Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Self-assembling structures that look similar to viruses in broad terms but do not contain viral genetic material are known as virus-like particles. These particles, made up of viral structural proteins, can have size, shape, and surface characteristics similar to natural viruses. The breakthrough potential of virus-like particles, or VLPs, as a novel cancer therapy strategy is explored in this article. Starting with describing the problems facing cancer therapy today, the emphasis moves to an in-depth study of VLPs, including their different sizes, shapes, and structural characteristics. With insights into drug encapsulation techniques and their implications for anticancer therapy, integrating VLPs into drug delivery systems is important. The article highlights the multiple roles vector lambda polymorphs (VLPs) play in improving diagnostic methods by exploring their dual functioning in medication delivery and imaging. To address concerns about safety and biocompatibility, the paper critically analyses the toxicity study of VLPs. It provides a comprehensive review, touching on ongoing clinical trials and significant patents that impact the environment.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947308351240514182503
2024-05-23
2025-10-18
Loading full text...

Full text loading...

References

  1. ShoebE. BadarU. VenkataramanS. HefferonK. Frontiers in bioengineering and biotechnology: Plant nanoparticles for anti-cancer therapy.Vaccines20219883010.3390/vaccines908083034451955
    [Google Scholar]
  2. ShahgolzariM. VenkataramanS. OsanoA. AkpaP.A. HefferonK. Plant virus nanoparticles combat cancer.Vaccines2023118127810.3390/vaccines1108127837631846
    [Google Scholar]
  3. BeissV MaoC FieringSN SteinmetzNF Cowpea mosaic virus outperforms other members of the secoviridae as in situ vaccine for cancer immunotherapyMol Pharm20221951573158510.1021/acs.molpharmaceut.2c0005835333531PMC9651057. Epub 2022 Mar 25.
    [Google Scholar]
  4. ChungYH VolckaertBA SteinmetzNF Metastatic colon cancer treatment using S100A9-targeted cowpea mosaic virus nanoparticlesBiomacromolecules202223125127513610.1021/acs.biomac.2c0087336375170PMC9772157Epub 2022 Nov 14.
    [Google Scholar]
  5. ArulS.S. BalakrishnanB. HandanahalS.S. VenkataramanS. Viral nanoparticles: Current advances in design and development.Biochimie2024219335010.1016/j.biochi.2023.08.00637573018
    [Google Scholar]
  6. YasaminehS KalajahiHG YasaminehP YazdaniY GholizadehO An overview of nanoparticle-based strategies to fight viral infections with a focus on COVID-19.J Nanobiotechnol.202220144010.1186/s12951‑022‑01625‑0
    [Google Scholar]
  7. ZhaoZ. SimmsA. SteinmetzN.F. Cisplatin-loaded tobacco mosaic virus for ovarian cancer treatment.Biomacromolecules202223104379438710.1021/acs.biomac.2c0083136053908
    [Google Scholar]
  8. WangS. YuY. WangA. DuanX. SunY. WangL. ChuL. LvY. CuiN. FanX. ShaC. XuL. SunK. Temozolomide hexadecyl ester targeted plga nanoparticles for drug-resistant glioblastoma therapy via intranasal administration.Front. Pharmacol.20221396578910.3389/fphar.2022.96578936059989
    [Google Scholar]
  9. Kerstetter-FogleA Shukla S, Wang C, Beiss V, Harris PLR, Sloan AE, Steinmetz NF Plant virus-like particle in situ vaccine for intracranial glioma immunotherapyCancers (Basel)201911451510.3390/cancers1104051530974896PMC6521079
    [Google Scholar]
  10. RazaS. GhasaliE. RazaM. ChenC. LiB. OroojiY. LinH. KaramanC. MalehK.H. ErkN. Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment.Environ. Res.202322011513510.1016/j.envres.2022.11513536566962
    [Google Scholar]
  11. ShahgolzariM. MoghadamD.H. YavariA. FieringS.N. HefferonK. Multifunctional plant virus nanoparticles for targeting breast cancer tumors.Vaccines2022109143110.3390/vaccines1009143136146510
    [Google Scholar]
  12. ShahgolzariM FieringS Emerging potential of plant virus nanoparticles (PVNPs) in anticancer immunotherapiesJ Cancer Immunol (Wilmington)202241222910.33696/cancerimmunol.4.06135600219PMC9121906
    [Google Scholar]
  13. YangG. ChenS. ZhangJ. Bioinspired and biomimetic nanotherapies for the treatment of infectious diseases.Front. Pharmacol.20191075110.3389/fphar.2019.0075131333467
    [Google Scholar]
  14. RazaS. GhasaliE. OroojiY. LinH. KaramanC. DragoiE.N. ErkN. Two dimensional (2D) materials and biomaterials for water desalination; structure, properties, and recent advances.Environ. Res.202321911499810.1016/j.envres.2022.11499836481367
    [Google Scholar]
  15. ZhouF ZhangD Nano-sized chimeric human papillomavirus-16 L1 virus-like particles displaying Mycobacterium tuberculosis antigen Ag85B enhance Ag85B-specific immune responses in female C57BL/c miceViruses2023Oct191510212310.3390/v1510212337896900PMC10612075
    [Google Scholar]
  16. MoonK.B. JeonJ.H. ChoiH. ParkJ.S. ParkS.J. LeeH.J. ParkJ.M. ChoH.S. MoonJ.S. OhH. KangS. MasonH.S. KwonS.Y. KimH.S. Construction of SARS-CoV-2 virus-like particles in plant.Sci. Rep.2022121100510.1038/s41598‑022‑04883‑y35046461
    [Google Scholar]
  17. HeJ. YuL. LinX. LiuX. ZhangY. YangF. DengW. Virus-like particles as nanocarriers for intracellular delivery of biomolecules and compounds.Viruses2022149190510.3390/v1409190536146711
    [Google Scholar]
  18. ZhaoJ. DangZ. MuddassirM. RazaS. ZhongA. WangX. JinJ. A new Cd (II)-based coordination polymer for efficient photocatalytic removal of organic dyes.Molecules20232819684810.3390/molecules2819684837836691
