Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) have revolutionized various industries, including cancer research and drug discovery. This article provides a summary of the history of AI and ML, highlighting their resurgence in the 1990s with advancements in computational power and new algorithms. In the context of drug discovery, AI and ML techniques have been applied to accelerate the development of new drugs, from target identification and lead generation to drug repurposing. AI applications in drug design and virtual screening have improved the efficiency of identifying potential drug candidates. Deep learning, a division of ML, has been particularly effective in predicting protein structures and optimizing lead compounds. In anti-cancer drug target prediction, AI and ML algorithms analyze large-scale genomic, proteomic, and clinical data to identify potential targets for cancer therapy. AI has also transformed cancer imaging and diagnosis by enhancing the accuracy and efficiency of cancer detection, classification, and prognosis. Medical imaging analysis, pathology, and radiology have benefited from AI algorithms’ ability to interpret and analyze various imaging modalities. Moreover, AI applications in cancer treatment have facilitated the development of predictive models for treatment response, enabling personalized and targeted therapies based on individual patient characteristics. The purpose of the study was to provide facts regarding the integration of artificial intelligence and machine learning in drug discovery and cancer therapy and their significant prospects for improving efficiency, decreasing costs, and improving patient outcomes.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947288355240305080236
2024-03-11
2025-08-14
Loading full text...

Full text loading...

References

  1. HametP. TremblayJ. Artificial intelligence in medicine.Metabolism201769S36S4010.1016/j.metabol.2017.01.01128126242
    [Google Scholar]
  2. AmishaM.P. MalikP. PathaniaM. RathaurV. Overview of artificial intelligence in medicine.J. Family Med. Prim. Care2019872328233110.4103/jfmpc.jfmpc_440_1931463251
    [Google Scholar]
  3. KaulV. EnslinS. GrossS.A. History of artificial intelligence in medicine.Gastrointest. Endosc.202092480781210.1016/j.gie.2020.06.04032565184
    [Google Scholar]
  4. CuiW. AouidateA. WangS. YuQ. LiY. YuanS. Discovering anti-cancer drugs via computational methods.Front. Pharmacol.20201173310.3389/fphar.2020.0073332508653
    [Google Scholar]
  5. VamathevanJ. ClarkD. CzodrowskiP. DunhamI. FerranE. LeeG. LiB. MadabhushiA. ShahP. SpitzerM. ZhaoS. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑530976107
    [Google Scholar]
  6. JiaP. PeiJ. WangG. PanX. ZhuY. WuY. OuyangL. The roles of computer-aided drug synthesis in drug development.Green Synth Catal202231112410.1016/j.gresc.2021.11.007
    [Google Scholar]
  7. LinX. LiX. LinX. A review on applications of computational methods in drug screening and design.Molecules2020256137510.3390/molecules2506137532197324
    [Google Scholar]
  8. WangL. SongY. WangH. ZhangX. WangM. HeJ. LiS. ZhangL. LiK. CaoL. Advances of artificial intelligence in anti-cancer drug design: A review of the past decade.Pharmaceuticals202316225310.3390/ph1602025337259400
    [Google Scholar]
  9. YangX. WangY. ByrneR. SchneiderG. YangS. Concepts of artificial intelligence for computer-assisted drug discovery.Chem. Rev.201911918105201059410.1021/acs.chemrev.8b0072831294972
    [Google Scholar]
