH responsive “Y-PROTACs” targeting ALK and CDK4/6 as a potential treatment for cancer.Eur. J. Med. Chem.202324811508210.1016/j.ejmech.2022.115082 36628851
    [Google Scholar]
  2. BholeR.P. KuteP.R. ChikhaleR.V. BondeC.G. PantA. GuravS.S. Unlocking the potential of PROTACs: A comprehensive review of protein degradation strategies in disease therapy.Bioorg. Chem.202313910672010.1016/j.bioorg.2023.106720 37480814
    [Google Scholar]
  3. MemonH. PatelB.M. PROTACs: Novel approach for cancer breakdown by breaking proteins.Life Sci.202230012057710.1016/j.lfs.2022.120577 35487303
    [Google Scholar]
  4. KaurS.D. BediN. KumarD. KapoorD.N. PROTACs: Promising approach for anticancer therapy.Cancer Lett.202355621606510.1016/j.canlet.2023.216065 36642326
    [Google Scholar]
  5. GaoH. ZhangJ.Y. ZhaoL.J. GuoY.Y. Synthesis and clinical application of small-molecule inhibitors and PROTACs of anaplastic lymphoma kinase.Bioorg. Chem.202314010680710.1016/j.bioorg.2023.106807 37651895
    [Google Scholar]
  6. PuC. TongY. LiuY. Selective degradation of PARP2 by PROTACs via recruiting DCAF16 for triple-negative breast cancer.Eur. J. Med. Chem.202223611432110.1016/j.ejmech.2022.114321 35430559
    [Google Scholar]
  7. TomaselliD. MautoneN. MaiA. RotiliD. Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs).Eur. J. Med. Chem.202020711275010.1016/j.ejmech.2020.112750 32871345
    [Google Scholar]
  8. FlanaganJ.J. NeklesaT.K. Targeting nuclear receptors with PROTAC degraders.Mol. Cell. Endocrinol.201949311045210.1016/j.mce.2019.110452 31125586
    [Google Scholar]
  9. KumarP. PandeyS.N. AhmadF. Carbon nanotubes: A targeted drug delivery against cancer cell.Curr. Nanosci.20232013110.2174/0115734137271865231105070727
    [Google Scholar]
  10. HungC.L. LiuH.H. FuC.W. Targeting androgen receptor and the variants by an orally bioavailable proteolysis targeting chimeras compound in castration resistant prostate cancer.EBioMedicine20239010450010.1016/j.ebiom.2023.104500 36893587
    [Google Scholar]
  11. AmirianR. AzadiB.M. IzadiZ. Targeted protein modification as a paradigm shift in drug discovery.Eur. J. Med. Chem.202326011576510.1016/j.ejmech.2023.115765 37659194
    [Google Scholar]
  12. VartakR. DeoreB. SanhuezaC.A. PatelK. Cetuximab-based PROteolysis targeting chimera for effectual downregulation of NSCLC with varied EGFR mutations.Int. J. Biol. Macromol.202325212641310.1016/j.ijbiomac.2023.126413 37598823
    [Google Scholar]
  13. SincereN.I. AnandK. AshiqueS. YangJ. YouC. PROTACs: Emerging targeted protein degradation approaches for advanced druggable strategies.Molecules20232810401410.3390/molecules28104014 37241755
    [Google Scholar]
  14. AlaseemA.M. Advancements in MDM2 inhibition: Clinical and pre-clinical investigations of combination therapeutic regimens.Saudi Pharm. J.2023311010179010.1016/j.jsps.2023.101790 37818252
    [Google Scholar]
  15. SinghS. SadhukhanS. SonawaneA. 20 years since the approval of first EGFR-TKI, gefitinib: Insight and foresight.Biochim. Biophys. Acta Rev. Cancer20231878618896710.1016/j.bbcan.2023.188967 37657684
    [Google Scholar]
  16. AshiqueS. SandhuN.K. ChawlaV. ChawlaP.A. Targeted drug delivery: Trends and perspectives.Curr. Drug Deliv.202118101435145510.2174/1567201818666210609161301 34151759
    [Google Scholar]
  17. CortiC. De AngelisC. BianchiniG. Novel endocrine therapies: What is next in estrogen receptor positive, HER2 negative breast cancer?Cancer Treat. Rev.202311710256910.1016/j.ctrv.2023.102569 37146385
