Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Oral cancer treatment frequently results in bone damage and complications such as osteoradionecrosis (ORN) and impeding bone regeneration. Chitosan, a biocompatible and biodegradable natural polymer, demonstrates potential for bone regeneration but suffers from insufficient mechanical strength. MXene, a novel 2D material exhibiting high electrical conductivity and mechanical strength, offers a promising synergistic solution. This review explores the potential of chitosan-MXene composite scaffolds for bone regeneration within the context of oral cancer treatment. The advantages of these composites are discussed, including enhanced mechanical strength, electrical stimulation of bone cell activity, controlled drug delivery, and improved biocompatibility. Various synthesis methods for chitosan/MXene scaffolds are examined, highlighting their advantages and limitations. Critical aspects of biocompatibility and cytotoxicity of these materials are also addressed. The review concludes by delving into the future prospects of chitosan/MXene composites, encompassing tailored scaffold designs, enhanced bioactivity, improved electrical stimulation, and the development of multifunctional and bioresorbable scaffolds. This research holds significant promise for enhancing treatment outcomes and improving the quality of life for oral cancer patients.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947326282240924003811
2024-10-03
2025-12-05
Loading full text...

Full text loading...

References

  1. GrisarK. ScholM. SchoenaersJ. DormaarT. CoropciucR. Vander PoortenV. PolitisC. Osteoradionecrosis and medication-related osteonecrosis of the jaw: Similarities and differences.Int. J. Oral Maxillofac. Surg.201645121592159910.1016/j.ijom.2016.06.01627427547
    [Google Scholar]
  2. SundramoorthyA.K. Selection of best biomarker for the early detection of oral squamous cell carcinoma.Oral Oncology Reports2024910019710.1016/j.oor.2024.100197
    [Google Scholar]
  3. BalasamyS. SundramoorthyA.K. EGFR-targeted fluorescence imaging for precision margin assessment in oral cancer surgery.Oral Oncol.202415010671210.1016/j.oraloncology.2024.10671238306756
    [Google Scholar]
  4. SchweyenR. StangA. WienkeA. EckertA. KuhntT. HeyJ. The influence of dental treatment on the development of osteoradionecrosis after radiotherapy by modern irradiation techniques.Clin. Oral Investig.20172182499250810.1007/s00784‑017‑2048‑828091874
    [Google Scholar]
  5. RinaudoM. Chitin and chitosan: Properties and applications.Prog. Polym. Sci.200631760363210.1016/j.progpolymsci.2006.06.001
    [Google Scholar]
  6. MuzzarelliR. MehtediM. Mattioli-BelmonteM. Emerging biomedical applications of nano-chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources.Mar. Drugs201412115468550210.3390/md1211546825415349
    [Google Scholar]
  7. RajS.M.M. SundramoorthyA.K. AtchudanR. GanapathyD. KhoslaA. Review—Recent Trends on the Synthesis and Different Characterization Tools for MXenes and their Emerging Applications.J. Electrochem. Soc.2022169707750110.1149/1945‑7111/ac7bac
    [Google Scholar]
  8. ParamasivamG. PalemV.V. MeenakshyS. SureshL.K. GangopadhyayM. AntherjanamS. SundramoorthyA.K. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery.Colloids Surf. B Biointerfaces202424111403210.1016/j.colsurfb.2024.11403238905812
    [Google Scholar]
  9. MuruganN. JeromeR. PreethikaM. SundaramurthyA. SundramoorthyA.K. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid.J. Mater. Sci. Technol.20217212213110.1016/j.jmst.2020.07.037