  10. MakK.K. PichikaM.R. Artificial intelligence in drug development: Present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.01430472429
    [Google Scholar]
  11. ChangM. Artificial intelligence for drug development, precision medicine, and healthcare.1st ed.New YorkChapman and Hall/CRC202010.1201/9780429345159
    [Google Scholar]
  12. SciorT. BenderA. TresadernG. FrancoM.J.L. MayorgaM.K. LangerT. ContrerasC.K. AgrafiotisD.K. Recognizing pitfalls in virtual screening: A critical review.J. Chem. Inf. Model.201252486788110.1021/ci200528d22435959
    [Google Scholar]
  13. SchneiderG. Virtual screening: An endless staircase?Nat. Rev. Drug Discov.20109427327610.1038/nrd313920357802
    [Google Scholar]
  14. YangL. JinC. YangG. BingZ. HuangL. NiuY. YangL. Transformer-based deep learning method for optimizing ADMET properties of lead compounds.Phys. Chem. Chem. Phys.20232532377238510.1039/D2CP05332B36597997
    [Google Scholar]
  15. JiaL. GaoH. Machine Learning for in silico ADMET prediction.In: Artificial Intelligence in Drug DesignSpringer202244746010.1007/978‑1‑0716‑1787‑8_20
    [Google Scholar]
  16. ZhavoronkovA. VanhaelenQ. OpreaT.I. Will artificial intelligence for drug discovery impact clinical pharmacology?Clin. Pharmacol. Ther.2020107478078510.1002/cpt.179531957003
    [Google Scholar]
  17. SamuiP. KothariD.P. Utilization of a least square support vector machine (LSSVM) for slope stability analysis.Sci. Iran.2011181535810.1016/j.scient.2011.03.007
    [Google Scholar]
  18. ChanH.C.S. ShanH. DahounT. VogelH. YuanS. Advancing drug discovery via artificial intelligence.Trends Pharmacol. Sci.201940859260410.1016/j.tips.2019.06.00431320117
    [Google Scholar]
  19. HoC.W.L. SoonD. CaalsK. KapurJ. Governance of automated image analysis and artificial intelligence analytics in healthcare.Clin. Radiol.201974532933710.1016/j.crad.2019.02.00530898383
    [Google Scholar]
  20. AndrysekT. Impact of physical properties of formulations on bioavailability of active substance: Current and novel drugs with cyclosporine.Mol. Immunol.20033917-181061106510.1016/S0161‑5890(03)00077‑412835077
    [Google Scholar]
  21. EltonD.C. BoukouvalasZ. ButricoM.S. FugeM.D. ChungP.W. Applying machine learning techniques to predict the properties of energetic materials.Sci. Rep.201881905910.1038/s41598‑018‑27344‑x29899464
    [Google Scholar]
  22. TyrchanC. EvertssonE. Matched molecular pair analysis in short: Algorithms, applications and limitations.Comput. Struct. Biotechnol. J.201715869010.1016/j.csbj.2016.12.00328066532
    [Google Scholar]
  23. TurkS. MergetB. RippmannF. FulleS. Coupling matched molecular pairs with machine learning for virtual compound optimization.J. Chem. Inf. Model.201757123079308510.1021/acs.jcim.7b0029829131617
    [Google Scholar]
  24. CarpenterK.A. HuangX. Machine learning-based virtual screening and its applications to Alzheimer’s drug discovery: A review.Curr. Pharm. Des.201824283347335810.2174/138161282466618060712403829879881
    [Google Scholar]
  25. SchymanP. LiuR. DesaiV. WallqvistA. vNN web server for ADMET predictions.Front. Pharmacol.2017888910.3389/fphar.2017.0088929255418
    [Google Scholar]
  26. KourouK. ExarchosT.P. ExarchosK.P. KaramouzisM.V. FotiadisD.I. Machine learning applications in cancer prognosis and prediction.Comput. Struct. Biotechnol. J.20151381710.1016/j.csbj.2014.11.00525750696
    [Google Scholar]
  27. AlharbiF. VakanskiA. Machine learning methods for cancer classification using gene expression data: A review.Bioengineering202310217310.3390/bioengineering1002017336829667
