Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer, a burden upon the global population, has consistently maintained its prevalence throughout history. Gastric cancer compounds this burden and ranks as the fifth leading cause of cancer-related deaths worldwide. The clinical significance of early cancer diagnosis cannot be overstated. DNA methylation biomarkers, a rapidly growing field of liquid biopsy-based diagnostics, provide a minimal to non-invasive way to detect cancer at an early stage. In addition to diagnosis and prognosis, liquid biopsy is important in longitudinal monitoring and therapeutic response prediction, where traditional biopsy faces setbacks. Despite many challenges, DNA methylation being a stable and detectable molecular change attracts the scientific community to develop novel biomarkers and analytical methods to incorporate them into clinical practice. In this review, we have discussed non-invasive, DNA methylation-based gastric cancer biomarkers that have emerged recently. We have also addressed the prognosis and therapeutic response prediction associated with these biomarkers.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947313656240819093316
2024-09-02
2025-12-05
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. JemalA. SiegelRL. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin.202474322926310.3322/caac.21834.
    [Google Scholar]
  2. ChengY. HeC. WangM. MaX. MoF. YangS. HanJ. WeiX. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials.Signal Transduct. Target. Ther.2019416210.1038/s41392‑019‑0095‑031871779
    [Google Scholar]
  3. VillanuevaL. Álvarez-ErricoD. EstellerM. The contribution of epigenetics to cancer immunotherapy.Trends Immunol.202041867669110.1016/j.it.2020.06.00232622854
    [Google Scholar]
  4. SchübelerD. Function and information content of DNA methylation.Nature2015517753432132610.1038/nature1419225592537
    [Google Scholar]
  5. GreenbergM.V.C. Bourc’hisD. The diverse roles of DNA methylation in mammalian development and disease.Nat. Rev. Mol. Cell Biol.2019201059060710.1038/s41580‑019‑0159‑631399642
    [Google Scholar]
  6. LiE. BeardC. JaenischR. Role for DNA methylation in genomic imprinting.Nature1993366645336236510.1038/366362a08247133
    [Google Scholar]
  7. RobertsonK.D. DNA methylation and human disease.Nat. Rev. Genet.20056859761010.1038/nrg165516136652
    [Google Scholar]
  8. BrownR. CurryE. MagnaniL. Wilhelm-BenartziC.S. BorleyJ. Poised epigenetic states and acquired drug resistance in cancer.Nat. Rev. Cancer2014141174775310.1038/nrc381925253389
    [Google Scholar]
  9. Romero-GarciaS. Prado-GarciaH. Carlos-ReyesA. Role of DNA methylation in the resistance to therapy in solid tumors.Front. Oncol.202010115210.3389/fonc.2020.0115232850327
    [Google Scholar]
  10. FeinbergA.P. OhlssonR. HenikoffS. The epigenetic progenitor origin of human cancer.Nat. Rev. Genet.200671213310.1038/nrg174816369569
    [Google Scholar]
  11. HowardG. EigesR. GaudetF. JaenischR. EdenA. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice.Oncogene200827340440810.1038/sj.onc.121063117621273
    [Google Scholar]
  12. YanH. ChenW. GeK. MaoX. LiX. LiuW. WuJ. Value of plasma methylated SFRP2 in prognosis of gastric cancer.Dig. Dis. Sci.202166113854386110.1007/s10620‑020‑06710‑833216241
    [Google Scholar]