    [Google Scholar]
  19. GourdelierM SwainJ AroneC Optimized production and fluorescent labeling of SARS-CoV-2 virus-like particlesSci Rep20221211465110.1038/s41598‑022‑18681‑z36030323
    [Google Scholar]
  20. LiuZH DengZF LuY FangWH HeF A modular and self-adjuvanted multivalent vaccine platform based on porcine circovirus virus-like nanoparticlesJ Nanobiotechnology2022Nov2420149310.1186/s12951‑022‑01710‑436424615PMC9685936
    [Google Scholar]
  21. HuH SteinmetzNF Development of a virus-like particle-based anti-HER2 breast cancer vaccineCancers (Basel)2021Jun101312290910.3390/cancers1312290934200802PMC8230452
    [Google Scholar]
  22. FtouhM KalboussiN AbidN SfarS MignetN BahloulB Contribution of nanotechnologies to vaccine development and drug delivery against respiratory virusesPPAR Res2021Oct272021674129010.1155/2021/674129034721558PMC8550859
    [Google Scholar]
  23. D'SaS Braz GomesK Allotey-BabingtonGL BoyogluC KangSM D'SouzaMJ Transdermal immunization with microparticulate RSV-F virus-like particles elicits robust immunityVaccines (Basel)2022Apr1010458410.3390/vaccines1004058435455333PMC9030121
    [Google Scholar]
  24. Pazos-Castro D, Margain C, Gonzalez-Klein Z, Amores-Borge M, Yuste-Calvo C, Garrido-Arandia M, Zurita L, Esteban V, Tome- Amat J, Diaz-Perales A, Ponz F. Suitability of potyviral recombinant virus-like particles bearing a complete food allergen for immunotherapy vaccines. Front Immunol. 2022 Sep 8; 13: 986823. doi: 10.3389/fimmu.2022.986823. Erratum in: Front Immunol. 2023 Jan 19; 14: 1133046.10.3389/fimmu.2023.113304636159839PMC9492988
    [Google Scholar]
  25. DeptaPN DostaM WenzelW KozlowskaM HeinrichS Hierarchical coarse-grained strategy for macromolecular self-assembly: Application to hepatitis B virus-like particles.Int J Mol Sci.2022Nov2423231469910.3390/ijms232314699 36499027
    [Google Scholar]
  26. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  27. AshiqueS. AfzalO. HussainA. ZeyaullahM. AltamimiM.A. MishraN. AhmadM.F. DuaK. AltamimiA.S.A. AnandK. It’s all about plant derived natural phytoconstituents and phytonanomedicine to control skin cancer.J. Drug Deliv. Sci. Technol.20238410449510.1016/j.jddst.2023.104495
    [Google Scholar]
  28. WangD. ChenL. LiC. LongQ. YangQ. HuangA. TangH. CRISPR/Cas9 delivery by NIR-responsive biomimetic nanoparticles for targeted HBV therapy.J. Nanobiotechnology20222012710.1186/s12951‑021‑01233‑434991617
    [Google Scholar]
  29. FrancisD.V. JayakumarM.N. AhmadH. GokhaleT. Antimicrobial Activity of Biogenic Metal Oxide Nanoparticles and Their Synergistic Effect on Clinical Pathogens.Int. J. Mol. Sci.20232412999810.3390/ijms2412999837373146
    [Google Scholar]
  30. TongT. DengS. ZhangX. FangL. LiangJ. XiaoS. Inhibitory effect and mechanism of gelatin stabilized ferrous sulfide nanoparticles on porcine reproductive and respiratory syndrome virus.J. Nanobiotechnology20222017010.1186/s12951‑022‑01281‑435123507
    [Google Scholar]
  31. IkwuagwuB. ErcekT.D. Virus-like particles for drug delivery: A review of methods and applications.Curr. Opin. Biotechnol.20227810278510.1016/j.copbio.2022.10278536099859
    [Google Scholar]
  32. CossartP. HeleniusA. Endocytosis of viruses and bacteria.Cold Spring Harb. Perspect. Biol.201468a01697210.1101/cshperspect.a01697225085912
    [Google Scholar]
  33. PistonoP.E. HuangP. BrauerD.D. FrancisM.B. Fitness Landscape-Guided Engineering of Locally Supercharged Virus-like Particles with Enhanced Cell Uptake Properties.ACS Chem. Biol.202217123367337810.1021/acschembio.2c0031836378277
    [Google Scholar]
  34. Yur D, Sullivan MO, Chen W. Highly modular hepatitis B viruslike nanocarriers for therapeutic protein encapsulation and targeted delivery to triple negative breast cancer cells. J Mater Chem B, 20231139853993
  35. PatilM. HussainA. AltamimiM.A. AshiqueS. HaiderN. FarukA. KhurooT. SherikarA. SiddiqueM.U.M. AnsariA. BarbhuiyaT.K. An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer.Advan. Cancer Biology - Metastasis2023710010310.1016/j.adcanc.2023.100103
    [Google Scholar]
  36. AjithkumarK.C. PramodK. Artificial virus as trump-card to resolve exigencies in targeted gene delivery.Mini Rev. Med. Chem.201818327628610.2174/138955751766617052908031628552048
    [Google Scholar]
  37. PuS.T. An experimental comparing analysis research on the nano-vectors for drug delivery and for gene therapy.WSEAS Trans Biol Biomed.201071120
    [Google Scholar]
  38. OiKK KloterTA KeysTG Biosynthesis of Glycoconjugate Virus-like Particles (VLPs).Methods Mol Biol.202121832051510.1007/978‑1‑0716‑0795‑4_11
    [Google Scholar]
  39. ShiX. YangK. SongH. TengZ. ZhangY. DingW. WangA. TanS. DongH. SunS. HuY. GuoH. Development and efficacy evaluation of a novel nano-emulsion adjuvant for a foot-and-mouth disease virus-like particles vaccine based on squalane.Nanomaterials20221222393410.3390/nano1222393436432220
    [Google Scholar]
  40. SinghaiM. GuptaD.G. KhuranaB. AroraD. AshiqueS. MishraN. Nanotechnology-based drug delivery systems for the treatment of cervical cancer: A comprehensive review.Curr. Nanosci.202420222424710.2174/1573413719666230413084140
    [Google Scholar]
  41. ZhangZ. YaoS. HuY. ZhaoX. LeeR.J. Application of lipid-based nanoparticles in cancer immunotherapy.Front. Immunol.20221396750510.3389/fimmu.2022.96750536003395
    [Google Scholar]