    [Google Scholar]
  28. LeeH. KimW. Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data.Pharmaceutics201911837710.3390/pharmaceutics1108037731382356
    [Google Scholar]
  29. YouY. LaiX. PanY. ZhengH. VeraJ. LiuS. DengS. ZhangL. Artificial intelligence in cancer target identification and drug discovery.Signal Transduct. Target. Ther.20227115610.1038/s41392‑022‑00994‑035538061
    [Google Scholar]
  30. Prada-GraciaD. Huerta-YépezS. Moreno-VargasL.M. Application of computational methods for anticancer drug discovery, design, and optimization.Bol. Méd. Hosp. Infant. México201673641142310.1016/j.bmhimx.2016.10.00629421286
    [Google Scholar]
  31. BhinderB. GilvaryC. MadhukarN.S. ElementoO. Artificial intelligence in cancer research and precision medicine.Cancer Discov.202111490091510.1158/2159‑8290.CD‑21‑009033811123
    [Google Scholar]
  32. ShaoD. DaiY. LiN. CaoX. ZhaoW. ChengL. RongZ. HuangL. WangY. ZhaoJ. Artificial intelligence in clinical research of cancers.Brief. Bioinform.2022231bbab52310.1093/bib/bbab52334929741
    [Google Scholar]
  33. ZhuW. XieL. HanJ. GuoX. The application of deep learning in cancer prognosis prediction.Cancers202012360310.3390/cancers1203060332150991
    [Google Scholar]
  34. BiW.L. HosnyA. SchabathM.B. GigerM.L. BirkbakN.J. MehrtashA. AllisonT. ArnaoutO. AbboshC. DunnI.F. MakR.H. TamimiR.M. TempanyC.M. SwantonC. HoffmannU. SchwartzL.H. GilliesR.J. HuangR.Y. AertsH.J.W.L. Artificial intelligence in cancer imaging: Clinical challenges and applications.CA Cancer J. Clin.201969212715710.3322/caac.2155230720861
    [Google Scholar]
  35. GonzálezB.A. CabezónA. GonzálezS.A. TorresC.D. RiveiroA.P. PiñeiroÁ. FandinoG.R. The role of ai in drug discovery: Challenges, opportunities, and strategies.Pharmaceuticals202316689110.3390/ph1606089137375838
    [Google Scholar]
  36. HosnyA. ParmarC. QuackenbushJ. SchwartzL.H. AertsH.J.W.L. Artificial intelligence in radiology.Nat. Rev. Cancer201818850051010.1038/s41568‑018‑0016‑529777175
    [Google Scholar]
  37. EricksonB.J. KorfiatisP. AkkusZ. KlineT.L. Tim othy L Kline. Machine learning for medical imaging.Radiographics201737250551510.1148/rg.201716013028212054
    [Google Scholar]
  38. YuL. ChenH. DouQ. QinJ. HengP.A. Automated melanoma recognition in dermoscopy images via very deep residual networks.IEEE Trans. Med. Imaging2017364994100410.1109/TMI.2016.264283928026754
    [Google Scholar]
  39. RuizR.A. LångK. Gubern-MeridaA. BroedersM. GennaroG. ClauserP. HelbichT.H. ChevalierM. TanT. MertelmeierT. WallisM.G. AnderssonI. ZackrissonS. MannR.M. SechopoulosI. Stand-alone artificial intelligence for breast cancer detection in mammography: Comparison with 101 radiologists.J. Natl. Cancer Inst.2019111991692210.1093/jnci/djy22230834436
    [Google Scholar]
  40. NiaziM.K.K. ParwaniA.V. GurcanM.N. Digital pathology and artificial intelligence.Lancet Oncol.2019205e253e26110.1016/S1470‑2045(19)30154‑831044723
    [Google Scholar]
  41. AlbayrakA. BilginG. Mitosis detection using convolutional neural network based features.2016 IEEE 17th International symposium on computational intelligence and informatics (CINTI) 2016201600033500034010.1109/CINTI.2016.7846429
    [Google Scholar]
  42. NagpalK. FooteD. LiuY. ChenP.H.C. WulczynE. TanF. OlsonN. SmithJ.L. MohtashamianA. WrenJ.H. CorradoG.S. MacDonaldR. PengL.H. AminM.B. EvansA.J. SangoiA.R. MermelC.H. HippJ.D. StumpeM.C. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer.NPJ Digit. Med.2019214810.1038/s41746‑019‑0112‑231304394
    [Google Scholar]