    [Google Scholar]
  10. NaguibM. MochalinV.N. BarsoumM.W. GogotsiY. 25th anniversary article: MXenes: A new family of two-dimensional materials.Adv. Mater.2014267992100510.1002/adma.20130413824357390
    [Google Scholar]
  11. AlfahelR. TongY. PashaM. HawariA.H. MahmoudK.A. A lamellar chitosan-lignosulfonate/MXene nanocomposite as binder-free electrode for high-performance capacitive deionization.Desalination202457311718710.1016/j.desal.2023.117187
    [Google Scholar]
  12. NaskarA. KilariS. MisraS. Chitosan-2D Nanomaterial-Based Scaffolds for Biomedical Applications.Polymers (Basel)20241610132710.3390/polym1610132738794520
    [Google Scholar]
  13. RabieeN. IravaniS. MXenes and their composites: A versatile platform for biomedical applications.Mater. Chem. Horizons202323171184
    [Google Scholar]
  14. PiresL.S. MagalhãesF.D. PintoA.M. New Polymeric Composites Based on Two-Dimensional Nanomaterials for Biomedical Applications.Polymers (Basel)2022147146410.3390/polym1407146435406337
    [Google Scholar]
  15. FerraciniR. Martínez HerrerosI. RussoA. CasaliniT. RossiF. PeraleG. Scaffolds as Structural Tools for Bone-Targeted Drug Delivery.Pharmaceutics201810312210.3390/pharmaceutics1003012230096765
    [Google Scholar]
  16. NagarajanR.D. SundaramurthyA. SundramoorthyA.K. Synthesis and characterization of MXene (Ti3C2Tx)/Iron oxide composite for ultrasensitive electrochemical detection of hydrogen peroxide.Chemosphere2022286Pt 113147810.1016/j.chemosphere.2021.13147834303904
    [Google Scholar]
  17. LiW. HuangY. LiuY. TekellM.C. FanD.E. Three dimensional nanosuperstructures made of two-dimensional materials by design: Synthesis, properties, and applications.Nano Today20192910079910.1016/j.nantod.2019.100799
    [Google Scholar]
  18. AmiryaghoubiN. FathiM. AdibkiaK. BararJ. OmidianH. OmidiY. Chitosan-Based Biomaterials: Their Interaction with Natural and Synthetic Materials for Cartilage, Bone, Cardiac, Vascular, and Neural Tissue Engineering.Engineering Materials for Stem Cell Regeneration. SheikhF.A. SingaporeSpringer Singapore202161965010.1007/978‑981‑16‑4420‑7_22
    [Google Scholar]
  19. RajendranJ. SundramoorthyA.K. GanapathyD. AtchudanR. HabilaM.A. NallaswamyD. 2D MXene/graphene nanocomposite preparation and its electrochemical performance towards the identification of nicotine level in human saliva.J. Hazard. Mater.202244012970510.1016/j.jhazmat.2022.12970535963090
    [Google Scholar]
  20. O’DellK. SinhaU. Osteoradionecrosis.Oral Maxillofac. Surg. Clin. North Am.201123345546410.1016/j.coms.2011.04.01121798443
    [Google Scholar]
  21. RezvanG. GholamiradF. WaldenM.K. WangY. ZhaoP. SadatiM. HeT-C. Taheri-QazviniN. Hybrid functional membranes through layer-by-layer assembly of Ti3C2Tx MXene and gelatin-stabilized calcium phosphate nanospheres.Appl. Mater. Today20243710214410.1016/j.apmt.2024.102144
    [Google Scholar]
  22. ChenX. ChengY. WuH. Recent trends in bone defect repair and bone tissue regeneration of the two-dimensional material MXene.Ceram. Int.20234912195781959410.1016/j.ceramint.2023.03.109
    [Google Scholar]
  23. EnochK. SundaramA. PonrajS.S. PalaniyappanS. GeorgeS.D.B. ManavalanR.K. Enhancement of MXene optical properties towards medical applications via metal oxide incorporation.Nanoscale20231542168741688910.1039/D3NR02527F37853782
    [Google Scholar]
  24. MohajerF. ZiaraniG.M. BadieiA. IravaniS. VarmaR.S. Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy.Micromachines (Basel)20221310177310.3390/mi1310177336296126