  13. KaramitrousisE. BalgkouranidouI. XenidisN. AmarantidisK. BiziotaE. KoukakiT. TrypsianisG. KarayiannakisA. BolanakiH. ChatzakiE. KoliosG. LianidouE. LambropoulouM. KakolyrisS. Association between SOX17, Wif-1 and RASSF1A promoter methylation status and response to chemotherapy in patients with metastatic gastric cancer.Clin Chem Lab Med.2021592e73e7510.1515/cclm‑2020‑066232870805
    [Google Scholar]
  14. KanekoM. KotakeM. BandoH. YamadaT. TakemuraH. MinamotoT. Prognostic and predictive significance of long interspersed nucleotide element-1 methylation in advanced-stage colorectal cancer.BMC Cancer201616194510.1186/s12885‑016‑2984‑827955637
    [Google Scholar]
  15. LouY.T. ChenC.W. FanY.C. ChangW.C. LuC.Y. WuI.C. HsuW.H. HuangC.W. WangJ.Y. LINE-1 methylation status correlates significantly to post-therapeutic recurrence in stage III colon cancer patients receiving FOLFOX-4 adjuvant chemotherapy.PLoS One2015104e012397310.1371/journal.pone.012397325919688
    [Google Scholar]
  16. KuoI.Y. HuangY.L. LinC.Y. LinC.H. ChangW.L. LaiW.W. WangY.C. SOX17 overexpression sensitizes chemoradiation response in esophageal cancer by transcriptional down-regulation of DNA repair and damage response genes.J. Biomed. Sci.20192612010.1186/s12929‑019‑0510‑430777052
    [Google Scholar]
  17. ChangW.L. LaiW.W. KuoI.Y. LinC.Y. LuP.J. SheuB.S. WangY.C. A six-CpG panel with DNA methylation biomarkers predicting treatment response of chemoradiation in esophageal squamous cell carcinoma.J. Gastroenterol.201752670571410.1007/s00535‑016‑1265‑227671002
    [Google Scholar]
  18. GilE.Y. JoU.H. JeongH. WhangY.M. WooO.H. ChoK.R. SeoJ.H. KimA. LeeE.S. KohI. KimY.H. ParkK.H. Promoter methylation of RASSF1A modulates the effect of the microtubule-targeting agent docetaxel in breast cancer.Int. J. Oncol.201241261162010.3892/ijo.2012.147022581300
    [Google Scholar]
  19. XieG. HuC. HuangM. Methylation status of RASSF1A and clinical efficacy of neoadjuvant therapy in patients with advanced epithelial ovarian cancer.Zhong Nan Da Xue Xue Bao Yi Xue Ban201136763163321873787
    [Google Scholar]
  20. HamiltonJ.P. SatoF. GreenwaldB.D. SuntharalingamM. KrasnaM.J. EdelmanM.J. DoyleA. BerkiA.T. AbrahamJ.M. MoriY. KanT. MantzurC. PaunB. WangS. ItoT. JinZ. MeltzerS.J. Promoter methylation and response to chemotherapy and radiation in esophageal cancer.Clin. Gastroenterol. Hepatol.20064670170810.1016/j.cgh.2006.03.00716678495
    [Google Scholar]
  21. QuY. DangS. HouP. Gene methylation in gastric cancer.Clin. Chim. Acta2013424536510.1016/j.cca.2013.05.00223669186
    [Google Scholar]
  22. García-GiménezJ.L. Seco-CerveraM. TollefsbolT.O. Romá-MateoC. Peiró-ChovaL. LapunzinaP. PallardóF.V. Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory.Crit. Rev. Clin. Lab. Sci.2017547-852955010.1080/10408363.2017.141052029226748
    [Google Scholar]
  23. LiuX. RenJ. LuoN. GuoH. ZhengY. LiJ. TangF. WenL. PengJ. Comprehensive DNA methylation analysis of tissue of origin of plasma cell-free DNA by methylated CpG tandem amplification and sequencing (MCTA-Seq).Clin. Epigenetics20191119310.1186/s13148‑019‑0689‑y31234922
    [Google Scholar]
  24. YanYY. GuoQR. WangFH. AdhikariR. ZhuZY. ZhangHY. ZhouWM. YuH. LiJQ. ZhangJY. Cell-free DNA: Hope and potential application in cancer.Front Cell Dev Biol.2021963923310.3389/fcell.2021.639233.