  43. VandenbergheM.E. ScottM.L.J. ScorerP.W. SöderbergM. BalcerzakD. BarkerC. Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer.Sci. Rep.2017714593810.1038/srep4593828378829
    [Google Scholar]
  44. GoldenbergS.L. NirG. SalcudeanS.E. A new era: Artificial intelligence and machine learning in prostate cancer.Nat. Rev. Urol.201916739140310.1038/s41585‑019‑0193‑331092914
    [Google Scholar]
  45. HuangS. YangJ. FongS. ZhaoQ. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges.Cancer Lett.2020471617110.1016/j.canlet.2019.12.00731830558
    [Google Scholar]
  46. LiJ. WuJ. ZhaoZ. ZhangQ. ShaoJ. WangC. QiuZ. LiW. Artificial intelligence-assisted decision making for prognosis and drug efficacy prediction in lung cancer patients: A narrative review.J. Thorac. Dis.202113127021703310.21037/jtd‑21‑86435070384
    [Google Scholar]
  47. ShethD. GigerM.L. Artificial intelligence in the interpretation of breast cancer on MRI.J. Magn. Reson. Imaging20205151310132410.1002/jmri.2687831343790
    [Google Scholar]
  48. HoussamiN. Kirkpatrick-JonesG. NoguchiN. LeeC.I. Artificial Intelligence (AI) for the early detection of breast cancer: A scoping review to assess AI’s potential in breast screening practice.Expert Rev. Med. Devices201916535136210.1080/17434440.2019.161038730999781
    [Google Scholar]
  49. PalmC. ConnollyC.E. MasserR. Padberg SgierB. KaramitopoulouE. SimonQ. BodeB. TinguelyM. Determining HER2 status by artificial intelligence: An investigation of primary, metastatic, and HER2 low breast tumors.Diagnostics202313116810.3390/diagnostics1301016836611460
    [Google Scholar]
  50. WuS. YueM. ZhangJ. LiX. LiZ. ZhangH. WangX. HanX. CaiL. ShangJ. JiaZ. WangX. LiJ. LiuY. The role of artificial intelligence in accurate interpretation of her2 immunohistochemical scores 0 and 1+ in breast cancer.Mod. Pathol.202336310005410.1016/j.modpat.2022.10005436788100
    [Google Scholar]
  51. TranW.T. Sadeghi-NainiA. LuF.I. GandhiS. MetiN. BrackstoneM. RakovitchE. CurpenB. Computational radiology in breast cancer screening and diagnosis using artificial intelligence.Can. Assoc. Radiol. J.20217219810810.1177/084653712094997432865001
    [Google Scholar]
  52. GoyalM. KnackstedtT. YanS. HassanpourS. Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities.Comput. Biol. Med.202012710406510.1016/j.compbiomed.2020.10406533246265
    [Google Scholar]
  53. WoodE.R. TruesdaleA.T. McDonaldO.B. YuanD. HassellA. DickersonS.H. EllisB. PennisiC. HorneE. LackeyK. AlligoodK.J. RusnakD.W. GilmerT.M. ShewchukL. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): Relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells.Cancer Res.200464186652665910.1158/0008‑5472.CAN‑04‑116815374980
    [Google Scholar]
  54. ZehirA. BenayedR. ShahR.H. SyedA. MiddhaS. KimH.R. SrinivasanP. GaoJ. ChakravartyD. DevlinS.M. HellmannM.D. BarronD.A. SchramA.M. HameedM. DoganS. RossD.S. HechtmanJ.F. DeLairD.F. YaoJ. MandelkerD.L. ChengD.T. ChandramohanR. MohantyA.S. PtashkinR.N. JayakumaranG. PrasadM. SyedM.H. RemaA.B. LiuZ.Y. NafaK. BorsuL. SadowskaJ. CasanovaJ. BacaresR. KieckaI.J. RazumovaA. SonJ.B. StewartL. BaldiT. MullaneyK.A. Al-AhmadieH. VakianiE. AbeshouseA.A. PensonA.V. JonssonP. CamachoN. ChangM.T. WonH.H. GrossB.E. KundraR. HeinsZ.J. ChenH.W. PhillipsS. ZhangH. WangJ. OchoaA. WillsJ. EubankM. ThomasS.B. GardosS.M. RealesD.N. GalleJ. DuranyR. CambriaR. AbidaW. CercekA. FeldmanD.R. GounderM.M. HakimiA.A. HardingJ.J. IyerG. JanjigianY.Y. JordanE.J. KellyC.M. LoweryM.A. MorrisL.G.T. OmuroA.M. RajN. RazaviP. ShoushtariA.N. ShuklaN. SoumeraiT.E. VargheseA.M. YaegerR. ColemanJ. BochnerB. RielyG.J. SaltzL.B. ScherH.I. SabbatiniP.J. RobsonM.E. KlimstraD.S. TaylorB.S. BaselgaJ. SchultzN. HymanD.M. ArcilaM.E. SolitD.B. LadanyiM. BergerM.F. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients.Nat. Med.201723670371310.1038/nm.433328481359