  42. XuL. LiZ. SuZ. YangY. MaG. YuR. ZhangS. Development of meningococcal polysaccharide conjugate vaccine that can elicit long-lasting and strong cellular immune response with hepatitis B core antigen virus-like particles as a novel carrier protein.Vaccine201937795696410.1016/j.vaccine.2018.12.07330655174
    [Google Scholar]
  43. LuJ. LuG. TanS. XiaJ. XiongH. YuX. QiQ. YuX. LiL. YuH. XiaN. ZhangT. XuY. LinJ. A COVID-19 mRNA vaccine encoding SARS-CoV-2 virus-like particles induces a strong antiviral-like immune response in mice.Cell Res.2020301093693910.1038/s41422‑020‑00392‑732801356
    [Google Scholar]
  44. CaldeiraJ.C. PerrineM. PericleF. CavalloF. Virus-like particles as an immunogenic platform for cancer vaccines.Viruses202012548810.3390/v1205048832349216
    [Google Scholar]
  45. ZhaoL. SethA. WibowoN. ZhaoC.X. MitterN. YuC. MiddelbergA.P.J. Nanoparticle vaccines.Vaccine201432332733710.1016/j.vaccine.2013.11.06924295808
    [Google Scholar]
  46. JainN.K. SahniN. KumruO.S. JoshiS.B. VolkinD.B. MiddaughR.C. Formulation and stabilization of recombinant protein based virus-like particle vaccines.Adv. Drug Deliv. Rev.201593425510.1016/j.addr.2014.10.02325451136
    [Google Scholar]
  47. ChungY.H. CaiH. SteinmetzN.F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications.Adv. Drug Deliv. Rev.202015621423510.1016/j.addr.2020.06.02432603813
    [Google Scholar]
  48. BooneC.E. WangL. GautamA. NewtonI.G. SteinmetzN.F. Combining nanomedicine and immune checkpoint therapy for cancer immunotherapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022141e173910.1002/wnan.173934296535
    [Google Scholar]
  49. Priya AshiqueS. AfzalO. KhalidM. AhmadF.M. UpadhyayA. KumarS. GargA. RamzanM. HussainA. AltamimiM.A. AltamimiA.S.A. WebsterT.J. KhanamA. Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives.Int. J. Pharm.202364312322310.1016/j.ijpharm.2023.12322337442399
    [Google Scholar]
  50. LiH. ZhuY. WangX. FengY. QianY. MaQ. LiX. ChenY. ChenK. Joining forces: The combined application of therapeutic viruses and nanomaterials in cancer therapy.Molecules20232822767910.3390/molecules2822767938005401
    [Google Scholar]
  51. FengC TanP NieG ZhuM Biomimetic and bioinspired nano‐platforms for cancer vaccine development.InExploration2023332021026310.1002/EXP.20210263
    [Google Scholar]
  52. AlmalkiW.H. An up-to-date review on protein-based nanocarriers in the management of cancer.Curr. Drug Deliv.202421450952410.2174/156720182066623050910102037165498
    [Google Scholar]
  53. BriolayT. PetithommeT. FouetM. Nguyen-PhamN. BlanquartC. BoisgeraultN. Delivery of cancer therapies by synthetic and bio-inspired nanovectors.Mol. Cancer20212015510.1186/s12943‑021‑01346‑233761944
    [Google Scholar]
  54. OngH.K. TanW.S. HoK.L. Virus like particles as a platform for cancer vaccine development.PeerJ20175e405310.7717/peerj.405329158984
    [Google Scholar]
  55. BuonaguroL. TagliamonteM. TorneselloM.L. BuonaguroF.M. Developments in virus-like particle-based vaccines for infectious diseases and cancer.Expert Rev. Vaccines201110111569158310.1586/erv.11.13522043956
    [Google Scholar]
  56. XiangS.D. InguantiS.K. MinigoG. ParkA. HardyC.L. PlebanskiM. Promising particle-based vaccines in cancer therapy.Expert Rev. Vaccines2008771103111910.1586/14760584.7.7.110318767957
    [Google Scholar]
  57. JenningsG.T. BachmannM.F. Immunodrugs: Therapeutic VLP-based vaccines for chronic diseases.Annu. Rev. Pharmacol. Toxicol.200949130332610.1146/annurev‑pharmtox‑061008‑10312918851703
    [Google Scholar]
  58. KuperH. AdamiH.O. TrichopoulosD. Infections as a major preventable cause of human cancer.J. Intern. Med.2001249S741617410.1046/j.1365‑2796.2001.00742.x10971784
    [Google Scholar]
  59. ChenD.S. Hepatitis B vaccination: The key towards elimination and eradication of hepatitis B.J. Hepatol.200950480581610.1016/j.jhep.2009.01.00219231008
    [Google Scholar]
  60. ZhaoH. ZhouX. ZhouY.H. Hepatitis B vaccine development and implementation.Hum. Vaccin. Immunother.20201671533154410.1080/21645515.2020.173216632186974
    [Google Scholar]
  61. McAleerW.J. BuynakE.B. MaigetterR.Z. WamplerD.E. MillerW.J. HillemanM.R. Human hepatitis B vaccine from recombinant yeast.Nature1984307594717818010.1038/307178a06318124
    [Google Scholar]
  62. RuzziF. SempriniM.S. ScalambraL. PalladiniA. AngelicolaS. CappelloC. PittinoO.M. NanniP. LolliniP.L. Virus-like particle (VLP) vaccines for cancer immunotherapy.Int. J. Mol. Sci.202324161296310.3390/ijms24161296337629147
    [Google Scholar]
  63. PerrilloR. GarridoL.F. MaT.W. RahimiR. LillyB. Vaccination with HepB-CpG vaccine in individuals undergoing immune suppressive drug therapy.Vaccine202341314457446110.1016/j.vaccine.2023.06.04137353450
    [Google Scholar]
  64. de SanjoséS. BrotonsM. PavónM.A. The natural history of human papillomavirus infection.Best Pract. Res. Clin. Obstet. Gynaecol.20184721310.1016/j.bpobgyn.2017.08.01528964706
    [Google Scholar]
  65. StanleyM. Tumour virus vaccines: Hepatitis B virus and human papillomavirus.Philos Trans R Soc Lond B Biol Sci.201737217322016026810.1098/rstb.2016.0268
    [Google Scholar]
  66. SzymonowiczA.K. ChenJ. Biological and clinical aspects of HPV-related cancers.Cancer Biol. Med.202017486487810.20892/j.issn.2095‑3941.2020.037033299640
    [Google Scholar]
  67. HarperD.M. FrancoE.L. WheelerC. FerrisD.G. JenkinsD. SchuindA. ZahafT. InnisB. NaudP. De CarvalhoN.S. MartinsR.C.M. TeixeiraJ. BlatterM.M. KornA.P. QuintW. DubinG. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: A randomised controlled trial.Lancet200436494471757176510.1016/S0140‑6736(04)17398‑415541448