    [Google Scholar]
  18. AshiqueS. AlmohaywiB. HaiderN. siRNA-based nanocarriers for targeted drug delivery to control breast cancer.Adv. Cancer Biol. Metastasis2022410004710.1016/j.adcanc.2022.100047
    [Google Scholar]
  19. ZhangJ. ZhouY. FengJ. XuX. WuJ. GuoC. Deciphering roles of TRIMs as promising targets in hepatocellular carcinoma: Current advances and future directions.Biomed. Pharmacother.202316711553810.1016/j.biopha.2023.115538 37729731
    [Google Scholar]
  20. AshiqueS. AfzalO. HussainA. It’s all about plant derived natural phytoconstituents and phytonanomedicine to control skin cancer.J. Drug Deliv. Sci. Technol.20238410449510.1016/j.jddst.2023.104495
    [Google Scholar]
  21. KumarD. HassanM.I. Targeted protein degraders march towards the clinic for neurodegenerative diseases.Ageing Res. Rev.20227810161610.1016/j.arr.2022.101616 35378298
    [Google Scholar]
  22. MishraN. AshiqueS. GargA. Role of siRNA-based nanocarriers for the treatment of neurodegenerative diseases.Drug Discov. Today20222751431144010.1016/j.drudis.2022.01.003 35017085
    [Google Scholar]
  23. HaniU. GowdaB.H.J. HaiderN. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑0 37973643
    [Google Scholar]
  24. AkashS. BayılI. MahmoodS. Mechanistic inhibition of gastric cancer-associated bacteria Helicobacter pylori by selected phytocompounds: A new cutting-edge computational approach.Heliyon2023910e2067010.1016/j.heliyon.2023.e20670 37876433
    [Google Scholar]
  25. AshiqueS. KumarS. HussainA. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer.J. Health Popul. Nutr.20234217410.1186/s41043‑023‑00423‑0 37501216
    [Google Scholar]
  26. DongY. ChenY. MaG. CaoH. The role of E3 ubiquitin ligases in bone homeostasis and related diseases.Acta Pharm. Sin. B202313103963398710.1016/j.apsb.2023.06.016 37799379
    [Google Scholar]
  27. MukherjeeA.G. WanjariU.R. GopalakrishnanA.V. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment.Biomed. Pharmacother.202316311483210.1016/j.biopha.2023.114832 37150032
    [Google Scholar]
  28. CoralloD. Dalla VecchiaM. LazicD. Taschner-MandlS. BiffiA. AveicS. The molecular basis of tumor metastasis and current approaches to decode targeted migration-promoting events in pediatric neuroblastoma.Biochem. Pharmacol.202321511569610.1016/j.bcp.2023.115696 37481138
    [Google Scholar]
  29. WangY. XieQ. TanH. Targeting cancer epigenetic pathways with small-molecule compounds: Therapeutic efficacy and combination therapies.Pharmacol. Res.202117310570210.1016/j.phrs.2021.105702 34102228
    [Google Scholar]
  30. RhodesS.D. AngusS.P. 6.15 - Prospects for targeted kinase inhibition in cancer: Neurofibromatosis type 1-related neoplasia. In:Reference Module in Biomedical Sciences.OxfordElsevier202126227610.1016/B978‑0‑12‑820472‑6.00174‑2>
    [Google Scholar]
  31. AshiqueS. GargA. MishraN. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC).Naunyn Schmiedebergs Arch. Pharmacol.2023396112769279210.1007/s00210‑023‑02522‑5 37219615
    [Google Scholar]
  32. WahiA. ManchandaN. JainP. JadhavH.R. Targeting the epigenetic reader “BET” as a therapeutic strategy for cancer.Bioorg. Chem.202314010683310.1016/j.bioorg.2023.106833 37683545
    [Google Scholar]
  33. MontagutA.M. ArmengolM. de PabloG.G. TejedorE.R. BorrellJ.I. RouéG. Recent advances in the pharmacological targeting of ubiquitin-regulating enzymes in cancer.Semin. Cell Dev. Biol.202213221322910.1016/j.semcdb.2022.02.007 35184940