    [Google Scholar]
  55. ShimizuH. NakayamaK.I. Artificial intelligence in oncology.Cancer Sci.202011151452146010.1111/cas.1437732133724
    [Google Scholar]
  56. ForbesS.A. BeareD. BoutselakisH. BamfordS. BindalN. TateJ. ColeC.G. WardS. DawsonE. PontingL. StefancsikR. HarshaB. KokC.Y. JiaM. JubbH. SondkaZ. ThompsonS. DeT. CampbellP.J. COSMIC: Somatic cancer genetics at high-resolution.Nucleic Acids Res.201745D1D777D78310.1093/nar/gkw112127899578
    [Google Scholar]
  57. PatelN.M. MicheliniV.V. SnellJ.M. BaluS. HoyleA.P. ParkerJ.S. HaywardM.C. EberhardD.A. SalazarA.H. McNeillieP. XuJ. HuettnerC.S. KoyamaT. UtroF. RhrissorrakraiK. NorelR. BilalE. RoyyuruA. ParidaL. EarpH.S. Grilley-OlsonJ.E. HayesD.N. HarveyS.J. SharplessN.E. KimW.Y. Enhancing next‐generation sequencing‐guided cancer care through cognitive computing.Oncologist201823217918510.1634/theoncologist.2017‑017029158372
    [Google Scholar]
  58. ZhouJ. TheesfeldC.L. YaoK. ChenK.M. WongA.K. TroyanskayaO.G. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk.Nat. Genet.20185081171117910.1038/s41588‑018‑0160‑630013180
    [Google Scholar]
  59. SzegedyC. LiuW. JiaY. SermanetP. ReedS. AnguelovD. ErhanD. VanhouckeV. RabinovichA. Going deeper with convolutions.2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)07-12 June 2015Boston, MA, USA201510.1109/CVPR.2015.7298594
    [Google Scholar]
  60. JaganathanK. PanagiotopoulouK.S. McRaeJ.F. DarbandiS.F. KnowlesD. LiY.I. KosmickiJ.A. ArbelaezJ. CuiW. SchwartzG.B. ChowE.D. KanterakisE. GaoH. KiaA. BatzoglouS. SandersS.J. FarhK.K.H. Predicting splicing from primary sequence with deep learning.Cell20191763535548.e2410.1016/j.cell.2018.12.01530661751
    [Google Scholar]
  61. McGranahanN. FurnessA.J.S. RosenthalR. RamskovS. LyngaaR. SainiS.K. Jamal-HanjaniM. WilsonG.A. BirkbakN.J. HileyC.T. WatkinsT.B.K. ShafiS. MurugaesuN. MitterR. AkarcaA.U. LinaresJ. MarafiotiT. HenryJ.Y. Van AllenE.M. MiaoD. SchillingB. SchadendorfD. GarrawayL.A. MakarovV. RizviN.A. SnyderA. HellmannM.D. MerghoubT. WolchokJ.D. ShuklaS.A. WuC.J. PeggsK.S. ChanT.A. HadrupS.R. QuezadaS.A. SwantonC. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade.Science201635162801463146910.1126/science.aaf149026940869
    [Google Scholar]
  62. StåhlP.L. SalménF. VickovicS. LundmarkA. NavarroJ.F. MagnussonJ. GiacomelloS. AspM. WestholmJ.O. HussM. MollbrinkA. LinnarssonS. CodeluppiS. BorgÅ. PonténF. CosteaP.I. SahlénP. MulderJ. BergmannO. LundebergJ. FrisénJ. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.Science20163536294788210.1126/science.aaf240327365449
    [Google Scholar]
  63. SebastianA. HumN.R. MartinK.A. GilmoreS.F. PeranI. ByersS.W. WheelerE.K. ColemanM.A. LootsG.G. Single-cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer.Cancers2020125130710.3390/cancers1205130732455670
    [Google Scholar]
  64. CarL.T. PapachristouN. UrchC. MajeedA. El-KhatibM. AylinP. AtunR. CarJ. VincentC. Preventing delayed diagnosis of cancer: Clinicians’ views on main problems and solutions.J. Glob. Health20166202090110.7189/jogh.06.02090128028437
    [Google Scholar]
  65. WuH.J. ChuP.Y. Current and developing liquid biopsy techniques for breast cancer.Cancers2022149205210.3390/cancers1409205235565189