    [Google Scholar]
  25. ZarepourA. RafatiN. KhosraviA. RabieeN. IravaniS. ZarrabiA. MXene-based composites in smart wound healing and dressings.Nanoscale Adv.20246143513353210.1039/D4NA00239C38989508
    [Google Scholar]
  26. ZhangX. WangY. GaoZ. MaoX. ChengJ. HuangL. TangJ. Advances in wound dressing based on electrospinning nanofibers.J. Appl. Polym. Sci.20241411e5474610.1002/app.54746
    [Google Scholar]
  27. ParajuliD. MXenes-polymer nanocomposites for biomedical applications: Fundamentals and future perspectives.Front Chem.202412140037510.3389/fchem.2024.140037538863676
    [Google Scholar]
  28. MayerbergerE.A. StreetR.M. McDanielR.M. BarsoumM.W. SchauerC.L. Antibacterial properties of electrospun Ti 3 C 2 T z (MXene)/chitosan nanofibers.RSC Advances2018862353863539410.1039/C8RA06274A35547922
    [Google Scholar]
  29. LiuS. WangS. SangM. ZhouJ. ZhangJ. XuanS. GongX. Nacre-mimetic hierarchical architecture in polyborosiloxane composites for synergistically enhanced impact resistance and ultra-efficient electromagnetic interference shielding.ACS Nano20221611190671908610.1021/acsnano.2c0810436302097
    [Google Scholar]
  30. Sarkhosh-InanlouR. Shafiei-IrannejadV. AziziS. JouybanA. Ezzati-Nazhad DolatabadiJ. MobedA. AdelB. SoleymaniJ. HamblinM.R. Applications of scaffold-based advanced materials in biomedical sensing.Trends Analyt. Chem.202114311634210.1016/j.trac.2021.11634234602681
    [Google Scholar]
  31. YousefiaslS. SharifiE. SalahinejadE. MakvandiP. IraniS. Bioactive 3D-printed chitosan-based scaffolds for personalized craniofacial bone tissue engineering.Eng. Regen.20234111110.1016/j.engreg.2022.09.005
    [Google Scholar]
  32. ChenL. MaiT. JiX.X. WangP.L. QiM.Y. LiuQ. DingY. MaM-G. 3D printing of customizable and lightweight multilayer MXene/nanocellulose architectures for tunable electromagnetic interference shielding via direct ink writing.Chem. Eng. J.202347614665210.1016/j.cej.2023.146652
    [Google Scholar]
  33. XieC. DingR. WangX. HuC. YanJ. ZhangW. WangY. QuY. ZhangS. HeP. WangZ. A disulfiram-loaded electrospun poly(vinylidene fluoride) nanofibrous scaffold for cancer treatment.Nanotechnology2020311111510110.1088/1361‑6528/ab5b3531766038
    [Google Scholar]
  34. LiptonJ. WengG.M. RӧhrJ.A. WangH. TaylorA.D. Layer-by-Layer Assembly of Two-Dimensional Materials: Meticulous Control on the Nanoscale.Matter2020251148116510.1016/j.matt.2020.03.012
    [Google Scholar]
  35. BagheriM. ValidiM. GholipourA. MakvandiP. SharifiE. Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect.Bioeng. Transl. Med.202271e1025410.1002/btm2.1025435111951
    [Google Scholar]
  36. XiongD. ShiY. YangH.Y. Rational design of MXene-based films for energy storage: Progress, prospects.Mater. Today20214618321110.1016/j.mattod.2020.12.004
    [Google Scholar]
  37. PostW. KuijpersL.J. ZijlstraM. van der ZeeM. MolenveldK. Effect of Mineral Fillers on the Mechanical Properties of Commercially Available Biodegradable Polymers.Polymers (Basel)202113339410.3390/polym1303039433513697
    [Google Scholar]
  38. NagarajanR.D. MuruganP. PalaniyandiK. AtchudanR. SundramoorthyA.K. Biocompatible MXene (Ti3C2Tx) Immobilized with Flavin Adenine Dinucleotide as an Electrochemical Transducer for Hydrogen Peroxide Detection in Ovarian Cancer Cell Lines.Micromachines (Basel)202112886210.3390/mi1208086234442484
    [Google Scholar]
  39. KozuskoS.D. RiccioC. GoulartM. BumgardnerJ. JingX.L. KonofaosP. Chitosan as a Bone Scaffold Biomaterial.J. Craniofac. Surg.20182971788179310.1097/SCS.000000000000490930157141
    [Google Scholar]