    [Google Scholar]
  68. ZhuF. KSHV Cancerogenesis and the Novel Strategies in Vaccine Design.Highlights Sci. Eng. Technol.20221433233710.54097/hset.v14i.1842
    [Google Scholar]
  69. ManivannanA.C. DevarajuV. VelmuruganP. SathiamoorthiT. SivakumarS. SubbiahS.K. RaviA.V. Tumorigenesis and diagnostic practice applied in two oncogenic viruses: Epstein Barr virus and T-cell lymphotropic virus-1—Mini review.Biomed. Pharmacother.202114211197410.1016/j.biopha.2021.11197434343895
    [Google Scholar]
  70. ZeltinsA. Construction and characterization of virus-like particles: A review.Mol. Biotechnol.20135319210710.1007/s12033‑012‑9598‑423001867
    [Google Scholar]
  71. HajebiS. YousefiaslS. RahimmaneshI. DahimA. AhmadiS. KadumudiF.B. RahgozarN. AmaniS. KumarA. KamraniE. RabieeM. BorzacchielloA. WangX. RabieeN. PirouzD.A. MakvandiP. Genetically Engineered Viral Vectors and Organic‐Based Non‐Viral Nanocarriers for Drug Delivery Applications.Adv. Healthc. Mater.20221120220158310.1002/adhm.20220158335916145
    [Google Scholar]
  72. XuD. SongX. ZhouJ. OuyangX. LiJ. DengD. Virus-like hollow mesoporous silica nanoparticles for cancer combination therapy.Colloids Surf. B Biointerfaces202119711145210.1016/j.colsurfb.2020.11145233189035
    [Google Scholar]
  73. AshiqueS. UpadhyayA. KumarN. ChauhanS. MishraN. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery- A review.Advan. Cancer Biol. - Metastasis2022410004110.1016/j.adcanc.2022.100041
    [Google Scholar]
  74. GuptaR. AroraK. RoyS.S. JosephA. RastogiR. AroraN.M. KunduP.K. Platforms, advances, and technical challenges in virus-like particles-based vaccines.Front. Immunol.202314112380510.3389/fimmu.2023.112380536845125
    [Google Scholar]
  75. GallardoG.M. DuranY.M.J. RigauH.L. Recent progress in micro/nanoreactors toward the creation of artificial organelles.Adv. Healthc. Mater.201875170091710.1002/adhm.20170091729205928
    [Google Scholar]
  76. AshiqueS. UpadhyayA. HussainA. BagS. ChaterjeeD. RihanM. MishraN. BhattS. PuriV. SharmaA. PrasherP. SinghS.K. ChellappanD.K. GuptaG. DuaK. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives.J. Drug Deliv. Sci. Technol.20227710387610.1016/j.jddst.2022.103876
    [Google Scholar]
  77. AshiqueS. UpadhyayA. GulatiM. SinghD. ChawlaP.A. ChawlaV. One-dimensional polymeric nanocomposites in drug delivery systems.Curr. Nanosci.202319682583910.2174/1573413719666230110110706
    [Google Scholar]
  78. LeeK.W. TanW.S. Recombinant hepatitis B virus core particles: Association, dissociation and encapsidation of green fluorescent protein.J. Virol. Methods2008151217218010.1016/j.jviromet.2008.05.02518584885
    [Google Scholar]
  79. WilkersonJ.W. YangS.O. FunkP.J. StanleyS.K. BundyB.C. Nanoreactors: Strategies to encapsulate enzyme biocatalysts in virus-like particles.N. Biotechnol.201844596310.1016/j.nbt.2018.04.00329702249
    [Google Scholar]
  80. PughG.C. BurnsJ.R. HoworkaS. Comparing proteins and nucleic acids for next-generation biomolecular engineering.Nat. Rev. Chem.20182711313010.1038/s41570‑018‑0015‑9
    [Google Scholar]
  81. ProkopchukG. ButenkoA. DacksJ.B. SpeijerD. FieldM.C. LukešJ. Lessons from the deep: Mechanisms behind diversification of eukaryotic protein complexes.Biol. Rev. Camb. Philos. Soc.20239861910192710.1111/brv.1298837336550
    [Google Scholar]
  82. KumarP. PandeyS.N. AhmadF. VermaA. SharmaH. AshiqueS. BhattacharyyaS.P. KumarS. KumarS. MishraN. GargA. Carbon Nanotubes: A Targeted Drug Delivery against Cancer Cell. In: InNaNBentham Science Publishers Ltd.202310.2174/0115734137271865231105070727
    [Google Scholar]
  83. FuY. LiJ. A novel delivery platform based on Bacteriophage MS2 virus-like particles.Virus Res.201621191610.1016/j.virusres.2015.08.02226415756
    [Google Scholar]
  84. BialasF. ReichingerD. BeckerC.F.W. Biomimetic and biopolymer-based enzyme encapsulation.Enzyme Microb. Technol.202115010986410.1016/j.enzmictec.2021.10986434489023
    [Google Scholar]
  85. FiedlerJ.D. BrownS.D. LauJ.L. FinnM.G. RNA-directed packaging of enzymes within virus-like particles.Angew. Chem. Int. Ed.201049509648965110.1002/anie.20100524321064070
    [Google Scholar]
  86. CaparcoA.A. DautelD.R. ChampionJ.A. Protein mediated enzyme immobilization.Small20221819210642510.1002/smll.20210642535182030
    [Google Scholar]
  87. SelivanovitchE. DouglasT. Virus capsid assembly across different length scales inspire the development of virus-based biomaterials.Curr. Opin. Virol.201936384610.1016/j.coviro.2019.02.01031071601
    [Google Scholar]
  88. ShuklaS. WangC. BeissV. SteinmetzN.F. Antibody response against cowpea mosaic viral nanoparticles improves in situ vaccine efficacy in ovarian cancer.ACS Nano20201432994300310.1021/acsnano.9b0786532133838
    [Google Scholar]
  89. SchoonenL. PilleJ. BorrmannA. NolteR.J.M. van HestJ.C.M. Sortase A-mediated N-terminal modification of cowpea chlorotic mottle virus for highly efficient cargo loading.Bioconjug. Chem.201526122429243410.1021/acs.bioconjchem.5b0048526505648
    [Google Scholar]
  90. MaY. NolteR.J.M. CornelissenJ.J.L.M. Virus-based nanocarriers for drug delivery.Adv. Drug Deliv. Rev.201264981182510.1016/j.addr.2012.01.00522285585
    [Google Scholar]
  91. AshiqueS. GargA. HussainA. FaridA. KumarP. HesaryT.F. Nanodelivery systems: An efficient and target‐specific approach for drug‐resistant cancers.Cancer Med.20231218187971882510.1002/cam4.650237668041