    [Google Scholar]
  25. LoYM. ChanKC. SunH. ChenEZ. JiangP. LunFM. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus.Sci Transl Med.201026161ra9110.1126/scitranslmed.3001720
    [Google Scholar]
  26. SunK. JiangP. ChanK.C.A. WongJ. ChengY.K.Y. LiangR.H.S. ChanW. MaE.S.K. ChanS.L. ChengS.H. ChanR.W.Y. TongY.K. NgS.S.M. WongR.S.M. HuiD.S.C. LeungT.N. LeungT.Y. LaiP.B.S. ChiuR.W.K. LoY.M.D. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments.Proc. Natl. Acad. Sci. USA201511240E5503E551210.1073/pnas.150873611226392541
    [Google Scholar]
  27. WartonK. LinV. NavinT. ArmstrongN.J. KaplanW. YingK. GlossB. MangsH. NairS.S. HackerN.F. SutherlandR.L. ClarkS.J. SamimiG. Methylation-capture and next-generation sequencing of free circulating DNA from human plasma.BMC Genomics201415147610.1186/1471‑2164‑15‑47624929644
    [Google Scholar]
  28. KustanovichA. SchwartzR. PeretzT. GrinshpunA. Life and death of circulating cell-free DNA.Cancer Biol. Ther.20192081057106710.1080/15384047.2019.159875930990132
    [Google Scholar]
  29. SchwarzenbachH. HoonD.S.B. PantelK. Cell-free nucleic acids as biomarkers in cancer patients.Nat. Rev. Cancer201111642643710.1038/nrc306621562580
    [Google Scholar]
  30. LuoH. WeiW. YeZ. ZhengJ. XuR. Xu R hua. Liquid biopsy of methylation biomarkers in cell-free DNA.Trends Mol. Med.202127548250010.1016/j.molmed.2020.12.01133500194
    [Google Scholar]
  31. BettegowdaC. SausenM. LearyRJ. KindeI. WangY. LeeCC. Detection of circulating tumor DNA in early- and late-stage human malignancies.Sci Transl Med.20146224224ra2410.1126/scitranslmed.3007094.
    [Google Scholar]
  32. LiW. ZhangX. LuX. YouL. SongY. LuoZ. ZhangJ. NieJ. ZhengW. XuD. WangY. DongY. YuS. HongJ. ShiJ. HaoH. LuoF. HuaL. WangP. QianX. YuanF. WeiL. CuiM. ZhangT. LiaoQ. DaiM. LiuZ. ChenG. MeckelK. AdhikariS. JiaG. BissonnetteM.B. ZhangX. ZhaoY. ZhangW. HeC. LiuJ. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers.Cell Res.201727101243125710.1038/cr.2017.12128925386
    [Google Scholar]
  33. GaoY. ZhangK. XiH. CaiA. WuX. CuiJ. LiJ. QiaoZ. WeiB. ChenL. Diagnostic and prognostic value of circulating tumor DNA in gastric cancer: A meta-analysis.Oncotarget2017846330634010.18632/oncotarget.1406428009985
    [Google Scholar]
  34. KhatriV.P. GoodnightJ.E.Jr Extremity soft tissue sarcoma: Controversial management issues.Surg. Oncol.20051411910.1016/j.suronc.2004.07.00215777885
    [Google Scholar]
  35. StoneA. ZotenkoE. LockeW.J. KorbieD. MillarE.K.A. PidsleyR. StirzakerC. GrahamP. TrauM. MusgroveE.A. NicholsonR.I. GeeJ.M.W. ClarkS.J. DNA methylation of oestrogen-regulated enhancers defines endocrine sensitivity in breast cancer.Nat. Commun.201561775810.1038/ncomms875826169690
    [Google Scholar]
  36. ChenX. GoleJ. GoreA. HeQ. LuM. MinJ. YuanZ. YangX. JiangY. ZhangT. SuoC. LiX. ChengL. ZhangZ. NiuH. LiZ. XieZ. ShiH. ZhangX. FanM. WangX. YangY. DangJ. McConnellC. ZhangJ. WangJ. YuS. YeW. GaoY. ZhangK. LiuR. JinL. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test.Nat. Commun.2020111347510.1038/s41467‑020‑17316‑z32694610
    [Google Scholar]
  37. WuJ. HuS. ZhangL. XinJ. SunC. WangL. DingK. WangB. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis.Theranostics202010104544455610.7150/thno.4053232292514
    [Google Scholar]