  40. AkpanE.I. GbeneborO.P. AdeosunS.O. CletusO. Chitin and chitosan composites for bone tissue regeneration.Handbook of Chitin and Chitosan. GopiS. ThomasS. PiusA. AmsterdamElsevier202049955310.1016/B978‑0‑12‑817966‑6.00016‑9
    [Google Scholar]
  41. GollerS. TurnerN.J. The Antimicrobial Effectiveness and Cytotoxicity of the Antibiotic-Loaded Chitosan: ECM Scaffolds.Appl. Sci. (Basel)20201010344610.3390/app10103446
    [Google Scholar]
  42. SeidiF. Arabi ShamsabadiA. Dadashi FirouzjaeiM. ElliottM. SaebM.R. HuangY. LiC. XiaoH. AnasoriB. MXenes Antibacterial Properties and Applications: A Review and Perspective.Small20231914220671610.1002/smll.20220671636604987
    [Google Scholar]
  43. MaJ. ZhangL. LeiB. Multifunctional MXene-Based Bioactive Materials for Integrated Regeneration Therapy.ACS Nano20231720195261954910.1021/acsnano.3c0191337804317
    [Google Scholar]
  44. LuoR. LiF. WangY. ZouH. ShangJ. FanY. LiuH. XuZ. LiR. LiuH. MXene-modified 3D printed scaffold for photothermal therapy and facilitation of oral mucosal wound reconstruction.Mater. Des.202322711173110.1016/j.matdes.2023.111731
    [Google Scholar]
  45. PektasH.K. DemidovY. AhvanA. AbieN. GeorgievaV.S. ChenS. FarèS. BrachvogelB. MathurS. MalekiH. MXene-Integrated Silk Fibroin-Based Self-Assembly-Driven 3D-Printed Theragenerative Scaffolds for Remotely Photothermal Anti-Osteosarcoma Ablation and Bone Regeneration.ACS Mater. Au20233671172610.1021/acsmaterialsau.3c0004038089660
    [Google Scholar]
  46. LiF. YanY. WangY. FanY. ZouH. LiuH. LuoR. LiR. LiuH. A bifunctional MXene-modified scaffold for photothermal therapy and maxillofacial tissue regeneration.Regen. Biomater.20218rbab05710.1093/rb/rbab057
    [Google Scholar]
  47. MalekiA. GhomiM. NikfarjamN. AkbariM. SharifiE. ShahbaziM.A. KermanianM. SeyedhamzehM. Nazarzadeh ZareE. MehraliM. MoradiO. SefatF. MattoliV. MakvandiP. ChenY. Biomedical applications of MXene‐integrated composites: Regenerative medicine, infection therapy, cancer treatment, and biosensing.Adv. Funct. Mater.20223234220343010.1002/adfm.202203430
    [Google Scholar]
  48. DongY. LiuJ. ChenY. ZhuT. LiY. ZhangC. ZengX. ChenQ. PengQ. Photothermal and natural activity-based synergistic antibacterial effects of Ti3C2Tx MXene-loaded chitosan hydrogel against methicillin-resistant Staphylococcus aureus.Int. J. Biol. Macromol.202324012448210.1016/j.ijbiomac.2023.12448237076073
    [Google Scholar]
  49. IravaniS. VarmaR.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances.Mater. Adv.2021292906291710.1039/D1MA00189B
    [Google Scholar]
  50. IravaniS. VarmaR.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges.ACS Biomater. Sci. Eng.2021761900191310.1021/acsbiomaterials.0c0176333851823
    [Google Scholar]
  51. AndreeßenC. SteinbüchelA. Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives.Appl. Microbiol. Biotechnol.2019103114315710.1007/s00253‑018‑9483‑630397765
    [Google Scholar]
  52. DuttaguptaD. JadhavV. KadamV. Chitosan: A propitious biopolymer for drug delivery.Curr. Drug Deliv.201512436938110.2174/156720181266615031015165725761010
    [Google Scholar]
  53. ZamboulisA. NanakiS. MichailidouG. KoumentakouI. LazaridouM. AinaliN.M. XanthopoulouE. BikiarisD.N. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments.Polymers (Basel)2020127151910.3390/polym1207151932650536
    [Google Scholar]
  54. de Sousa VictorR. Marcelo da Cunha SantosA. Viana de SousaB. de Araújo NevesG. Navarro de Lima SantanaL. Rodrigues MenezesR. A review on chitosan’s uses as biomaterial: Tissue engineering, drug delivery systems and cancer treatment.Materials (Basel)20201321499510.3390/ma1321499533171898