    [Google Scholar]
  66. PanjaS. RahemS. ChuC.J. MitrofanovaA. Big data to knowledge: Application of machine learning to predictive modeling of therapeutic response in cancer.Curr. Genomics202122424426610.2174/138920292199920122411010135273457
    [Google Scholar]
  67. IqbalM.J. JavedZ. SadiaH. QureshiI.A. IrshadA. AhmedR. MalikK. RazaS. AbbasA. PezzaniR. RadS.J. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: Looking into the future.Cancer Cell Int.202121127010.1186/s12935‑021‑01981‑134020642
    [Google Scholar]
  68. MitsalaA. TsalikidisC. PitiakoudisM. SimopoulosC. TsarouchaA.K. Artificial intelligence in colorectal cancer screening, diagnosis and treatment. A new era.Curr. Oncol.20212831581160710.3390/curroncol2803014933922402
    [Google Scholar]
  69. KelA. BoyarskikhU. StegmaierP. LeskovL.S. SokolovA.V. YevshinI. MandrikN. StelmashenkoD. KoschmannJ. MargoulisK.O. KrullM. CardúsM.A. MoranS. EstellerM. KolpakovF. FilipenkoM. WingenderE. Walking pathways with positive feedback loops reveal DNA methylation biomarkers of colorectal cancer.BMC Bioinformatics201920S411910.1186/s12859‑019‑2687‑730999858
    [Google Scholar]
  70. LambinP. LeijenaarR.T.H. DeistT.M. PeerlingsJ. de JongE.E.C. van TimmerenJ. SanduleanuS. LarueR.T.H.M. EvenA.J.G. JochemsA. van WijkY. WoodruffH. van SoestJ. LustbergT. RoelofsE. van ElmptW. DekkerA. MottaghyF.M. WildbergerJ.E. WalshS. Radiomics: The bridge between medical imaging and personalized medicine.Nat. Rev. Clin. Oncol.2017141274976210.1038/nrclinonc.2017.14128975929
    [Google Scholar]
  71. DerbalY. Can artificial intelligence improve cancer treatments?Health Informatics J.2022282. 14604582221102314.10.1177/1460458222110231435548919
    [Google Scholar]
  72. ZhangT. LengJ. LiuY. Deep learning for drug–drug interaction extraction from the literature: A review.Brief. Bioinform.20202151609162710.1093/bib/bbz08731686105
    [Google Scholar]
  73. BasileA.O. YahiA. TatonettiN.P. Artificial intelligence for drug toxicity and safety.Trends Pharmacol. Sci.201940962463510.1016/j.tips.2019.07.00531383376
    [Google Scholar]
  74. JingY. BianY. HuZ. WangL. XieX.Q. Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era.AAPS J.20182010
    [Google Scholar]
  75. HarariY.N. Reboot for the AI revolution.Nature2017550767632432710.1038/550324a29052637
    [Google Scholar]
  76. ChenH ZhouX GaoY ZhouJ. Fragment-based drug design: Strategic advances and lessons learned.In: Drug Discovery TechnologiesElsevier Inc.2017212232
    [Google Scholar]
  77. DrukerB.J. TamuraS. BuchdungerE. OhnoS. SegalG.M. FanningS. ZimmermannJ. LydonN.B. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells.Nat. Med.19962556156610.1038/nm0596‑5618616716
    [Google Scholar]
  78. PollackV.A. SavageD.M. BakerD.A. TsaparikosK.E. SloanD.E. MoyerJ.D. BarbacciE.G. PustilnikL.R. SmolarekT.A. DavisJ.A. VaidyaM.P. ArnoldL.D. DotyJ.L. IwataK.K. MorinM.J. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: Dynamics of receptor inhibition in situ and antitumor effects in athymic mice.J. Pharmacol. Exp. Ther.1999291273974810525095
    [Google Scholar]
  79. BulgaruA.M. ManiS. GoelS. SolerP.R. Erlotinib (Tarceva®): A promising drug targeting epidermal growth factor receptor tyrosine kinase.Expert Rev. Anticancer Ther.20033326927910.1586/14737140.3.3.26912820772
    [Google Scholar]
  80. NgS.S. TsaoM.S. NickleeT. HedleyD.W. Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma.Mol. Cancer Ther.200211077778312492110
    [Google Scholar]
