Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Background

In recent years, cancer has become a noncommunicable disease with a high mortality in the world, constituting the second cause of death. Although it has a predominance of genetic abnormalities, molecular studies have shown that epigenetic alterations share a leading role in its development. Among the epigenetic drugs that inhibit deacetylases, valproic acid (VPA) is a branched short-chain fatty acid that has been in clinical use for over 50 years. The potentialities of this drug that justify its use in antineoplastic therapy have been described recently. This drug offers the possibility of reversing some malignant characteristics of cancer cells, and it can be used in small, minimally toxic doses at low cost.

Objective

The aim of this study was to evaluate the use of valproic acid as an antineoplastic treatment in animal models.

Methods

A systematic review was conducted following the Prisma guidelines. Pubmed and Scopus were consulted for original articles that had evaluated the antineoplastic effect of VPA in the last 10 years. Results are presented in tables and graphs.

Results

A total of 41 specific articles on the topic were selected. Few preclinical studies demonstrated the antineoplastic effects of VPA. Prostatic and hepatocellular carcinoma were the most common cancers in the consulted reports. Combination therapies using VPA with cytotoxic agents prevailed in this research, demonstrating a synergistic effect in reducing tumour volume.

Conclusion

VPA has an antineoplastic effect, and combination therapies show better results than monotherapies. However, more studies are required to confirm the usefulness of VPA as an adjuvant in the treatment of cancer.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947301075240529092425
2024-06-11
2026-02-12
Loading full text...

Full text loading...