    [Google Scholar]
  55. IrimiaT. GhicaM. PopaL. AnuţaV. ArseneA.L. Dinu-PîrvuC.E. Strategies for Improving Ocular Drug Bioavailability and Corneal Wound Healing with Chitosan-Based Delivery Systems.Polymers (Basel)20181011122110.3390/polym1011122130961146
    [Google Scholar]
  56. NaveO.P. SigronM. A Mathematical Model for the Treatment of Melanoma with the BRAF/MEK Inhibitor and Anti-PD-1.Appl. Sci. (Basel)202212231247410.3390/app122312474
    [Google Scholar]
  57. PeptuC. HumelnicuA.C. RotaruR. FortunaM.E. PatrasX. TeodorescuM. Chitosan-based drug delivery systems.Chitin and Chitosan.Chichester, UKJohn Wiley & Sons, Ltd2019259289
    [Google Scholar]
  58. ThanouM. VerhoefJ.C. JungingerH.E. Oral drug absorption enhancement by chitosan and its derivatives.Adv. Drug Deliv. Rev.200152211712610.1016/S0169‑409X(01)00231‑911718935
    [Google Scholar]
  59. AshiqueS. GargA. MishraN. RainaN. MingL.C. TulliH.S. BehlT. RaniR. GuptaM. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC).Naunyn Schmiedebergs Arch. Pharmacol.2023396112769279210.1007/s00210‑023‑02522‑537219615
    [Google Scholar]
  60. LiuQ. ZhangZ. JinX. JiangY.R. JiaX.B. Enhanced dissolution and oral bioavailability of tanshinone IIA base by solid dispersion system with low-molecular-weight chitosan.J. Pharm. Pharmacol.201365683984610.1111/jphp.1204723647677
    [Google Scholar]
  61. KurakulaM. SobahiT.R. AbdelaalM.Y. El-HelwA.M. Chitosan based atorvastatin nanocrystals: Effect of cationic charge on particle size, formulation stability, and in-vivo efficacy.Int. J. Nanomedicine20151032133410.2147/IJN.S7773125609947
    [Google Scholar]
  62. Al-HilalT.A. AlamF. ByunY. Oral drug delivery systems using chemical conjugates or physical complexes.Adv. Drug Deliv. Rev.201365684586410.1016/j.addr.2012.11.00223220326
    [Google Scholar]
  63. AshiqueS. SandhuN.K. ChawlaV. ChawlaP.A. Targeted Drug Delivery: Trends and Perspectives.Curr. Drug Deliv.202118101435145510.2174/156720181866621060916130134151759
    [Google Scholar]
  64. AhmadM.Z. RizwanullahM. AhmadJ. AlasmaryM.Y. AkhterM.H. Abdel-WahabB.A. WarsiM.H. HaqueA. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy.Int. J. Polym. Mater.202271860262310.1080/00914037.2020.1869737
    [Google Scholar]
  65. PathakR. BhattS. PunethaV.D. PunethaM. Chitosan nanoparticles and based composites as a biocompatible vehicle for drug delivery: A review.Int. J. Biol. Macromol.2023253Pt 712736910.1016/j.ijbiomac.2023.12736937839608
    [Google Scholar]
  66. DamiriF. RahmanM.H. ZehraviM. AwajiA.A. NasrullahM.Z. GadH.A. Bani-FwazM.Z. VarmaR.S. GermoushM.O. Al-malkyH.S. SayedA.A. RojekarS. Abdel-DaimM.M. BerradaM. MXene (Ti3C2Tx)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review.Materials (Basel)2022155166610.3390/ma1505166635268907
    [Google Scholar]
  67. FuY. ZhangJ. LinH. MoA. 2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: In vitro and in vivo evaluations for bone regeneration.Mater. Sci. Eng. C202111811136710.1016/j.msec.2020.11136733254986
    [Google Scholar]
  68. CazónP. VázquezM. Applications of Chitosan as Food Packaging Materials.Sustainable Agriculture Reviews 36: Chitin and Chitosan: Applications in Food, Agriculture, Pharmacy, Medicine and Wastewater Treatment. CriniG. LichtfouseE. ChamSpringer International Publishing20198112310.1007/978‑3‑030‑16581‑9_3
    [Google Scholar]