  81. XiaW. LiuL.H. HoP. SpectorN.L. Truncated ErbB2 receptor (p95ErbB2) is regulated by heregulin through heterodimer formation with ErbB3 yet remains sensitive to the dual EGFR/ErbB2 kinase inhibitor GW572016.Oncogene200423364665310.1038/sj.onc.120716614737100
    [Google Scholar]
  82. JarmanM. BarrieS.E. LleraJ.M. The 16,17-double bond is needed for irreversible inhibition of human cytochrome p45017alpha by abiraterone (17-(3-pyridyl)androsta-5, 16-dien-3beta-ol) and related steroidal inhibitors.J. Med. Chem.199841275375538110.1021/jm981017j9876107
    [Google Scholar]
  83. O’DonnellA JudsonI DowsettM RaynaudF DearnaleyD MasonM Hormonal impact of the 17α-hydroxylase/C17,20-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer.Br J Cancer200490122317232510.1038/sj.bjc.660187915150570
    [Google Scholar]
  84. HuQ. NegriM. HoffmannJ.K. ZhuangY. OlgenS. BartelsM. VieiraM.U. LauterbachT. HartmannR.W. Synthesis, biological evaluation, and molecular modeling studies of methylene imidazole substituted biaryls as inhibitors of human 17α-hydroxylase-17,20-lyase (CYP17)—Part II: Core rigidification and influence of substituents at the methylene bridge.Bioorg. Med. Chem.200816167715772710.1016/j.bmc.2008.07.01118674917
    [Google Scholar]
  85. ButrynskiJ.E. D’AdamoD.R. HornickJ.L. Dal CinP. AntonescuC.R. JhanwarS.C. LadanyiM. CapellettiM. RodigS.J. RamaiyaN. KwakE.L. ClarkJ.W. WilnerK.D. ChristensenJ.G. JänneP.A. MakiR.G. DemetriG.D. ShapiroG.I. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor.N. Engl. J. Med.2010363181727173310.1056/NEJMoa100705620979472
    [Google Scholar]
  86. RodigS.J. ShapiroG.I. Crizotinib, a small-molecule dual inhibitor of the c-Met and ALK receptor tyrosine kinases.Curr Opin Investig Drugs201011121477149021154129
    [Google Scholar]
  87. BaselgaJ. AverbuchS.D. ZD1839 ('Iressa') as an anticancer agent.Drugs200060S1334010.2165/00003495‑200060001‑0000411129170
    [Google Scholar]
  88. SirotnakF.M. ZakowskiM.F. MillerV.A. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase.Clin Cancer Res20006124885489211156248
    [Google Scholar]
  89. AhmadT. EisenT. YangJ. AtkinsM. StadlerW. Kinase inhibition with BAY 43-9006 in renal cell carcinoma.Clin. Cancer Res.200410186388S6392S10.1158/1078‑0432.CCR‑04002815448036
    [Google Scholar]
  90. HeimM. SharifiM. HilgerR.A. ScheulenM.E. SeeberS. StrumbergD. Antitumor effect and potentiation or reduction in cytotoxic drug activity in human colon carcinoma cells by the Raf kinase inhibitor (RKI) BAY 43-9006.Int. J. Clin. Pharmacol. Ther.2003411261661710.5414/CPP4161614692718
    [Google Scholar]
  91. WhitePT CohenMS The discovery and development of sorafenib for the treatment of thyroid cancer.Expert Opin Drug Discov201510442710.1517/17460441.2015.1006194
    [Google Scholar]
  92. MariaS.J.P.Jr WangY. CamargoL.M. Perspective on the challenges and opportunities of accelerating drug discovery with artificial intelligence.Front. Bioinformat.20233112159110.3389/fbinf.2023.112159136909937
    [Google Scholar]
  93. SebastianA.M. PeterD. Artificial intelligence in cancer research: Trends, challenges and future directions.Life202212121991 https://pubmed.ncbi.nlm.nih.gov/36556356/
    [Google Scholar]
  94. LuchiniC. PeaA. ScarpaA. Artificial intelligence in oncology: Current applications and future perspectives.Br. J. Cancer202112614910.1038/s41416‑021‑01633‑134837074
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947288355240305080236
Loading
/content/journals/cctr/10.2174/0115733947288355240305080236
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test