    [Google Scholar]
  34. RamadossM. MahadevanV. Targeting the cancer epigenome: Synergistic therapy with bromodomain inhibitors.Drug Discov. Today2018231768910.1016/j.drudis.2017.09.011 28943305
    [Google Scholar]
  35. AshiqueS. GargA. HussainA. FaridA. KumarP. HesaryT.F. Nanodelivery systems: An efficient and target‐specific approach for drug‐resistant cancers.Cancer Med.20231218187971882510.1002/cam4.6502 37668041
    [Google Scholar]
  36. MoradbeygiF. GhasemiY. FarmaniA.R. HemmatiS. Glucarpidase (carboxypeptidase G2): Biotechnological production, clinical application as a methotrexate antidote, and placement in targeted cancer therapy.Biomed. Pharmacother.202316611529210.1016/j.biopha.2023.115292 37579696
    [Google Scholar]
  37. KerrD.L. HaderkF. BivonaT.G. Allosteric SHP2 inhibitors in cancer: Targeting the intersection of RAS, resistance, and the immune microenvironment.Curr. Opin. Chem. Biol.20216211210.1016/j.cbpa.2020.11.007 33418513
    [Google Scholar]
  38. SinghaiM. PandeyV. AshiqueS. Design and evaluation of SLNs encapsulated curcumin-based topical formulation for the management of cervical cancer.Anticancer. Agents Med. Chem.202323161866187910.2174/1871520623666230626145750
    [Google Scholar]
  39. SaraswatA. VartakR. HegazyR. Oral lipid nanocomplex of BRD4 PROteolysis TArgeting Chimera and vemurafenib for drug-resistant malignant melanoma.Biomed. Pharmacother.202316811575410.1016/j.biopha.2023.115754 37871557
    [Google Scholar]
  40. XiaoH. WangG. ZhaoM. ShuaiW. OuyangL. SunQ. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets?Eur. J. Med. Chem.202324811510410.1016/j.ejmech.2023.115104 36641861
    [Google Scholar]
  41. KhanM.Z.I. UzairM. NazliA. ChenJ.Z. An overview on estrogen receptors signaling and its ligands in breast cancer.Eur. J. Med. Chem.202224111465810.1016/j.ejmech.2022.114658 35964426
    [Google Scholar]
  42. GuoL. LeeY.T. ZhouY. HuangY. Targeting epigenetic regulatory machinery to overcome cancer therapy resistance.Semin. Cancer Biol.20228348750210.1016/j.semcancer.2020.12.022 33421619
    [Google Scholar]
  43. ChenY. YangQ. XuJ. PROTACs in gastrointestinal cancers.Mol. Ther. Oncolytics20222720422310.1016/j.omto.2022.10.012 36420306
    [Google Scholar]
  44. DowarahJ. MarakB.N. YadavU.C.S. SinghV.P. Potential drug development and therapeutic approaches for clinical intervention in COVID-19.Bioorg. Chem.202111410501610.1016/j.bioorg.2021.105016 34144277
    [Google Scholar]
  45. AshiqueS. FarukA. AhmadF.J. KhanT. MishraN. It is all about probiotics to control cervical cancer.Probiotics Antimicrob. Proteins202320231410.1007/s12602‑023‑10183‑2 37880560
    [Google Scholar]
  46. YuL. WeiJ. LiuP. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer.Semin. Cancer Biol.202285699410.1016/j.semcancer.2021.06.019 34175443
    [Google Scholar]
  47. KielbikM. PrzygodzkaP. Szulc-KielbikI. KlinkM. Snail transcription factors as key regulators of chemoresistance, stemness and metastasis of ovarian cancer cells.Biochim. Biophys. Acta Rev. Cancer20231878618900310.1016/j.bbcan.2023.189003 37863122
    [Google Scholar]
  48. NasioudisD. FernandezM.L. WongN. The spectrum of MAPK-ERK pathway genomic alterations in gynecologic malignancies: Opportunities for novel therapeutic approaches.Gynecol. Oncol.2023177869410.1016/j.ygyno.2023.08.007 37657193
    [Google Scholar]