  69. LiuL. YangZ. ZhangJ. WangL. PangJ. WangA. DingL. LiuH. YuX. Research progress in the application of MXene in bacterial detection and eradication.Mater. Today Phys.20244310141210.1016/j.mtphys.2024.101412
    [Google Scholar]
  70. TaokaewS. KaewkongW. KriangkraiW. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications.Gels20239427710.3390/gels904027737102889
    [Google Scholar]
  71. FrigaardJ. JensenJ.L. GaltungH.K. HiorthM. The Potential of Chitosan in Nanomedicine: An Overview of the Cytotoxicity of Chitosan Based Nanoparticles.Front. Pharmacol.20221388037710.3389/fphar.2022.88037735600854
    [Google Scholar]
  72. WangL. WangD. WangK. JiangK. ShenG. Biocompatible MXene/Chitosan-Based Flexible Bimodal Devices for Real-Time Pulse and Respiratory Rate Monitoring.ACS Mater. Lett.20213792192910.1021/acsmaterialslett.1c00246
    [Google Scholar]
  73. HuangY. WangX. LuoB. JinP. ZhengY. XuC. WuZ. MXene-NH2/chitosan hemostatic sponges for rapid wound healing.Int. J. Biol. Macromol.2024260Pt 112948910.1016/j.ijbiomac.2024.12948938242399
    [Google Scholar]
  74. ZhaoH. FuQ. WangZ. WangZ. HuJ. WangJ. Fabrication and characterization of bifunctional PCL/chitosan scaffolds decorated with MXene nanoflakes for bone tissue engineering.Polymer (Guildf.)202430312711110.1016/j.polymer.2024.127111
    [Google Scholar]
  75. AhmedB. HossainM.J. Al ParvezA. TalukderA. Al-AminM. Al MahmudM.A. IslamT. Recent advancements of MXene/nanocellulose‐based hydrogel and aerogel: A review.Adv. Energy Sustain. Res.202453230023110.1002/aesr.202300231
    [Google Scholar]
  76. SavageD.T. HiltJ.Z. DziublaT.D. In Vitro Methods for Assessing Nanoparticle Toxicity.Methods Mol. Biol.2019189412910.1007/978‑1‑4939‑8916‑4_130547452
    [Google Scholar]
  77. IravaniP. IravaniS. VarmaR.S. MXene-Chitosan Composites and Their Biomedical Potentials.Micromachines (Basel)2022139138310.3390/mi1309138336144006
    [Google Scholar]
  78. YalcinS. CankayaN. Chitosan-Based Nanocomposites for Biological Applications.Nanoclay-Recent Advances, New Perspectives and Applications.LondonIntechOpen202210.5772/intechopen.106379
    [Google Scholar]
  79. AntabyE. KlinkhammerK. SabantinaL. Electrospinning of Chitosan for Antibacterial Applications—Current Trends.Appl. Sci. (Basel)202111241193710.3390/app112411937
    [Google Scholar]
  80. VasyukovaI.A. ZakharovaO.V. KuznetsovD.V. GusevA.A. Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review.Nanomaterials (Basel)20221211179710.3390/nano1211179735683652
    [Google Scholar]
  81. GeorgeS.M. KandasubramanianB. Advancements in MXene-Polymer composites for various biomedical applications.Ceram. Int.20204678522853510.1016/j.ceramint.2019.12.257
    [Google Scholar]
  82. NasrallahG.K. Al-AsmakhM. RasoolK. MahmoudK.A. Ecotoxicological assessment of Ti 3 C 2 T x (MXene) using a zebrafish embryo model.Environ. Sci. Nano2018541002101110.1039/C7EN01239J
    [Google Scholar]
  83. SagadevanS. OhW.C. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility.J. Drug Deliv. Sci. Technol.20238510456910.1016/j.jddst.2023.104569
    [Google Scholar]
  84. Rozmysłowska-WojciechowskaA. KarwowskaE. GlocM. WoźniakJ. PetrusM. PrzybyszewskiB. WojciechowskiT. JastrzębskaA.M. Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXene.Materials (Basel)20201320458710.3390/ma1320458733076362
    [Google Scholar]
  85. El Idrissi El HassaniC. DaoudiH. El AchabyM. KassabZ. Biomedical Applications of Chitosan-Based Nanostructured Composite Materials.Chitosan Nanocomposites. SwainS.K. BiswalA. Cham, SingaporeSpringer Nature Singapore20238110710.1007/978‑981‑19‑9646‑7_4
    [Google Scholar]