  38. deVosT. TetznerR. ModelF. WeissG. SchusterM. DistlerJ. SteigerK.V. GrützmannR. PilarskyC. HabermannJ.K. FleshnerP.R. OubreB.M. DayR. SledziewskiA.Z. Lofton-DayC. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer.Clin. Chem.20095571337134610.1373/clinchem.2008.11580819406918
    [Google Scholar]
  39. ChenZ. LiC. ZhouY. YaoY. LiuJ. WuM. SuJ. Liquid biopsies for cancer: From bench to clinic.MedComm202344e32910.1002/mco2.32937492785
    [Google Scholar]
  40. WeissG. SchlegelA. KottwitzD. KönigT. TetznerR. Validation of the SHOX2/PTGER4 DNA methylation marker panel for plasma-based discrimination between patients with malignant and nonmalignant lung disease.J. Thorac. Oncol.2017121778410.1016/j.jtho.2016.08.12327544059
    [Google Scholar]
  41. GagaM. Chorostowska-WynimkoJ. HorváthI. TammemagiM.C. ShitritD. EisenbergV.H. LiangH. StavD. Levy FaberD. JansenM. RavivY. PanagouliasV. RudzinskiP. IzbickiG. RonenO. GoldhaberA. MoalemR. ArberN. HaasI. ZhouQ. Validation of lung epiCheck, a novel methylation-based blood assay, for the detection of lung cancer in European and Chinese high-risk individuals.Eur. Respir. J.2021571200268210.1183/13993003.02682‑202033122336
    [Google Scholar]
  42. AbboshC. BirkbakN.J. WilsonG.A. Jamal-HanjaniM. ConstantinT. SalariR. Le QuesneJ. MooreD.A. VeeriahS. RosenthalR. MarafiotiT. KirkizlarE. WatkinsT.B.K. McGranahanN. WardS. MartinsonL. RileyJ. FraioliF. Al BakirM. GrönroosE. ZambranaF. EndozoR. BiW.L. FennessyF.M. SponerN. JohnsonD. LaycockJ. ShafiS. Czyzewska-KhanJ. RowanA. ChambersT. MatthewsN. TurajlicS. HileyC. LeeS.M. ForsterM.D. AhmadT. FalzonM. BorgE. LawrenceD. HaywardM. KolvekarS. PanagiotopoulosN. JanesS.M. ThakrarR. AhmedA. BlackhallF. SummersY. HafezD. NaikA. GangulyA. KarehtS. ShahR. JosephL. Marie QuinnA. CrosbieP.A. NaiduB. MiddletonG. LangmanG. TrotterS. NicolsonM. RemmenH. KerrK. ChettyM. GomersallL. FennellD.A. NakasA. RathinamS. AnandG. KhanS. RussellP. EzhilV. IsmailB. Irvin-SellersM. PrakashV. LesterJ.F. KornaszewskaM. AttanoosR. AdamsH. DaviesH. OukrifD. AkarcaA.U. HartleyJ.A. LoweH.L. LockS. IlesN. BellH. NgaiY. ElgarG. SzallasiZ. SchwarzR.F. HerreroJ. StewartA. QuezadaS.A. PeggsK.S. Van LooP. DiveC. LinC.J. RabinowitzM. AertsH.J.W.L. HackshawA. ShawJ.A. ZimmermannB.G. SwantonC. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.Nature2017545765544645110.1038/nature2236428445469
    [Google Scholar]
  43. GangF. GuorongL. AnZ. AnneG.P. ChristianG. JacquesT. Prediction of clear cell renal cell carcinoma by integrity of cell-free DNA in serum.Urology201075226226510.1016/j.urology.2009.06.04819962739
    [Google Scholar]
  44. SumbalS. JavedA. AfrozeB. ZulfiqarH.F. JavedF. NoreenS. IjazB. Circulating tumor DNA in blood: Future genomic biomarkers for cancer detection.Exp. Hematol.201865172810.1016/j.exphem.2018.06.00329940219
    [Google Scholar]
  45. FialaC. DiamandisE.P. Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection.BMC Med.201816116610.1186/s12916‑018‑1157‑930285732
    [Google Scholar]
  46. PantelK. Alix-PanabièresC. Liquid biopsy and minimal residual disease — Latest advances and implications for cure.Nat. Rev. Clin. Oncol.201916740942410.1038/s41571‑019‑0187‑330796368
    [Google Scholar]
  47. RauluseviciuteI. DrabløsF. RyeM.B. DNA methylation data by sequencing: experimental approaches and recommendations for tools and pipelines for data analysis.Clin. Epigenetics201911119310.1186/s13148‑019‑0795‑x31831061
    [Google Scholar]