  49. BhusalC.K. UtiD.E. MukherjeeD. Unveiling Nature’s potential: Promising natural compounds in Parkinson’s disease management.Parkinsonism Relat. Disord.202311510579910.1016/j.parkreldis.2023.105799 37633805
    [Google Scholar]
  50. MoonY. JeonS.I. ShimM.K. KimK. Cancer-specific delivery of proteolysis-targeting chimeras (PROTACs) and their application to cancer immunotherapy.Pharmaceutics202315241110.3390/pharmaceutics15020411 36839734
    [Google Scholar]
  51. SarkarA. PaulA. BanerjeeT. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer.Eur. J. Pharmacol.202394417558810.1016/j.ejphar.2023.175588 36791843
    [Google Scholar]
  52. CaksaS. BaqaiU. AplinA.E. The future of targeted kinase inhibitors in melanoma.Pharmacol. Ther.202223910820010.1016/j.pharmthera.2022.108200 35513054
    [Google Scholar]
  53. WangC. ZhangY. YangS. XingD. Recent advances of PROTACs technology in neurodegenerative diseases.Arab. J. Chem.202316910501510.1016/j.arabjc.2023.105015
    [Google Scholar]
  54. WuZ. HuangY. LiuK. MinJ. N/C-degron pathways and inhibitor development for PROTAC applications.Biochim. Biophys. Acta. Gene Regul. Mech.202318671194952 37263341
    [Google Scholar]
  55. WangC. ZhangY. ChenW. WangY. XingD. Epidermal growth factor receptor PROTACs as an effective strategy for cancer therapy: A review.Biochim. Biophys. Acta Rev. Cancer20231878418892710.1016/j.bbcan.2023.188927 37245798
    [Google Scholar]
  56. WangC. ZhangY. XingD. ZhangR. PROTACs technology for targeting non-oncoproteins: Advances and perspectives.Bioorg. Chem.202111410510910.1016/j.bioorg.2021.105109 34175722
    [Google Scholar]
  57. AoM. WuJ. CaoY. The synthesis of PROTAC molecule and new target KAT6A identification of CDK9 inhibitor iCDK9.Chin. Chem. Lett.202334410774110.1016/j.cclet.2022.107741
    [Google Scholar]
  58. WangC. ZhangY. WangJ. XingD. VHL-based PROTACs as potential therapeutic agents: Recent progress and perspectives.Eur. J. Med. Chem.202222711390610.1016/j.ejmech.2021.113906 34656901
    [Google Scholar]
  59. LiangJ. WuY. LanK. DongC. WuS. LiS. Antiviral PROTACs: Opportunity borne with challenge.Cell Insight20232310009210.1016/j.cellin.2023.100092
    [Google Scholar]
  60. XuZ. LiuX. MaX. ZouW. ChenQ. ChenF. Discovery of oseltamivir-based novel PROTACs as degraders targeting neuraminidase to combat H1N1 influenza virus.Cell Insight20221310003010.1016/j.cellin.2022.100030
    [Google Scholar]
  61. LiH. YangW. LiH. PROTAC targeting cyclophilin A controls virus-induced cytokine storm.iScience202326910753510.1016/j.isci.2023.107535 37636080
    [Google Scholar]
  62. ZhangY. XiongX. SunR. Development of the nonreceptor tyrosine kinase FER-targeting PROTACs as a potential strategy for antagonizing ovarian cancer cell motility and invasiveness.J. Biol. Chem.2023299610482510.1016/j.jbc.2023.104825 37196766
    [Google Scholar]
  63. ZengS. YeY. XiaH. Current advances and development strategies of orally bioavailable PROTACs.Eur. J. Med. Chem.202326111579310.1016/j.ejmech.2023.115793 37708797
    [Google Scholar]
  64. XuH. KuroharaT. OhokaN. Development of versatile solid-phase methods for syntheses of PROTACs with diverse E3 ligands.Bioorg. Med. Chem.20238611729310.1016/j.bmc.2023.117293 37126968
    [Google Scholar]
  65. ZhangL. LiL. WangX. Development of a novel PROTAC using the nucleic acid aptamer as a targeting ligand for tumor selective degradation of nucleolin.Mol. Ther. Nucleic Acids202230667910.1016/j.omtn.2022.09.008 36250201