  86. FriggeriG. MorettiI. AmatoF. MarraniA.G. SciandraF. ColombarolliS.G. VitaliA. ViscusoS. AugelloA. CuiL. PeriniG. De SpiritoM. PapiM. PalmieriV. Multifunctional scaffolds for biomedical applications: Crafting versatile solutions with polycaprolactone enriched by graphene oxide.APL Bioeng.20248101611510.1063/5.018493338435469
    [Google Scholar]
  87. LeeI.C. LiY.C.E. ThomasJ.L. LeeM.H. LinH.Y. Recent advances using MXenes in biomedical applications.Mater. Horiz.202411487690210.1039/D3MH01588B38175543
    [Google Scholar]
  88. KuoC.Y. LinT.Y. YehY.C. Hydrogel-Based Strategies for the Management of Osteomyelitis.ACS Biomater. Sci. Eng.2023941843186110.1021/acsbiomaterials.2c0105736995966
    [Google Scholar]
  89. PereraA.A.P.R. MadhushaniK.A.U. PunchihewaB.T. KumarA. GuptaR.K. MXene-Based Nanomaterials for Multifunctional Applications.Materials (Basel)2023163113810.3390/ma1603113836770145
    [Google Scholar]
  90. RasoolK. HelalM. AliA. RenC.E. GogotsiY. MahmoudK.A. Antibacterial Activity of Ti3C2T x MXene.ACS Nano20161033674368410.1021/acsnano.6b0018126909865
    [Google Scholar]
  91. LiQ. ZhouR. XieY. LiY. ChenY. CaiX. Sulphur‐doped carbon dots as a highly efficient nano‐photodynamic agent against oral squamous cell carcinoma.Cell Prolif.2020534e1278610.1111/cpr.1278632301195
    [Google Scholar]
  92. WuS. ChenD. HanW. XieY. ZhaoG. DongS. TanM. HuangH. XuS. ChenG. ChengY. ZhangX. Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation.Chem. Eng. J.202244613709310.1016/j.cej.2022.137093
    [Google Scholar]
  93. AswathanarayanJB MadhunapantulaSV VittalRR MXene‐based polymer composites for various biomedical applications.MXene Reinforced Polymer CompositesHoboken, New JerseyWiley202410.1002/9781119901280.ch13
    [Google Scholar]
  94. KumarA. KumarA. Chitosan-Based Drug Conjugated Nanocomposites: Advances and Innovation in Cancer Therapy.Regen. Eng. Transl. Med.20241011810.1007/s40883‑023‑00310‑4
    [Google Scholar]
  95. YangZ. SunZ. RenY. ChenX. ZhangW. ZhuX. MaoZ. ShenJ. NieS. Advances in nanomaterials for use in photothermal and photodynamic therapeutics (Review).Mol. Med. Rep.201920151510.3892/mmr.2019.1021831115497
    [Google Scholar]
  96. SomanS. KulkarniS. PandeyA. DhasN. ShirurK.S. GudeR.S. VidyaS.M. NayakS. GeorgeS.D. MutalikS. Unlocking the power of MXenes – Crafting a 2D nanoplatform for tomorrow: Synthesis, functionalization, stability, and biomedical applications.Mater. Today Commun.20243810771110.1016/j.mtcomm.2023.107711
    [Google Scholar]
  97. WangY. ChangL. GaoH. YuC. GaoY. PengQ. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer.Eur. J. Med. Chem.202427211650810.1016/j.ejmech.2024.11650838761583
    [Google Scholar]
  98. HuangM. HuangY. LiuH. TangZ. ChenY. HuangZ. XuS. DuJ. JiaB. Hydrogels for the treatment of oral and maxillofacial diseases: Current research, challenges, and future directions.Biomater. Sci.202210226413644610.1039/D2BM01036D36069391
    [Google Scholar]
  99. LinY. XuS. ZhaoX. ChangL. HuY. ChenZ. MeiX. ChenD. Preparation of NIR-sensitive, photothermal and photodynamic multi-functional Mxene nanosheets for laryngeal cancer therapy by regulating mitochondrial apoptosis.Mater. Des.202222011088710.1016/j.matdes.2022.110887
    [Google Scholar]
  100. LinX. LiZ. QiuJ. WangQ. WangJ. ZhangH. ChenT. Fascinating MXene nanomaterials: Emerging opportunities in the biomedical field.Biomater. Sci.20219165437547110.1039/D1BM00526J34296233
    [Google Scholar]
  101. DoA.V. KhorsandB. GearyS.M. SalemA.K. 3D Printing of Scaffolds for Tissue Regeneration Applications.Adv. Healthc. Mater.20154121742176210.1002/adhm.20150016826097108