  48. MaunakeaA.K. NagarajanR.P. BilenkyM. BallingerT.J. D’SouzaC. FouseS.D. JohnsonB.E. HongC. NielsenC. ZhaoY. TureckiG. DelaneyA. VarholR. ThiessenN. ShchorsK. HeineV.M. RowitchD.H. XingX. FioreC. SchillebeeckxM. JonesS.J.M. HausslerD. MarraM.A. HirstM. WangT. CostelloJ.F. Conserved role of intragenic DNA methylation in regulating alternative promoters.Nature2010466730325325710.1038/nature0916520613842
    [Google Scholar]
  49. WeberM. DaviesJ.J. WittigD. OakeleyE.J. HaaseM. LamW.L. SchübelerD. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells.Nat. Genet.200537885386210.1038/ng159816007088
    [Google Scholar]
  50. BockC. TomazouE.M. BrinkmanA.B. MüllerF. SimmerF. GuH. JägerN. GnirkeA. StunnenbergH.G. MeissnerA. Quantitative comparison of genome-wide DNA methylation mapping technologies.Nat. Biotechnol.201028101106111410.1038/nbt.168120852634
    [Google Scholar]
  51. ListerR. PelizzolaM. DowenR.H. HawkinsR.D. HonG. Tonti-FilippiniJ. NeryJ.R. LeeL. YeZ. NgoQ.M. EdsallL. Antosiewicz-BourgetJ. StewartR. RuottiV. MillarA.H. ThomsonJ.A. RenB. EckerJ.R. Human DNA methylomes at base resolution show widespread epigenomic differences.Nature2009462727131532210.1038/nature0851419829295
    [Google Scholar]
  52. MeissnerA. GnirkeA. BellG.W. RamsahoyeB. LanderE.S. JaenischR. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis.Nucleic Acids Res.200533185868587710.1093/nar/gki90116224102
    [Google Scholar]
  53. LiJ. ZhouX. LiuX. RenJ. WangJ. WangW. ZhengY. ShiX. SunT. LiZ. KangA. TangF. WenL. FuW. Detection of colorectal cancer in circulating cell-free DNA by methylated CpG tandem amplification and sequencing.Clin. Chem.201965791692610.1373/clinchem.2019.30180431010820
    [Google Scholar]
  54. YuM. HonG.C. SzulwachK.E. SongC.X. ZhangL. KimA. LiX. DaiQ. ShenY. ParkB. MinJ.H. JinP. RenB. HeC. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome.Cell201214961368138010.1016/j.cell.2012.04.02722608086
    [Google Scholar]
  55. BoothM.J. BrancoM.R. FiczG. OxleyD. KruegerF. ReikW. BalasubramanianS. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution.Science2012336608393493710.1126/science.122067122539555
    [Google Scholar]
  56. KuJ.L. JeonY.K. ParkJ.G. Methylation-specific PCR.Methods Mol Biol.2011791233210.1007/978‑1‑61779‑316‑5_3.21913069
    [Google Scholar]
  57. KhulanB. ThompsonR.F. YeK. FazzariM.J. SuzukiM. StasiekE. FigueroaM.E. GlassJ.L. ChenQ. MontagnaC. HatchwellE. SelzerR.R. RichmondT.A. GreenR.D. MelnickA. GreallyJ.M. Comparative isoschizomer profiling of cytosine methylation: The HELP assay.Genome Res.20061681046105510.1101/gr.527380616809668
    [Google Scholar]
  58. SuzukiM. JingQ. LiaD. PascualM. McLellanA. GreallyJ.M. Optimized design and data analysis of tag-based cytosine methylation assays.Genome Biol.2010114R3610.1186/gb‑2010‑11‑4‑r3620359321
    [Google Scholar]
  59. BallM.P. LiJ.B. GaoY. LeeJ.H. LeProustE.M. ParkI.H. XieB. DaleyG.Q. ChurchG.M. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells.Nat. Biotechnol.200927436136810.1038/nbt.153319329998
    [Google Scholar]
  60. OliverJ. Garcia-ArandaM. ChavesP. AlbaE. OnievaJL. BarraganI. Cobo-DolsM. Emerging noninvasive methylation biomarkers of cancer prognosis and drug response prediction.Semin Cancer Biol.20228358459510.1016/j.semcancer.2021.03.012
    [Google Scholar]