References

  1. HanahanD. WeinbergR.A. Hallmarks of cancer: the next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.21590 31912902
    [Google Scholar]
  4. PúblicaM.S. Health Statistical Yearbook.La HabanaOMS2020 http://bvscuba.sld.cu/anuario-estadisticode-cuba/
    [Google Scholar]
  5. AggarwalB.B. VijayalekshmiR.V. SungB. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe.Clin. Cancer Res.200915242543010.1158/1078‑0432.CCR‑08‑0149 19147746
    [Google Scholar]
  6. ArozamenaM.S.D-R. Advances in epigenetics in cancerAvailable From: https://digital.csic.es/bitstream/10261/164964/1/RivavelardeTFG.pdf (Accessed on 25 May, 2022).2016
  7. Valdespino-GómezV.M. Valdespino-CastilloV.E. Epigenetic therapy in cancer. Achievements and prospects.Cir. Cir.2012805470480 23351455
    [Google Scholar]
  8. López-EstupiñanA.D. Mondragón-ChavesA.F. Giraldo-VelásquezA.F. Olave-MedinaJ.D. Londoño-VelascoE. Description of the main epigenetic alterations associated with the development of colorectal, prostate, breast and gastric cancer: Topic review.Salutem Scientia Spiritus2021713651
    [Google Scholar]
  9. YeraR.A.M. PérezL.S. DíazA.T. Chemotherapy-induced cardiotoxicity.CorSalud20181016877
    [Google Scholar]
  10. ChenS. WuH. KlebeD. HongY. ZhangJ. Valproic acid: a new candidate of therapeutic application for the acute central nervous system injuries.Neurochem. Res.20143991621163310.1007/s11064‑014‑1241‑2 24482021
    [Google Scholar]
  11. Luna-PalenciaG.R. Correa-BasurtoJ. Vásquez-MoctezumaI. Valproic acid as a sensitizing agent in anticancer treatment.Gac. Med. Mex.2019155441742210.24875/GMM.18004749 31486780
    [Google Scholar]
  12. Luna-PalenciaG.R. Fernández-NavarreteE. Vásquez-MoctezumaI. The epigenetic and anti-cancer properties of valproic acid.Mexicana de Mastología20201025462
    [Google Scholar]
  13. TranL.N.K. KichenadasseG. MorelK.L. The Combination of Metformin and Valproic Acid Has a Greater Anti-tumoral Effect on Prostate Cancer Growth In Vivo than Either Drug Alone.In Vivo20193319910810.21873/invivo.11445 30587609
    [Google Scholar]
  14. ThelenP. KrahnL. BremmerF. StraussA. BrehmR. LoertzerH. Synergistic effects of histone deacetylase inhibitor in combination with mTOR inhibitor in the treatment of prostate carcinoma.Int. J. Mol. Med.201331233934610.3892/ijmm.2012.1221 23292124
    [Google Scholar]
  15. HudakL. TezeehP. WedelS. Low dosed interferon alpha augments the anti‐tumor potential of histone deacetylase inhibition on prostate cancer cell growth and invasion.Prostate201272161719173510.1002/pros.22525 22473339
    [Google Scholar]
  16. IannelliF. RocaM.S. LombardiR. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition.J. Exp. Clin. Cancer Res.202039121310.1186/s13046‑020‑01723‑7 33032653
    [Google Scholar]
  17. SidanaAbhinav WangMuwen ShabbeerShabana Mechanism of growth inhibition of prostate cancer xenografts by valproic acid.Bio Res Int20122012910.1155/2012/180363
    [Google Scholar]
  18. LiX. ZhuY. HeH. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells.Biochem. Biophys. Res. Commun.2013436225926410.1016/j.bbrc.2013.05.088 23726914
    [Google Scholar]
  19. YuJ.I. ChoiC. ShinS.W. Valproic acid sensitizes hepatocellular carcinoma cells to proton therapy by suppressing NRF2 activation.Sci. Rep.2017711498610.1038/s41598‑017‑15165‑3 29118323
    [Google Scholar]
  20. LeeD.H. NamJ.Y. ChangY. Synergistic effect of cytokine-induced killer cell with valproate inhibits growth of hepatocellular carcinoma cell in a mouse model.Cancer Biol. Ther.2017181677510.1080/15384047.2016.1276132 28055304
    [Google Scholar]
  21. ZhuW. LiangQ. YangX. YuY. ShenX. SunG. Combination of sorafenib and Valproic acid synergistically induces cell apoptosis and inhibits hepatocellular carcinoma growth via down-regulating Notch3 and pAkt.Am. J. Cancer Res.201771225032514 29312803
    [Google Scholar]
  22. LinT. RenQ. ZuoW. Valproic acid exhibits anti-tumor activity selectively against EGFR/ErbB2/ErbB3-coexpressing pancreatic cancer via induction of ErbB family members-targeting microRNAs.J. Exp. Clin. Cancer Res.201938115010.1186/s13046‑019‑1160‑9 30961642
    [Google Scholar]