    [Google Scholar]
  102. ZorrónM. CabreraA.L. SharmaR. RadhakrishnanJ. AbbaszadehS. ShahbaziM.A. TafreshiO.A. KaramikamkarS. MalekiH. Emerging 2D nanomaterials-integrated hydrogels: Advancements in designing theragenerative materials for bone regeneration and disease therapy.Adv. Sci. (Weinh.)20241131240320410.1002/advs.20240320438874422
    [Google Scholar]
  103. PanS. YinJ. YuL. ZhangC. ZhuY. GaoY. ChenY. 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction.Adv. Sci. (Weinh.)202072190151110.1002/advs.20190151131993282
    [Google Scholar]
  104. KhabisiM.A. ShiriniF. ShiriniK. KhorsandH. MarianM. RosenkranzA. Additively manufactured MAX- and MXene-composite scaffolds for bone regeneration- recent advances and future perspectives.Colloids Surf. B Biointerfaces202322511328210.1016/j.colsurfb.2023.11328237003247
    [Google Scholar]
  105. NieR. SunY. LvH. LuM. HuangfuH. LiY. ZhangY. WangD. WangL. ZhouY. 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models.Nanoscale202214228112812910.1039/D2NR02176E35612416
    [Google Scholar]
  106. IravaniS. Nazarzadeh ZareE. MakvandiP. Multifunctional MXene-Based Platforms for Soft and Bone Tissue Regeneration and Engineering.ACS Biomater. Sci. Eng.20241041892190910.1021/acsbiomaterials.3c0177038466909
    [Google Scholar]
  107. ZhangG. LuY. SongJ. HuangD. AnM. ChenW. HanP. YaoX. ZhangX. A multifunctional nano-hydroxyapatite/MXene scaffold for the photothermal/dynamic treatment of bone tumours and simultaneous tissue regeneration.J. Colloid Interface Sci.2023652Pt B1673168410.1016/j.jcis.2023.08.17637666199
    [Google Scholar]
  108. HoT.T.P. DoanV.K. TranN.M.P. NguyenL.K.K. LeA.N.M. HoM.H. TrinhN.T. Van VoT. TranL.D. NguyenT.H. Fabrication of chitosan oligomer-coated electrospun polycaprolactone membrane for wound dressing application.Mater. Sci. Eng. C202112011172410.1016/j.msec.2020.11172433545875
    [Google Scholar]
  109. LiS. LeiH. LiuH. SongP. FanS. WuL. LiaoD. XianG. XiongL. ZhouC. FanH. Pulsed electrodeposition of MXenes/HAp multiple biological functional coatings on 3D printed porous Ti-6Al-4V bone tissue engineering scaffold.Surf. Coat. Tech.202346412953210.1016/j.surfcoat.2023.129532
    [Google Scholar]
  110. RashidB. AnwarA. ShahabuddinS. MohanG. SaidurR. AslfattahiN. SridewiN. A Comparative Study of Cytotoxicity of PPG and PEG Surface-Modified 2-D Ti3C2 MXene Flakes on Human Cancer Cells and Their Photothermal Response.Materials (Basel)20211416437010.3390/ma1416437034442891
    [Google Scholar]
  111. ZhangX. WangT. ZhangZ. LiuH. LiL. WangA. OuyangJ. XieT. ZhangL. XueJ. TaoW. Electrical stimulation system based on electroactive biomaterials for bone tissue engineering.Mater. Today20236817720310.1016/j.mattod.2023.06.011
    [Google Scholar]
  112. WeiH. CuiJ. LinK. XieJ. WangX. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration.Bone Res.20221011710.1038/s41413‑021‑00180‑y35197462
    [Google Scholar]
  113. KangM.S. JangH.J. JoH.J. RajaI.S. HanD.W. MXene and Xene: Promising frontier beyond graphene in tissue engineering and regenerative medicine.Nanoscale Horiz.2023919311710.1039/D3NH00428G38032647
    [Google Scholar]
  114. KoyappayilA. ChavanS.G. RohY.G. LeeM.H. Advances of MXenes; Perspectives on Biomedical Research.Biosensors (Basel)202212745410.3390/bios1207045435884257
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947326282240924003811
Loading
/content/journals/cctr/10.2174/0115733947326282240924003811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test