    [Google Scholar]
  92. PatelK.G. SwartzJ.R. Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry.Bioconjug. Chem.201122337638710.1021/bc100367u21355575
    [Google Scholar]
  93. McNealeD. DashtiN. CheahL.C. SainsburyF. Protein cargo encapsulation by virus‐like particles: Strategies and applications.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023153e186910.1002/wnan.186936345849
    [Google Scholar]
  94. QianC. LiuX. XuQ. WangZ. ChenJ. LiT. ZhengQ. YuH. GuY. LiS. XiaN. Recent progress on the versatility of virus-like particles.Vaccines20208113910.3390/vaccines801013932244935
    [Google Scholar]
  95. WaghwaniH.K. UchidaM. FuC.Y. LaFranceB. SharmaJ. McCoyK. DouglasT. Virus-like particles (VLPs) as a platform for hierarchical compartmentalization.Biomacromolecules20202162060207210.1021/acs.biomac.0c0003032319761
    [Google Scholar]
  96. YeatesT.O. CrowleyC.S. TanakaS. Bacterial microcompartment organelles: Protein shell structure and evolution.Annu. Rev. Biophys.201039118520510.1146/annurev.biophys.093008.13141820192762
    [Google Scholar]
  97. SyahR. ZaharM. KianfarE. Nanoreactors: Properties, applications and characterization.Int. J. Chem. React. Eng.20211910981100710.1515/ijcre‑2021‑0069
    [Google Scholar]
  98. JohnstonI.G. LouisA.A. DoyeJ.P.K. Modelling the self-assembly of virus capsids.J. Phys. Condens. Matter2010221010410110.1088/0953‑8984/22/10/10410121389435
    [Google Scholar]
  99. MaityB. FujitaK. UenoT. Use of the confined spaces of apo-ferritin and virus capsids as nanoreactors for catalytic reactions.Curr. Opin. Chem. Biol.201525889710.1016/j.cbpa.2014.12.02625579455
    [Google Scholar]
  100. SeebeckF.P. WoycechowskyK.J. ZhuangW. RabeJ.P. HilvertD. A simple tagging system for protein encapsulation.J. Am. Chem. Soc.2006128144516451710.1021/ja058363s16594656
    [Google Scholar]
  101. PattersonD.P. SchwarzB. El-BoubbouK. van der OostJ. PreveligeP.E. DouglasT. Virus-like particle nanoreactors: Programmed encapsulation of the thermostable CelB glycosidase inside the P22 capsid.Soft Matter2012839101581016610.1039/c2sm26485d
    [Google Scholar]
  102. FralickJ.A. ClarkJ. Phage Display Technology and the Development of Phage-Based Vaccines. Bacteriophages: Biology, Technology.In: TherapySpringer, Cham.202110311067
    [Google Scholar]
  103. DonaldsonB. LateefZ. WalkerG.F. YoungS.L. WardV.K. Virus-like particle vaccines: Immunology and formulation for clinical translation.Expert Rev. Vaccines201817983384910.1080/14760584.2018.151655230173619
    [Google Scholar]
  104. LiuJ. LiewS.S. WangJ. PuK. Bioinspired and biomimetic delivery platforms for cancer vaccines.Adv. Mater.2022341210379010.1002/adma.20210379034651344
    [Google Scholar]
  105. HillsR.A. HowarthM. Virus-like particles against infectious disease and cancer: Guidance for the nano-architect.Curr. Opin. Biotechnol.20227334635410.1016/j.copbio.2021.09.01234735984
    [Google Scholar]
  106. MohsenMO ZhaL MirandaC.G BachmannMF Major findings and recent advances in virus–like particle (VLP)-based vaccines.InSeminars Immunol.20173412313210.1016/j.smim.2017.08.014
    [Google Scholar]
  107. HuH. SteinmetzN.F. Doxorubicin‐Loaded Physalis Mottle Virus Particles Function as a pH‐Responsive Prodrug Enabling Cancer Therapy.Biotechnol. J.20201512200007710.1002/biot.20200007732918857
    [Google Scholar]
  108. AlemzadehE. DehshahriA. DehghanianA.R. AfsharifarA. BehjatniaA.A. IzadpanahK. AhmadiF. Enhanced anti-tumor efficacy and reduced cardiotoxicity of doxorubicin delivered in a novel plant virus nanoparticle.Colloids Surf. B Biointerfaces2019174808610.1016/j.colsurfb.2018.11.00830445253
    [Google Scholar]
  109. BiabanikhankahdaniR. AlitheenN.B.M. HoK.L. TanW.S. pH-responsive virus-like nanoparticles with enhanced tumour-targeting ligands for cancer drug delivery.Sci. Rep.2016613789110.1038/srep3789127883070
    [Google Scholar]
  110. ZhaoQ. ChenW. ChenY. ZhangL. ZhangJ. ZhangZ. Self-assembled virus-like particles from rotavirus structural protein VP6 for targeted drug delivery.Bioconjug. Chem.201122334635210.1021/bc100253221338097
    [Google Scholar]
  111. DeoV.K. KatoT. ParkE.Y. Chimeric virus-like particles made using GAG and M1 capsid proteins providing dual drug delivery and vaccination platform.Mol. Pharm.201512383984510.1021/mp500860x25627427
    [Google Scholar]
  112. KatoT. YuiM. DeoV.K. ParkE.Y. Development of Rous sarcoma virus-like particles displaying hCC49 scFv for specific targeted drug delivery to human colon carcinoma cells.Pharm. Res.201532113699370710.1007/s11095‑015‑1730‑226047779
    [Google Scholar]
  113. YanD. TengZ. SunS. JiangS. DongH. GaoY. WeiY. QinW. LiuX. YinH. GuoH. Foot-and-mouth disease virus-like particles as integrin-based drug delivery system achieve targeting anti-tumor efficacy.Nanomedicine20171331061107010.1016/j.nano.2016.12.00727993721
    [Google Scholar]
  114. RenY. WongS.M. LimL.Y. Folic acid-conjugated protein cages of a plant virus: A novel delivery platform for doxorubicin.Bioconjug. Chem.200718383684310.1021/bc060361p17407258
    [Google Scholar]
  115. LeeK.L. MurrayA.A. LeD.H.T. SheenM.R. ShuklaS. CommandeurU. FieringS. SteinmetzN.F. Combination of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response.Nano Lett.20171774019402810.1021/acs.nanolett.7b0010728650644
    [Google Scholar]
  116. BruckmanMA CzaparAE SteinmetzNF Drug-loaded plant-virus based nanoparticles for cancer drug delivery.Methods Mol Biol.2018177642543610.1007/978‑1‑4939‑7808‑3_28