  23. SunL. QianQ. SunG. Valproic acid induces NET cell growth arrest and enhances tumor suppression of the receptor-targeted peptide–drug conjugate via activating somatostatin receptor type II.J. Drug Target.201624216917710.3109/1061186X.2015.1066794 26211366
    [Google Scholar]
  24. ShiP. YinT. ZhouF. CuiP. GouS. WangC. Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway.BMC Cancer201414137010.1186/1471‑2407‑14‑370 24885711
    [Google Scholar]
  25. NagaiH. Fujioka-KobayashiM. OheG. Antitumour effect of valproic acid against salivary gland cancer in vitro and in vivo.Oncol. Rep.20143131453145810.3892/or.2013.2959 24398788
    [Google Scholar]
  26. JiM.M. WangL. ZhanQ. Induction of autophagy by valproic acid enhanced lymphoma cell chemosensitivity through HDAC-independent and IP3-mediated PRKAA activation.Autophagy201511122160217110.1080/15548627.2015.1082024 26735433
    [Google Scholar]
  27. ZhengZ. ChengS. WuW. c-FLIP is involved in tumor progression of peripheral T-cell lymphoma and targeted by histone deacetylase inhibitors.J. Hematol. Oncol.2014718810.1186/s13045‑014‑0088‑y 25477070
    [Google Scholar]
  28. IgarashiK. YamamotoN. HayashiK. Non-toxic Efficacy of the Combination of Caffeine and Valproic Acid on Human Osteosarcoma Cells In Vitro and in Orthotopic Nude-mouse Models.Anticancer Res.20163694477448210.21873/anticanres.10992 27630284
    [Google Scholar]
  29. ZhuJ. GuJ. MaJ. XuZ. TaoH. Histone deacetylase inhibitors repress chondrosarcoma cell proliferation.J BUON2015201269274 25778327
    [Google Scholar]
  30. ShanZ. Feng-NianR. JieG. TingZ. Effects of valproic acid on proliferation, apoptosis, angiogenesis and metastasis of ovarian cancer in vitro and in vivo.APJCP201213839773982 23098503
    [Google Scholar]
  31. BoothL. RobertsJ.L. RaisR. Palbociclib augments Neratinib killing of tumor cells that is further enhanced by HDAC inhibition.Cancer Biol. Ther.201920215716810.1080/15384047.2018.1507665 30183517
    [Google Scholar]
  32. WangD. JingY. OuyangS. Inhibitory effect of valproic acid on bladder cancer in combination with chemotherapeutic agents in vitro and in vivo.Oncol. Lett.2013651492149810.3892/ol.2013.1565 24179547
    [Google Scholar]
  33. LiT. YuY. ShiH. Magnesium in combinatorial with valproic acid suppressed the proliferation and migration of human bladder cancer cells.Front. Oncol.20201058911210.3389/fonc.2020.589112 33363019
    [Google Scholar]
  34. LeeS.H. NamH.J. KangH.J. SamuelsT.L. JohnstonN. LimY.C. Valproic acid suppresses the self-renewal and proliferation of head and neck cancer stem cells.Oncol. Rep.20153442065207110.3892/or.2015.4145 26239260
    [Google Scholar]
  35. IannelliF. ZottiA.I. RocaM.S. Valproic acid synergizes with cisplatin and cetuximab in vitro and in vivo in head and neck cancer by targeting the mechanisms of resistance.Front. Cell Dev. Biol.2020873210.3389/fcell.2020.00732 33015030
    [Google Scholar]
  36. LiW. MaL. Synergistic antitumor activity of oridonin and valproic acid on HL‐60 leukemia cells.J. Cell. Biochem.201912045620562710.1002/jcb.27845 30320906
    [Google Scholar]
  37. ParkS. HanH. AhnS. RyuC. JeunS.S. Combination treatment with VPA and MSCs TRAIL could increase anti tumor effects against intracranial glioma.Oncol. Rep.202145386987810.3892/or.2021.7937 33469674
    [Google Scholar]
  38. ChieE.K. ShinJ.H. KimJ.H. KimH.J. KimI.A. KimI.H. In vitro and in vivo radiosensitizing effect of valproic acid on fractionated irradiation.Cancer Res. Treat.201547352753310.4143/crt.2014.026 25600060
    [Google Scholar]
  39. ThotalaD. KarvasR.M. EngelbachJ.A. Valproic acid enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma cells.Oncotarget2015633350043502210.18632/oncotarget.5253 26413814
    [Google Scholar]
  40. ParkH.K. HanB.R. ParkW.H. Combination of Arsenic Trioxide and Valproic Acid Efficiently Inhibits Growth of Lung Cancer Cells via G2/M-Phase Arrest and Apoptotic Cell Death.Int. J. Mol. Sci.2020217264910.3390/ijms21072649 32290325
    [Google Scholar]
  41. BoothL. RobertsJ.L. PoklepovicA. DentP. [pemetrexed + sildenafil], via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells.Cancer Biol. Ther.201718970571410.1080/15384047.2017.1362511 28812434
    [Google Scholar]