    [Google Scholar]
  66. ParkS.Y. GurungR. HwangJ.H. Development of KEAP1-targeting PROTAC and its antioxidant properties: In vitro and in vivo.Redox Biol.20236410278310.1016/j.redox.2023.102783 37348157
    [Google Scholar]
  67. NaganumaM. OhokaN. TsujiG. InoueT. NaitoM. DemizuY. Structural optimization of decoy oligonucleotide-based PROTAC that degrades the estrogen receptor.Bioconjug. Chem.202334101780178810.1021/acs.bioconjchem.3c00332
    [Google Scholar]
  68. ChenS BiK LiangH WuZ HuangM ChenX. PROTAC derivatization of natural products for target identification and drug discovery: Design of evodiamine-based PROTACs as novel REXO4 degraders.J Adv Res 2023202310.1016/j.jare.2023.10.014
    [Google Scholar]
  69. GanX. WangF. LuoJ. Proteolysis Targeting Chimeras (PROTACs) based on celastrol induce multiple protein degradation for triple-negative breast cancer treatment.Eur. J. Pharm. Sci.202419210662410.1016/j.ejps.2023.106624 37898394
    [Google Scholar]
  70. ChoudharyD. KaurA. SinghP. Target protein degradation by PROTACs: A budding cancer treatment strategy.Pharmacol. Ther.202325010852510.1016/j.pharmthera.2023.108525 37696366
    [Google Scholar]
  71. XieB. XuB. XinL. WeiY. GuoX. DongC. Discovery of estrogen receptor α targeting caged hypoxia-responsive PROTACs with an inherent bicyclic skeleton for breast cancer treatment.Bioorg. Chem.202313710659010.1016/j.bioorg.2023.106590 37163809
    [Google Scholar]
  72. GongL. LiR. GongJ. Discovery of a miniaturized PROTAC with potent activity and high selectivity.Bioorg. Chem.202313610655610.1016/j.bioorg.2023.106556 37105002
    [Google Scholar]
  73. HanX. SunY. Strategies for the discovery of oral PROTAC degraders aimed at cancer therapy.Cell Reports Phys. Sci.202231010106210.1016/j.xcrp.2022.101062
    [Google Scholar]
  74. ZhouX.L. ZhaoF. XuY.T. A comprehensive review of BET-targeting PROTACs for cancer therapy.Bioorg. Med. Chem.20227311703310.1016/j.bmc.2022.117033 36202064
    [Google Scholar]
  75. LiJ. ChenX. LuA. LiangC. Targeted protein degradation in cancers: Orthodox PROTACs and beyond.Innovation20234310041310.1016/j.xinn.2023.100413 37033156
    [Google Scholar]
  76. AshiqueS. BhowmickM. PalR. Multi drug resistance in colorectal cancer-approaches to overcome, advancements and future success.Adv. Canc. Biol. Metastasis2024202410011410.1016/j.adcanc.2024.100114
    [Google Scholar]
  77. SaraswatA.L. VartakR. HegazyR. PatelA. PatelK. Drug delivery challenges and formulation aspects of proteolysis targeting chimera (PROTACs).Drug Discov. Today202328110338710.1016/j.drudis.2022.103387 36184017
    [Google Scholar]
  78. HuZ. LiR. CuiX. HuC. ChenZ. Tailoring albumin-based theranostic PROTACs nanoparticles for enhanced NIR-II bioimaging and synergistic cancer chemo-phototherapy.Chem. Eng. J.202346914388310.1016/j.cej.2023.143883
    [Google Scholar]
  79. NiuF. YangR. FengH. LiuY. LiuR. MaB.A. GPX4 non-enzymatic domain and MDM2 targeting peptide PROTAC for acute lymphoid leukemia therapy through ferroptosis induction.Biochem. Biophys. Res. Commun.202368414912510.1016/j.bbrc.2023.149125 37897912
    [Google Scholar]
  80. ChoH. JeonS.I. ShimM.K. AhnC.H. KimK. In situ albumin-binding and esterase-specifically cleaved BRD4-degrading PROTAC for targeted cancer therapy.Biomaterials202329512203810.1016/j.biomaterials.2023.122038 36787659
    [Google Scholar]