  61. RenJ. LuP. ZhouX. LiaoY. LiuX. LiJ. WangW. WangJ. WenL. FuW. TangF. Genome-scale methylation analysis of circulating cell-free DNA in gastric cancer patients.Clin. Chem.202268235436410.1093/clinchem/hvab20434791072
    [Google Scholar]
  62. FanX.H. ZhangY. WangP. SongQ.Q. WangM. Mejias-LuqueR. LiZ.X. ZhouT. ZhangJ.Y. LiuW.D. ZhangL.F. LiW.Q. YouW.C. GerhardM. JiaoY.C. WangX.B. PanK.F. A noninvasive multianalytical approach establishment for risk assessment and gastric cancer screening.Int. J. Cancer202415461111112310.1002/ijc.3473937842828
    [Google Scholar]
  63. WatanabeY. KimH.S. CastoroR.J. ChungW. EstecioM.R.H. KondoK. GuoY. AhmedS.S. ToyotaM. ItohF. SukK.T. ChoM.Y. ShenL. JelinekJ. IssaJ.P.J. Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes.Gastroenterology200913672149215810.1053/j.gastro.2009.02.08519375421
    [Google Scholar]
  64. KaramitrousisE.I. BalgkouranidouI. XenidisN. AmarantidisK. BiziotaE. KoukakiT. TrypsianisG. KarayiannakisA. BolanakiH. KoliosG. LianidouE. KakolyrisS. Prognostic role of RASSF1A, SOX17 and Wif-1 promoter methylation status in cell-free DNA of advanced gastric cancer patients.Technol. Cancer Res. Treat.20212010.1177/153303382097327933928818
    [Google Scholar]
  65. AndersonB.W. SuhY.S. ChoiB. LeeH.J. YabT.C. TaylorW.R. DukekB.A. BergerC.K. CaoX. FooteP.H. DevensM.E. BoardmanL.A. KisielJ.B. MahoneyD.W. SlettedahlS.W. AllawiH.T. LidgardG.P. SmyrkT.C. YangH.K. AhlquistD.A. Detection of gastric cancer with novel methylated DNA markers: discovery, tissue validation, and pilot testing in plasma.Clin. Cancer Res.201824225724573410.1158/1078‑0432.CCR‑17‑336429844130
    [Google Scholar]
  66. ZhengY. ChenL. LiJ. YuB. SuL. ChenX. YuY. YanM. LiuB. ZhuZ. Hypermethylated DNA as potential biomarkers for gastric cancer diagnosis.Clin. Biochem.20114417-181405141110.1016/j.clinbiochem.2011.09.00621945024
    [Google Scholar]
  67. NieY. GaoX. CaiX. Combining methylated SEPTIN9 and RNF180 plasma markers for diagnosis and early detection of gastric cancer.Cancer Commun.202343111275127910.1002/cac2.12478.37584087
    [Google Scholar]
  68. ChenX. LinZ. XueM. SiJ. ChenS. Zic1 promoter hypermethylation in plasma DNA is a potential biomarker for gastric cancer and intraepithelial neoplasia.PLoS One2015107e013390610.1371/journal.pone.013390626207911
    [Google Scholar]
  69. MiaoJ. LiuY. ZhaoG. LiuX. MaY. LiH. LiS. ZhuY. XiongS. ZhengM. FeiS. Feasibility of plasma-methylated SFRP2 for early detection of gastric cancer.Cancer Contr.202027210.1177/107327482092255932379490
    [Google Scholar]
  70. ZhangX. ZhangX. SunB. LuH. WangD. YuanX. HuangZ. Detection of aberrant promoter methylation of RNF180, DAPK1 and SFRP2 in plasma DNA of patients with gastric cancer.Oncol. Lett.2014841745175010.3892/ol.2014.241025202403
    [Google Scholar]
  71. LeungW.K. ToK-F. ChuE.S.H. ChanM.W.Y. BaiA.H.C. NgE.K.W. ChanF.K.L. SungJ.J.Y. Potential diagnostic and prognostic values of detecting promoter hypermethylation in the serum of patients with gastric cancer.Br. J. Cancer200592122190219410.1038/sj.bjc.660263615942635
    [Google Scholar]
  72. BalgkouranidouI. MatthaiosD. KarayiannakisA. BolanakiH. MichailidisP. XenidisN. AmarantidisK. ChelisL. TrypsianisG. ChatzakiE. LianidouE.S. KakolyrisS. Prognostic role of APC and RASSF1A promoter methylation status in cell free circulating DNA of operable gastric cancer patients.Mutat. Res.2015778465110.1016/j.mrfmmm.2015.05.00226073472