  42. StakisaitisD. UleckieneS. DidziapetrieneJ. ValanciuteA. MozuraiteR. MatuseviciusP. Sodium valproate enhances urethane tumorigenicity in lungs of male but not female mice.EXCLI J.201413667687 26417291
    [Google Scholar]
  43. TsaiC. LeslieJ.S. Franko-TobinL.G. Valproic acid suppresses cervical cancer tumor progression possibly via activating Notch1 signaling and enhances receptor-targeted cancer chemotherapeutic via activating somatostatin receptor type II.Arch. Gynecol. Obstet.2013288239340010.1007/s00404‑013‑2762‑7 23435724
    [Google Scholar]
  44. ZhangL. KangW. LuX. MaS. DongL. ZouB. Weighted gene co-expression network analysis and connectivity map identifies lovastatin as a treatment option of gastric cancer by inhibiting HDAC2.Gene2019681152510.1016/j.gene.2018.09.040 30266498
    [Google Scholar]
  45. BressyC. MajhenD. RaddiN. Combined therapy of colon carcinomas with an oncolytic adenovirus and valproic acid.Oncotarget2017857973449736010.18632/oncotarget.22107 29228615
    [Google Scholar]
  46. Terranova-BarberioM. RocaM.S. ZottiA.I. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression.Oncotarget2016777715773110.18632/oncotarget.6802 26735339
    [Google Scholar]
  47. LeitchC. OsdalT. AndresenV. Hydroxyurea synergizes with valproic acid in wild-type p53 acute myeloid leukaemia.Oncotarget2016778105811810.18632/oncotarget.6991 26812881
    [Google Scholar]
  48. ForthunR.B. HellesøyM. SulenA. Modulation of phospho-proteins by interferon-alpha and valproic acid in acute myeloid leukemia.J. Cancer Res. Clin. Oncol.201914571729174910.1007/s00432‑019‑02931‑1 31111215
    [Google Scholar]
  49. TavallaiS. HamedH.A. GrantS. PoklepovicA. DentP. Pazopanib and HDAC inhibitors interact to kill sarcoma cells.Cancer Biol. Ther.201415557858510.4161/cbt.28163 24556916
    [Google Scholar]
  50. CruickshanksN. HamedH.A. BoothL. Histone deacetylase inhibitors restore toxic BH3 domain protein expression in anoikis-resistant mammary and brain cancer stem cells, thereby enhancing the response to anti-ERBB1/ERBB2 therapy.Cancer Biol. Ther.2013141098299610.4161/cbt.26234 24025251
    [Google Scholar]
  51. BoothL. RobertsJ.L. PoklepovicA. KirkwoodJ. DentP. HDAC inhibitors enhance the immunotherapy response of melanoma cells.Oncotarget2017847831558317010.18632/oncotarget.17950 29137331
    [Google Scholar]
  52. IgarashiK. KawaguchiK. KiyunaT. Patient-derived orthotopic xenograft (PDOX) mouse model of adult rhabdomyosarcoma invades and recurs after resection in contrast to the subcutaneous ectopic model.Cell Cycle2017161919410.1080/15384101.2016.1252885 27830986
    [Google Scholar]
  53. JuengelE. MakarevićJ. TsaurI. Resistance after chronic application of the HDAC-inhibitor valproic acid is associated with elevated Akt activation in renal cell carcinoma in vivo.PLoS One201381e5310010.1371/journal.pone.0053100 23372654
    [Google Scholar]
  54. MokhtariR.B. HomayouniT.S. BaluchN. Combination therapy in combating cancer.Oncotarget2017823380223804310.18632/oncotarget.16723 28410237
    [Google Scholar]
  55. TranL.N.K. KichenadasseG. SykesP.J. Combination therapies using metformin and/or valproic acid in prostate cancer: Possible mechanistic interactions.Curr. Cancer Drug Targets201919536838110.2174/1568009618666180724111604 30039761
    [Google Scholar]
  56. ChateauvieuxS. MorceauF. DicatoM. DiederichM. Molecular and therapeutic potential and toxicity of valproic acid.J. Biomed. Biotechnol.2010201011810.1155/2010/479364 20798865
    [Google Scholar]
  57. PhielC.J. ZhangF. HuangE.Y. GuentherM.G. LazarM.A. KleinP.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen.J. Biol. Chem.200127639367343674110.1074/jbc.M101287200 11473107
    [Google Scholar]
  58. BlahetaR.A. CinatlJ.Jr Anti‐tumor mechanisms of valproate: A novel role for an old drug.Med. Res. Rev.200222549251110.1002/med.10017 12210556
    [Google Scholar]
  59. LipskaK. GumieniczekA. FilipA.A. Anticonvulsant valproic acid and other short-chain fatty acids as novel anticancer therapeutics: Possibilities and challenges.Acta Pharm.202070329130110.2478/acph‑2020‑0021 32074065
    [Google Scholar]
  60. FalzoneL. SalomoneS. LibraM. Evolution of cancer pharmacological treatments at the turn of the third millennium.Front. Pharmacol.20189130010.3389/fphar.2018.01300 30483135