    [Google Scholar]
  117. GulatiN.M. PitekA.S. CzaparA.E. StewartP.L. SteinmetzN.F. The in vivo fates of plant viral nanoparticles camouflaged using self-proteins: Overcoming immune recognition.J. Mater. Chem. B Mater. Biol. Med.20186152204221610.1039/C7TB03106H30294445
    [Google Scholar]
  118. KimH. ChoiH. BaeY. KangS. Development of target‐tunable P22 VLP‐based delivery nanoplatforms using bacterial superglue.Biotechnol. Bioeng.2019116112843285110.1002/bit.2712931329283
    [Google Scholar]
  119. PrasuhnD.E.Jr SinghP. StrableE. BrownS. ManchesterM. FinnM.G. Plasma clearance of bacteriophage Qbeta particles as a function of surface charge.J. Am. Chem. Soc.200813041328133410.1021/ja075937f18177041
    [Google Scholar]
  120. AlvandiN. RajabnejadM. TaghvaeiZ. EsfandiariN. New generation of viral nanoparticles for targeted drug delivery in cancer therapy.J. Drug Target.202230215116510.1080/1061186X.2021.194960034210232
    [Google Scholar]
  121. AshiqueS. GargA. MishraN. RainaN. MingL.C. TulliH.S. BehlT. RaniR. GuptaM. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC).Naunyn Schmiedebergs Arch. Pharmacol.2023396112769279210.1007/s00210‑023‑02522‑537219615
    [Google Scholar]
  122. PedersenA.F. SalantiA. TheanderTG. ThraneS. JanitzekC.M. AgerbaekM.Ø. NielsenM.A. GustafssonJ.T. Virus-like particle with efficient epitope display.US Patent US10086056B22018
  123. BachmannM.F. ProbaK.G. MaurerP. MeijerinkE. SchwarzK. VLP-antigen conjugates and their uses as vaccines.US Patent US7959928B22011
  124. CompansR.L. YangC. YaoQ. KangS.M. Virus-like particles, methods of preparation, and immunogenic compositions.US PatentUS9045727B22015
  125. TrudyM. Virus-like particles as vaccines for paramyxovirus. US Patent US20090263420A12009
  126. Virus-like particles.US Patent US11020470B22021
  127. HottaA. Virus-like particles and use thereof.JP Patent JP2018133682A2018
  128. Methods for the release of virus-like particles.EP Patent EP2956167B12022
  129. Recombinant influenza virus-like particles (VLPs) produced in transgenic plants expressing hemagglutinin.CA Patent CA2707235C2019
  130. DavidF. DjebbaraH.Z. PouletH. MinkeJ.M. Canine parvovirus (CPV) virus-like particle (VLP) vaccines and uses thereof.US Patent US10080798B22018
  131. Rabies glycoprotein virus-like particles (VLPs).EP Patent EP2635257A42017
  132. UnzuetaU. CéspedesM.V. VázquezE. MirallesF.N. ManguesR. VillaverdeA. Towards protein-based viral mimetics for cancer therapies.Trends Biotechnol.201533525325810.1016/j.tibtech.2015.02.00725805413
    [Google Scholar]
  133. AshleyC.E. CarnesE.C. PhillipsG.K. DurfeeP.N. BuleyM.D. LinoC.A. PadillaD.P. PhillipsB. CarterM.B. WillmanC.L. BrinkerC.J. CaldeiraJ.C. ChackerianB. WhartonW. PeabodyD.S. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles.ACS Nano2011575729574510.1021/nn201397z21615170
    [Google Scholar]
  134. CaoJ. GuentherR.H. SitT.L. OppermanC.H. LommelS.A. WilloughbyJ.A. Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin.Small201410245126513610.1002/smll.20140055825098668
    [Google Scholar]
  135. ChenZ. LiN. ChenL. LeeJ. GassensmithJ.J. Dual functionalized bacteriophage Qβ as a photocaged drug carrier.Small201612334563457110.1002/smll.20160105327351167
    [Google Scholar]
  136. LeeK.L. HubbardL.C. HernS. YildizI. GratzlM. SteinmetzN.F. Shape matters: The diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct.Biomater. Sci.20131658158810.1039/c3bm00191a24244867
    [Google Scholar]
  137. LeD.H.T. LeeK.L. ShuklaS. CommandeurU. SteinmetzN.F. Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy.Nanoscale2017962348235710.1039/C6NR09099K28144662
    [Google Scholar]
  138. PitekA.S. HuH. ShuklaS. SteinmetzN.F. Cancer theranostic applications of albumin-coated tobacco mosaic virus nanoparticles.ACS Appl. Mater. Interfaces20181046394683947710.1021/acsami.8b1249930403330
    [Google Scholar]
  139. PokorskiJ.K. BreitenkampK. LiepoldL.O. QaziS. FinnM.G. Functional virus-based polymer-protein nanoparticles by atom transfer radical polymerization.J. Am. Chem. Soc.2011133249242924510.1021/ja203286n21627118
    [Google Scholar]
  140. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.10395938228257
    [Google Scholar]
  141. FrankeC.E. CzaparA.E. PatelR.B. SteinmetzN.F. Tobacco mosaic virus-delivered cisplatin restores efficacy in platinum-resistant ovarian cancer cells.Mol. Pharm.20181582922293110.1021/acs.molpharmaceut.7b0046628926265
    [Google Scholar]
  142. LiuX. LiuB. GaoS. WangZ. TianY. WuM. JiangS. NiuZ. Glyco-decorated tobacco mosaic virus as a vector for cisplatin delivery.J. Mater. Chem. B Mater. Biol. Med.20175112078208510.1039/C7TB00100B32263681
    [Google Scholar]
  143. GaoS. LiuX. WangZ. JiangS. WuM. TianY. NiuZ. Fluorous interaction induced self-assembly of tobacco mosaic virus coat protein for cisplatin delivery.Nanoscale20181025117321173610.1039/C8NR03748E29911244
    [Google Scholar]
  144. KernanD.L. WenA.M. PitekA.S. SteinmetzN.F. Featured Article: Delivery of chemotherapeutic vcMMAE using tobacco mosaic virus nanoparticles.Exp. Biol. Med.2017242141405141110.1177/153537021771922228675044
    [Google Scholar]
  145. NikaL. CastanoC.S. ArunkumarA.G. GruberG.C. McMahonM. KoczkaK. SastreG.A. KrammerF. GrabherrR. HER2-displaying virus-like particle vaccine protects from challenge with mammary carcinoma cells in a mouse model.Vaccines2019724110.3390/vaccines702004131137559