    [Google Scholar]
  73. BernalC. AguayoF. VillarroelC. VargasM. DíazI. OssandonF.J. SantibáñezE. PalmaM. AravenaE. BarrientosC. CorvalanA.H. Reprimo as a potential biomarker for early detection in gastric cancer.Clin. Cancer Res.200814196264626910.1158/1078‑0432.CCR‑07‑452218829507
    [Google Scholar]
  74. HuX.Y. LingZ.N. HongL.L. YuQ.M. LiP. LingZ.Q. Circulating methylated THBS1 DNAs as a novel marker for predicting peritoneal dissemination in gastric cancer.J. Clin. Lab. Anal.2021359e2393610.1002/jcla.2393634390026
    [Google Scholar]
  75. KoK. KananazawaY. YamadaT. KakinumaD. MatsunoK. AndoF. KuriyamaS. MatsudaA. YoshidaH. Methylation status and long‐fragment cell‐free DNA are prognostic biomarkers for gastric cancer.Cancer Med.20211062003201210.1002/cam4.375533641249
    [Google Scholar]
  76. YangQ. GaoJ. XuL. ZengZ. SungJ.J.Y. YuJ. Promoter hypermethylation of BCL6B gene is a potential plasma DNA biomarker for gastric cancer.Biomarkers201318872172510.3109/1354750X.2013.85383924191714
    [Google Scholar]
  77. NgE.K.O. LeungC.P.H. ShinV.Y. WongC.L.P. MaE.S.K. JinH.C. ChuK.M. KwongA. Quantitative analysis and diagnostic significance of methylated SLC19A3 DNA in the plasma of breast and gastric cancer patients.PLoS One201167e2223310.1371/journal.pone.002223321789241
    [Google Scholar]
  78. SakakuraC. HamadaT. MiyagawaK. NishioM. MiyashitaA. NagataH. IdaH. YazumiS. OtsujiE. ChibaT. ItoK. ItoY. Quantitative analysis of tumor-derived methylated RUNX3 sequences in the serum of gastric cancer patients.Anticancer Res.20092972619262519596937
    [Google Scholar]
  79. WeiK.L. ChouJ.L. ChenY.C. JinH. ChuangY.M. WuC.S. ChanM.W.Y. Methylomics analysis identifies a putative STAT3 target, SPG20, as a noninvasive epigenetic biomarker for early detection of gastric cancer.PLoS One2019146e021833810.1371/journal.pone.021833831194837
    [Google Scholar]
  80. WatanabeY. UedaH. EtohT. KoikeE. FujinamiN. MitsuhashiA. HoshiaiH. A change in promoter methylation of hMLH1 is a cause of acquired resistance to platinum-based chemotherapy in epithelial ovarian cancer.Anticancer Res.2007273B1449145217595760
    [Google Scholar]
  81. FukushimaT. KatayamaY. WatanabeT. YoshinoA. OginoA. OhtaT. KomineC. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea.Clin. Cancer Res.20051141539154410.1158/1078‑0432.CCR‑04‑162515746058
    [Google Scholar]
  82. WuF. LuM. QuL. LiD.Q. HuC.H. DNA methylation of hMLH1 correlates with the clinical response to cisplatin after a surgical resection in Non-small cell lung cancer.Int. J. Clin. Exp. Pathol.2015855457546326191250
    [Google Scholar]
  83. AlarcónM. OlivaresW. Córdova-DelgadoM. Muñoz-MedelM. de MayoT. Carrasco-AviñoG. WichmannI. LanderosN. AmigoJ. NoreroE. Villarroel-EspíndolaF. RiquelmeA. GarridoM. OwenG. CorvalánA. The Reprimo-like gene is an epigenetic-mediated tumor suppressor and a candidate biomarker for the non-invasive detection of gastric cancer.Int. J. Mol. Sci.20202124947210.3390/ijms2124947233322837
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947313656240819093316
Loading
/content/journals/cctr/10.2174/0115733947313656240819093316
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarker; cfDNA; ctDNA; DNA methylation; gastric cancer; Liquid biopsy; therapy response
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test