    [Google Scholar]
  61. TurnbullD.M. RawlinsM.D. WeightmanD. ChadwickD.W. Plasma concentrations of sodium valproate: Their clinical value.Ann. Neurol.1983141384210.1002/ana.410140107 6412620
    [Google Scholar]
  62. KongS.T. LinH.S. ChingJ. XieH. HoP.C. Dried Blood Spots as Matrix for Evaluation of Valproate Levels and the Immediate and Delayed Metabolomic Changes Induced by Single Valproate Dose Treatment.Int. J. Mol. Sci.20222313708310.3390/ijms23137083 35806086
    [Google Scholar]
  63. LiZ. ZhengW. WangH. Application of animal models in cancer research: Recent progress and future prospects.Cancer Manag. Res.2021132455247510.2147/CMAR.S302565 33758544
    [Google Scholar]
  64. YeeN.S. IgnatenkoN. FinnbergN. LeeN. StairsD. Animal models of cancer biology.Sage Journals201510.4137/CGM.S37907
    [Google Scholar]
  65. NevedomskayaE. BaumgartS. HaendlerB. Recent advances in prostate cancer treatment and drug discovery.Int. J. Mol. Sci.2018195135910.3390/ijms19051359 29734647
    [Google Scholar]
  66. AljofanM. RiethmacherD. Anticancer activity of metformin: A systematic review of the literature.Future Sci. OA201958FSO41010.2144/fsoa‑2019‑0053 31534778
    [Google Scholar]
  67. KheirandishM. MahboobiH. YazdanparastM. KamalW. KamalM.A. Anti-cancer effects of metformin: Recent evidences for its role in prevention and treatment of cancer.Curr. Drug Metab.201819979379710.2174/1389200219666180416161846 29663879
    [Google Scholar]
  68. TranL.N.K. KichenadasseG. ButlerL.M. The combination of metformin and valproic acid induces synergistic apoptosis in the presence of p53 and androgen signaling in prostate cancer.Mol. Cancer Ther.201716122689270010.1158/1535‑7163.MCT‑17‑0074 28802253
    [Google Scholar]
  69. WangY. LiuG. TongD. Metformin represses androgen‐dependent and androgen‐independent prostate cancers by targeting androgen receptor.Prostate201575111187119610.1002/pros.23000 25894097
    [Google Scholar]
  70. MakarevićJ. RutzJ. JuengelE. Influence of the HDAC inhibitor valproic acid on the growth and proliferation of temsirolimus-resistant prostate cancer cells in vitro.Cancers201911456610.3390/cancers11040566 31010254
    [Google Scholar]
  71. LanTHP SariIN YangY-G Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer TreatmentStem Cells Int2018201810.1155/2018/5416923
    [Google Scholar]
  72. TsilimigrasD.I. Ntanasis-StathopoulosI. MorisD. SpartalisE. PawlikT.M. Histone deacetylase inhibitors in hepatocellular carcinoma: A therapeutic perspective.Surg. Oncol.201827461161810.1016/j.suronc.2018.07.015 30449480
    [Google Scholar]
  73. RanaK. Reinhart-KingC.A. KingM.R. Inducing apoptosis in rolling cancer cells: A combined therapy with aspirin and immobilized TRAIL and E-selectin.Mol. Pharm.2012982219222710.1021/mp300073j 22724630
    [Google Scholar]
  74. ChattopadhyayM. KodelaR. NathN. BarsegianA. BoringD. KashfiK. Hydrogen sulfide-releasing aspirin suppresses NF-κB signaling in estrogen receptor negative breast cancer cells in vitro and in vivo.Biochem. Pharmacol.201283672373210.1016/j.bcp.2011.12.019 22209867
    [Google Scholar]
  75. TuranliB. GrøtliM. BorenJ. Drug repositioning for effective prostate cancer treatment.Front. Physiol.20189150010.3389/fphys.2018.00500 29867548
    [Google Scholar]
  76. BhattaraiD. SinghS. JangY. Hyeon HanS. LeeK. ChoiY. An insight into drug repositioning for the development of novel anti-cancer drugs.Curr. Top. Med. Chem.201616192156216810.2174/1568026616666160216153618 26881715
    [Google Scholar]
  77. RahmanM. BordoniB. Histology, Natural Killer Cells.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  78. VivierE. TomaselloE. BaratinM. WalzerT. UgoliniS. Functions of natural killer cells.Nat. Immunol.20089550351010.1038/ni1582 18425107
    [Google Scholar]
  79. TangF. LiJ. QiL. A pan-cancer single-cell panorama of human natural killer cells.Cell20231861942354251.e2010.1016/j.cell.2023.07.034 37607536
    [Google Scholar]
  80. WuS.Y. FuT. JiangY.Z. ShaoZ.M. Natural killer cells in cancer biology and therapy.Mol. Cancer202019112010.1186/s12943‑020‑01238‑x 32762681
    [Google Scholar]