    [Google Scholar]
  146. ArabA. NikpoorA.R. AsadiP. IraeiR. RobatiY.R. SheikhA. KesharwaniP. Virus-like nanoparticles (VLPs) based technology in the development of breast cancer ‎vaccines‎.Process Biochem.2022123445110.1016/j.procbio.2022.10.020v
    [Google Scholar]
  147. LiuQ. WangC. ZhengY. ZhaoY. WangY. HaoJ. ZhaoX. YiK. ShiL. KangC. LiuY. Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy.Biomaterials202025812027510.1016/j.biomaterials.2020.12027532798741
    [Google Scholar]
  148. FarkasM.E. AaneiI.L. BehrensC.R. TongG.J. MurphyS.T. O’NeilJ.P. FrancisM.B. PET Imaging and biodistribution of chemically modified bacteriophage MS2.Mol. Pharm.2013101697610.1021/mp300375423214968
    [Google Scholar]
  149. DaiT. LiN. ZhangY. LiuQ. ZhangL. A new target ligand Ser–Glu for PEPT1-overexpressing cancer imaging.Int. J. Nanomedicine20161120321210.2147/IJN.S9720726811678
    [Google Scholar]
  150. AaneiI.L. ElSohlyA.M. FarkasM.E. NetirojjanakulC. ReganM. MurphyT.S. O’NeilJ.P. SeoY. FrancisM.B. Biodistribution of antibody-MS2 viral capsid conjugates in breast cancer models.Mol. Pharm.201613113764377210.1021/acs.molpharmaceut.6b0056627611245
    [Google Scholar]
  151. KimK.R. LeeA.S. KimS.M. HeoH.R. KimC.S. Virus-like nanoparticles as a theranostic platform for cancer.Front. Bioeng. Biotechnol.202310110676710.3389/fbioe.2022.110676736714624
    [Google Scholar]
  152. AljabaliA.A.A. ZoubiM.S.A. BatanyehA.K.M. RadaidehA.A. ObeidM.A. SharabiA.A. AlshaerW. AbuFaresB. ZanatiA.T. TambuwalaM.M. AkbarN. EvansD.J. Gold-coated plant virus as computed tomography imaging contrast agent.Beilstein J. Nanotechnol.20191011983199310.3762/bjnano.10.19531667046
    [Google Scholar]
  153. RheeJ.K. BakshM. NycholatC. PaulsonJ.C. KitagishiH. FinnM.G. Glycan-targeted virus-like nanoparticles for photodynamic therapy.Biomacromolecules20121382333233810.1021/bm300578p22827531
    [Google Scholar]
  154. HuH. YangQ. BaroniS. YangH. AimeS. SteinmetzN.F. Polydopamine-decorated tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and photothermal cancer therapy.Nanoscale201911199760976810.1039/C9NR02065A31066418
    [Google Scholar]
  155. JiaQ. LiD. ZhangQ. YeS. XiZ. WangX. ShanW. RenL. Biomineralization synthesis of HBc-CuS nanoparticles for near-infrared light-guided photothermal therapy.J. Mater. Sci.20195420132551326410.1007/s10853‑019‑03613‑6
    [Google Scholar]
  156. ZhangC. FuY.Y. ZhangX. YuC. ZhaoY. SunS.K. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo.Dalton Trans.20154429131121311810.1039/C5DT01467K26106950
    [Google Scholar]
  157. ShanW. ChenR. ZhangQ. ZhaoJ. ChenB. ZhouX. YeS. BiS. NieL. RenL. Improved stable indocyanine green (ICG)‐mediated cancer optotheranostics with naturalized hepatitis B core particles.Adv. Mater.20183028170756710.1002/adma.20170756729786899
    [Google Scholar]
  158. ZhangQ. ShanW. AiC. ChenZ. ZhouT. LvX. ZhouX. YeS. RenL. WangX. Construction of multifunctional Fe3O4-MTX@ HBc nanoparticles for MR imaging and photothermal therapy/chemotherapy.Nanotheranostics201821879510.7150/ntno.2194229291165
    [Google Scholar]
  159. WangZ. HuangP. JacobsonO. WangZ. LiuY. LinL. LinJ. LuN. ZhangH. TianR. NiuG. LiuG. ChenX. Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics.ACS Nano20161033453346010.1021/acsnano.5b0752126871955
    [Google Scholar]
  160. SinghaiM PandeyV AshiqueS GuptaGD AroraD HaiderT MishraN Design and evaluation of SLNs encapsulated curcumin-based topical formulation for the management of cervical cancer.Anticancer Agents Med Chem.202323161866187910.2174/1871520623666230626145750
    [Google Scholar]
  161. GhoshD. KohliA.G. MoserF. EndyD. BelcherA.M. Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery.ACS Synth. Biol.201211257658210.1021/sb300052u23656279
    [Google Scholar]
  162. BachmannM.F. JenningsG.T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns.Nat. Rev. Immunol.2010101178779610.1038/nri286820948547
    [Google Scholar]
  163. ShuklaS. DorandR.D. MyersJ.T. WoodsS.E. GulatiN.M. StewartP.L. CommandeurU. HuangA.Y. SteinmetzN.F. Multiple Administrations of Viral Nanoparticles Alter in vivo Behavior—Insights from Intravital Microscopy.ACS Biomater. Sci. Eng.20162582983710.1021/acsbiomaterials.6b0006028752131
    [Google Scholar]
  164. ZahmanovaG. AljabaliA.A. TakovaK. TonevaV. TambuwalaM.M. AndonovA.P. LukovG.L. MinkovI. The plant viruses and molecular farming: How beneficial they might be for human and animal health?Int. J. Mol. Sci.2023242153310.3390/ijms2402153336675043
    [Google Scholar]
  165. AshiqueS. AlmohaywiB. HaiderN. YasminS. HussainA. MishraN. GargA. siRNA-based nanocarriers for targeted drug delivery to control breast cancer.Advan. Cancer Biol. - Metastasis2022410004710.1016/j.adcanc.2022.100047
    [Google Scholar]
  166. PalladiniA. ThraneS. JanitzekC.M. PihlJ. ClemmensenS.B. de JonghW.A. ClausenT.M. NicolettiG. LanduzziL. PenichetM.L. BalboniT. IanzanoM.L. GiustiV. TheanderT.G. NielsenM.A. SalantiA. LolliniP.L. NanniP. SanderA.F. Virus-like particle display of HER2 induces potent anti-cancer responses.OncoImmunol.201873e140874910.1080/2162402X.2017.140874929399414
    [Google Scholar]
  167. TumbanE. PeabodyJ. TylerM. PeabodyD.S. ChackerianB. VLPs displaying a single L2 epitope induce broadly cross-neutralizing antibodies against human papillomavirus.PLoS One2012711e4975110.1371/journal.pone.004975123185426
    [Google Scholar]