  81. ChenJ. QiuM. MaF. YangL. GlassZ. XuQ. Enhanced protein degradation by intracellular delivery of pre-fused PROTACs using lipid-like nanoparticles.J. Control. Release20213301244124910.1016/j.jconrel.2020.11.032 33234362
    [Google Scholar]
  82. MetkarS.P. FernandesG. NavtiP.D. NikamA.N. KudarhaR. DhasN. Nanoparticle drug delivery systems in hepatocellular carcinoma: A focus on targeting strategies and therapeutic applications.OpenNano20231210015910.1016/j.onano.2023.100159
    [Google Scholar]
  83. LiangY. NandakumarK.S. ChengK. Design and pharmaceutical applications of proteolysis-targeting chimeric molecules.Biochem. Pharmacol.202018211421110.1016/j.bcp.2020.114211 32866456
    [Google Scholar]
  84. BaiN. RichingK.M. MakajuA. Modeling the CRL4A ligase complex to predict target protein ubiquitination induced by cereblon-recruiting PROTACs.J. Biol. Chem.2022298410165310.1016/j.jbc.2022.101653 35101445
    [Google Scholar]
  85. RichingK.M. SchwinnM.K. VastaJ.D. CDK family PROTAC profiling reveals distinct kinetic responses and cell cycle–dependent degradation of CDK2.SLAS Discov.202126456056910.1177/2472555220973602 33190579
    [Google Scholar]
  86. WangC. ZhengC. WangH. ZhangL. LiuZ. XuP. The state of the art of PROTAC technologies for drug discovery.Eur. J. Med. Chem.202223511429010.1016/j.ejmech.2022.114290 35307618
    [Google Scholar]
  87. XuY. FuD. YuanY. PengY. DongJ. DuF. A heterobifunctional molecule recruits cereblon to an RNA scaffold and activates its PROTAC function.Cell Reports Phys. Sci.202231010106410.1016/j.xcrp.2022.101064
    [Google Scholar]
  88. LiuH. RenC. SunR. WangH. ZhanY. YangX. Reactive oxygen species-responsive Pre-PROTAC for tumor-specific protein degradation.Chem. Commun.20225872100721007510.1039/D2CC03367D
    [Google Scholar]
  89. HongD. ZhouB. ZhangB. Recent advances in the development of EGFR degraders: PROTACs and LYTACs.Eur. J. Med. Chem.202223911453310.1016/j.ejmech.2022.114533 35728507
    [Google Scholar]
  90. LiuJ. PengY. InuzukaH. WeiW. Targeting micro-environmental pathways by PROTACs as a therapeutic strategy.Semin. Cancer Biol.202286Pt 226927910.1016/j.semcancer.2022.07.001 35798235
    [Google Scholar]
  91. PengX. PanW. JiangF. Selective PARP1 inhibitors, PARP1-based dual-target inhibitors, PROTAC PARP1 degraders, and prodrugs of PARP1 inhibitors for cancer therapy.Pharmacol. Res.202218610652910.1016/j.phrs.2022.106529 36328301
    [Google Scholar]
  92. PagliucaM. DonatoM. D’AmatoA.L. New steps on an old path: Novel estrogen receptor inhibitors in breast cancer.Crit. Rev. Oncol. Hematol.202218010386110.1016/j.critrevonc.2022.103861 36374739
    [Google Scholar]
  93. ZhangJ. MaC. YuY. LiuC. FangL. RaoH. Single amino acid–based PROTACs trigger degradation of the oncogenic kinase BCR–ABL in chronic myeloid leukemia (CML).J. Biol. Chem.2023299810499410.1016/j.jbc.2023.104994 37392851
    [Google Scholar]
  94. SimpsonL.M. GlennieL. BrewerA. Target protein localization and its impact on PROTAC-mediated degradation.Cell Chem. Biol.2022291014821504.e710.1016/j.chembiol.2022.08.004 36075213
    [Google Scholar]
  95. Kiely-CollinsH. WinterG.E. BernardesG.J.L. The role of reversible and irreversible covalent chemistry in targeted protein degradation.Cell Chem. Biol.202128795296810.1016/j.chembiol.2021.03.005 33789091
    [Google Scholar]
  96. TaracidoC.I. EcheverriaG.C. Monovalent protein-degraders – Insights and future perspectives.Bioorg. Med. Chem. Lett.2020301212720210.1016/j.bmcl.2020.127202 32331933