  81. AbelA.M. YangC. ThakarM.S. MalarkannanS. Natural Killer Cells: Development, Maturation, and Clinical Utilization.Front. Immunol.20189186910.3389/fimmu.2018.01869 30150991
    [Google Scholar]
  82. KimH.M. LimJ. ParkS.K. Antitumor activity of cytokine-induced killer cells against human lung cancer.Int. Immunopharmacol.20077131802180710.1016/j.intimp.2007.08.016 17996691
    [Google Scholar]
  83. RettingerE. KuçIS. NaumannI. The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer cells against leukemia cells.Cytotherapy20121419110310.3109/14653249.2011.613931 21973023
    [Google Scholar]
  84. KimH.M. KangJ.S. LimJ. Inhibition of human ovarian tumor growth by cytokine-induced killer cells.Arch. Pharm. Res.200730111464147010.1007/BF02977372 18087816
    [Google Scholar]
  85. KimY.J. LimJ. KangJ.S. Adoptive immunotherapy of human gastric cancer with ex vivo expanded T cells.Arch. Pharm. Res.201033111789179510.1007/s12272‑010‑1111‑7 21116782
    [Google Scholar]
  86. TangW. ChenZ. ZhangW. The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects.Signal Transduct. Target. Ther.2020518710.1038/s41392‑020‑0187‑x 32532960
    [Google Scholar]
  87. FanG. WeiX. XuX. Is the era of sorafenib over? A review of the literature.Ther. Adv. Med. Oncol.20201210.1177/1758835920927602 32518599
    [Google Scholar]
  88. AbduS. JuaidN. AminA. MoulayM. MiledN. Effects of Sorafenib and Quercetin Alone or in Combination in Treating Hepatocellular Carcinoma: in vitro and in vivo Approaches.Molecules20222722808210.3390/molecules27228082 36432184
    [Google Scholar]
  89. AbdelgalilA.A. AlkahtaniH.M. Al-JenoobiF.I. Sorafenib.Profiles Drug Subst. Excip. Relat. Methodol.20194423926610.1016/bs.podrm.2018.11.003 31029219
    [Google Scholar]
  90. GartenA. GrohmannT. KluckovaK. LaveryG.G. KiessW. PenkeM. Sorafenib-Induced Apoptosis in Hepatocellular Carcinoma Is Reversed by SIRT1.Int. J. Mol. Sci.20192016404810.3390/ijms20164048 31430957
    [Google Scholar]
  91. ChenJ. JinR. ZhaoJ. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma.Cancer Lett.2015367111110.1016/j.canlet.2015.06.019 26170167
    [Google Scholar]
  92. OgasawaraS. ChibaT. OokaY. Characteristics of patients with sorafenib-treated advanced hepatocellular carcinoma eligible for second-line treatment.Invest. New Drugs201836233233910.1007/s10637‑017‑0507‑3 28891038
    [Google Scholar]
  93. MorellC.M. FiorottoR. FabrisL. StrazzaboscoM. Notch signalling beyond liver development: Emerging concepts in liver repair and oncogenesis.Clin. Res. Hepatol. Gastroenterol.201337544745410.1016/j.clinre.2013.05.008 23806629
    [Google Scholar]
  94. Hontecillas-PrietoL. Flores-CamposR. SilverA. de ÁlavaE. HajjiN. García-DomínguezD.J. Synergistic enhancement of cancer therapy using HDAC inhibitors: Opportunity for clinical trials.Front. Genet.20201157801110.3389/fgene.2020.578011 33024443
    [Google Scholar]
  95. WangH. ZhangP. LinC. Relevance and therapeutic possibility of PTEN-long in renal cell carcinoma.PLoS One2015102e11425010.1371/journal.pone.0114250 25714556
    [Google Scholar]
  96. JonesJ. JuengelE. MickuckyteA. The histone deacetylase inhibitor valproic acid alters growth properties of renal cell carcinoma in vitro and in vivo.J. Cell. Mol. Med.2009138b2376238510.1111/j.1582‑4934.2008.00436.x 18657224
    [Google Scholar]
  97. RamaiahM.J. TanguturA.D. ManyamR.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy.Life Sci.202127711950410.1016/j.lfs.2021.119504 33872660
    [Google Scholar]
  98. JenkeR. ReßingN. HansenF.K. AignerA. BüchT. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives.Cancers202113463410.3390/cancers13040634 33562653
    [Google Scholar]
  99. SedkyN.K. HamdanA.A. EmadS. AllamA.L. AliM. TolbaM.F. Insights into the therapeutic potential of histone deacetylase inhibitor/immunotherapy combination regimens in solid tumors.Clin. Transl. Oncol.20222471262127310.1007/s12094‑022‑02779‑x 35066777
    [Google Scholar]
  100. SuraweeraA. O’ByrneK.J. RichardD.J. Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi.Front. Oncol.20188929210.3389/fonc.2018.00092 29651407
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947301075240529092425
Loading
/content/journals/cctr/10.2174/0115733947301075240529092425
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test