  168. JobsriJ. AllenA. RajagopalD. ShiptonM. KanyukaK. LomonossoffG.P. OttensmeierC. DieboldS.S. StevensonF.K. SavelyevaN. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody.PLoS One2015102e011809610.1371/journal.pone.011809625692288
    [Google Scholar]
  169. AshiqueS. SandhuN.K. ChawlaV. ChawlaP.A. Targeted drug delivery: Trends and perspectives.Curr. Drug Deliv.202118101435145510.2174/156720181866621060916130134151759
    [Google Scholar]
  170. YinZ. NguyenH.G. ChowdhuryS. BentleyP. BruckmanM.A. MiermontA. GildersleeveJ.C. WangQ. HuangX. Tobacco mosaic virus as a new carrier for tumor associated carbohydrate antigens.Bioconjug. Chem.20122381694170310.1021/bc300244a22812480
    [Google Scholar]
  171. LiJ. SunY. JiaT. ZhangR. ZhangK. WangL. Messenger RNA vaccine based on recombinant MS2 virus‐like particles against prostate cancer.Int. J. Cancer201413471683169410.1002/ijc.2848224105486
    [Google Scholar]
  172. IonitaM.G. van den BorneP. CatanzaritiL.M. MollF.L. de VriesJ.P.P.M. PasterkampG. VinkA. de KleijnD.P.V. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions.Arterioscler. Thromb. Vasc. Biol.20103091842184810.1161/ATVBAHA.110.20929620595650
    [Google Scholar]
  173. SunX. LiW. ZhangX. QiM. ZhangZ. ZhangX.E. CuiZ. In vivo targeting and imaging of atherosclerosis using multifunctional virus-like particles of simian virus 40.Nano Lett.201616106164617110.1021/acs.nanolett.6b0238627622963
    [Google Scholar]
  174. ParkJ. GaoH. WangY. HuH. SimonD.I. SteinmetzN.F. S100A9-targeted tobacco mosaic virus nanoparticles exhibit high specificity toward atherosclerotic lesions in ApoE −/− mice.J. Mater. Chem. B Mater. Biol. Med.20197111842184610.1039/C8TB02276C32255046
    [Google Scholar]
  175. QaziS. UchidaM. UsselmanR. ShearerR. EdwardsE. DouglasT. Manganese(III) porphyrins complexed with P22 virus-like particles as T 1-enhanced contrast agents for magnetic resonance imaging.J. Biol. Inorg. Chem.201419223724610.1007/s00775‑013‑1075‑424362518
    [Google Scholar]
  176. LuconJ. QaziS. UchidaM. BedwellG.J. LaFranceB. PreveligeP.E.Jr DouglasT. Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading.Nat. Chem.201241078178810.1038/nchem.144223000990
    [Google Scholar]
  177. WoodsM. WoessnerD.E. SherryA.D. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging.Chem. Soc. Rev.200635650051110.1039/b509907m16729144
    [Google Scholar]
  178. DharmarwardanaM. MartinsA.F. ChenZ. PalaciosP.M. NowakC.M. WelchR.P. LiS. LuzuriagaM.A. BlerisL. PierceB.S. SherryA.D. GassensmithJ.J. Nitroxyl modified tobacco mosaic virus as a metal-free high-relaxivity MRI and EPR active superoxide sensor.Mol. Pharm.20181582973298310.1021/acs.molpharmaceut.8b0026229771534
    [Google Scholar]
  179. LiZ. JinQ. HuangC. DasaS. ChenL. YapL. LiuS. CaiH. ParkR. ContiP.S. Trackable and targeted phage as positron emission tomography (PET) agent for cancer imaging.Theranostics2011137138010.7150/thno/v01p037122211143
    [Google Scholar]
  180. NooraeiS. BahrulolumH. HoseiniZ.S. KatalaniC. HajizadeA. EastonA.J. AhmadianG. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers.J. Nanobiotechnology20211915910.1186/s12951‑021‑00806‑733632278
    [Google Scholar]
  181. MohsenM.O. BachmannM.F. Virus-like particle vaccinology, from bench to bedside.Cell. Mol. Immunol.2022199993101110.1038/s41423‑022‑00897‑835962190
    [Google Scholar]
  182. JiD. ZhangY. SunJ. ZhangB. MaW. ChengB. WangX. LiY. MuY. XuH. WangQ. ZhangC. XiaoS. ZhangL. ZhouD. An engineered influenza virus to deliver antigens for lung cancer vaccination.Nat. Biotechnol.202442351852810.1038/s41587‑023‑01796‑737231262
    [Google Scholar]
  183. MohsenM.O. SpeiserD.E. KnuthA. BachmannM.F. Virus‐like particles for vaccination against cancer.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020121e157910.1002/wnan.157931456339
    [Google Scholar]
  184. WuJ. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application.J. Pers. Med.202111877110.3390/jpm1108077134442415
    [Google Scholar]
  185. ZhangY. WangX. ChuC. ZhouZ. ChenB. PangX. LinG. LinH. GuoY. RenE. LvP. ShiY. ZhengQ. YanX. ChenX. LiuG. Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics.Nat. Commun.2020111542110.1038/s41467‑020‑19061‑933110072
    [Google Scholar]
  186. BiabanikhankahdaniR. HoK. AlitheenN. TanW. A dual bioconjugated virus-like nanoparticle as a drug delivery system and comparison with a pH-responsive delivery system.Nanomaterials20188423610.3390/nano804023629652827
    [Google Scholar]
  187. ShuklaS. WangC. BeissV. CaiH. WashingtonT.II MurrayA.A. GongX. ZhaoZ. MasarapuH. ZlotnickA. FieringS. SteinmetzN.F. The unique potency of Cowpea mosaic virus (CPMV) in situ cancer vaccine.Biomater. Sci.20208195489550310.1039/D0BM01219J32914796
    [Google Scholar]
  188. MoY. MaJ. ZhangH. ShenJ. ChenJ. HongJ. XuY. QianC. Prophylactic and therapeutic HPV vaccines: Current scenario and perspectives.Front. Cell. Infect. Microbiol.20221290922310.3389/fcimb.2022.90922335860379
    [Google Scholar]
  189. ZhaoL. ZhouJ. DengD. Inorganic virus-like nanoparticles for biomedical applications: A minireview.J. Future Foods202441718210.1016/j.jfutfo.2023.05.006
    [Google Scholar]
  190. VenkataramanS. ApkaP. ShoebE. BadarU. HefferonK. Plant virus nanoparticles for anti-cancer therapy.Front. Bioeng. Biotechnol.2021964279410.3389/fbioe.2021.64279434976959
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947308351240514182503
Loading
/content/journals/cctr/10.2174/0115733947308351240514182503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test