    [Google Scholar]
  97. NowakR.P. JonesL.H. Target validation using PROTACs: Applying the four pillars framework.SLAS Discov.202126447448310.1177/2472555220979584 33334221
    [Google Scholar]
  98. ZhuH. WangJ. ZhangQ. PanX. ZhangJ. Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance.Pharmacol. Ther.202324410837110.1016/j.pharmthera.2023.108371 36871783
    [Google Scholar]
  99. SakamotoK.M. KimK.B. VermaR. Development of PROTACs to target cancer-promoting proteins for ubiquitination and degradation.Mol. Cell. Proteomics20032121350135810.1074/mcp.T300009‑MCP200 14525958
    [Google Scholar]
  100. AshiqueS. UpadhyayA. KumarN. ChauhanS. MishraN. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery- A review.Adv. Cancer Biol. Metastasis2022410004110.1016/j.adcanc.2022.100041
    [Google Scholar]
  101. ZhouQ.Q. XiaoH.T. YangF. WangY.D. LiP. ZhengZ.G. Advancing targeted protein degradation for metabolic diseases therapy.Pharmacol. Res.202318810662710.1016/j.phrs.2022.106627 36566001
    [Google Scholar]
  102. GuoW. WangM. YangZ. Recent advances in small molecule and peptide inhibitors of glucose-regulated protein 78 for cancer therapy.Eur. J. Med. Chem.202326111579210.1016/j.ejmech.2023.115792 37690265
    [Google Scholar]
  103. DanazumiA.U. IshmamI.T. IdrisS. IzertM.A. BalogunE.O. GórnaM.W. Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis.Eur. J. Pharm. Sci.202318610645110.1016/j.ejps.2023.106451 37088149
    [Google Scholar]
  104. GenkinD.D. TetsV.V. TetsG.V. Method for treating oncological diseases. US Patent US20100150903A1.2010
    [Google Scholar]
  105. LiS. CutreraJ. XiaX. Carcinoma homing peptide (CHP), its analogs, and methods of using.US Patent US9657077B2.2017
    [Google Scholar]
  106. MillerM.F. MunfusD.L. Non-invasive method and system for using radio frequency induced hyperthermia to treat medical diseases. US Patent US20040230263A1.2004
    [Google Scholar]
  107. FangC. ZhongjianC.H. YangS. Nanobowl-supported drug-loaded liposome, preparation method therefor and application thereof. US Patent US20230234567A1.2023
    [Google Scholar]
  108. LeeJ.I. LeeT.S. LeeY.S. Fusion protein comprising ubiquitin or ubiquitin-like protein, membrane translocation sequence and biologically active molecule and use thereof. US Patent US20110008345A1.2011
    [Google Scholar]
  109. AltieriD.C. KangB.H. Mitochondria-targeted anti-tumor agents. US Patent US8466140B22013
    [Google Scholar]
  110. ChoJ.H. Methods and compositions relating to chimeric antigen receptors. US Patent US11530252B2.2022
    [Google Scholar]
  111. SilverP.A. LopezP.G. MiguezD.G. Chimeric activators: Quantitatively designed protein therapeutics and uses thereof. US Patent US11535673B2.2022
    [Google Scholar]
  112. RabinowitzJ.E. SamulskiR.J. XiaoW. Recombinant parvovirus vectors and method of making. US Patent US6491907B12002
    [Google Scholar]
  113. DeLisaM. VarnerJ. PortnoffA. Targeted protein silencing using chimeras between antibodies and ubiquitination enzymes. US Patent US11192942B22021
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947304806240417092449
Loading
/content/journals/cctr/10.2174/0115733947304806240417092449
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; clinical trials; drug delivery; E3 ligase; patents; PROTACs; proteasome; protein targeting
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test