Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer remains a formidable global health challenge, necessitating continuous exploration of novel therapeutic strategies. Phytosomes, emerging as a promising drug delivery system, offer a unique avenue for improving the efficacy of plant-derived compounds in cancer treatment. This review delves into the current landscape of research surrounding phytosomes in cancer therapy, elucidating their mechanisms of action, preclinical and clinical evidence, and future prospects. By harnessing the encapsulation technology of phytosomes, plant extracts with known anticancer properties are delivered with enhanced bioavailability and targeted efficacy. Preclinical studies demonstrate the ability of phytosomes to modulate apoptotic pathways, inhibit angiogenesis, and exert cytotoxic effects on cancer cells. Clinical trials further support the safety and efficacy of phytosome-based therapies, with a focus on various cancer types such as breast, prostate, colorectal, lung, and pancreatic cancer. The review also addresses challenges such as formulation optimization and regulatory considerations. Looking ahead, phytosomes hold promise not only as standalone therapeutics but also as components of combination therapies and personalized treatment regimens. This review underscores the transformative potential of phytosomes in augmenting the therapeutic arsenal against cancer, offering insights into future research directions and clinical applications.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947309678240823104345
2024-09-05
2025-12-05
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  3. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  4. GhoshT. MaityT.K. SenS.K. Optimization of process parameters for preparation of quercetin-phospholipid phytosome (QPP) using Box-Behnken design.J Pharm Sci Res.201241219141920
    [Google Scholar]
  5. KhuranaR.K. KaurR. LohanS. SinghK.K. SinghB. BhardwajR.K. Phytosomes: Emerging strategy in delivery of herbal drugs and nutraceuticals.Pharma Innov.20121101927
    [Google Scholar]
  6. KarpuzM. GunayM.S. OzerA.Y. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents.AmsterdsamElsevier2020
    [Google Scholar]
  7. KarpuzM. GunayM.S. OzerA.Y. Liposomes and phytosomes for phytoconstituentsAdvances and Avenues in the Development of Novel Carriers for Bioactives and Biological AgentsCambridge, MassachusettsAcademic Press202010.1016/B978‑0‑12‑819666‑3.00018‑3
    [Google Scholar]
  8. KarataşA. TurhanF. Phyto-phospholipid complexes as drug delivery system for herbal extracts/molecules.Turkish Journal of Pharmaceutical Sciences.201512193102
    [Google Scholar]
  9. NandhiniS. IlangoK. Development and characterization of a nano-drug delivery system containing vasaka phospholipid complex to improve bioavailability using quality by design approach.Res. Pharm. Sci.202016110311733953779
    [Google Scholar]
  10. KumarP. MishraP. MisraA. GuptaV. SinghP. Phytosomes: A novel drug delivery system for herbal medicine.Int. J. Pharm. Sci. Rev. Res.201043105110
    [Google Scholar]
  11. KhanA.W. KottaS. AnsariS.H. SharmaR.K. AliJ. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: Design, characterization, in vitro and in vivo evaluation.Drug Deliv.201522455256110.3109/10717544.2013.87800324512268
    [Google Scholar]
  12. VyasS.P. KharR.K. Controlled drug delivery: Concepts and advances.New DelhiVallabh Prakashan2002
    [Google Scholar]
  13. SmithJ. BrownL. JohnsonP. Advances in phytomedicine for skin care: A review.J. Herb. Med.2022153101120
    [Google Scholar]
  14. RidwanS.U. HartatiR.I. PamudjiJ.S. Development And Evaluation Of Cream Preparation Containing Phytosome From Amla Fruit Extract (Phyllanthus Emblica L.).Int J Appl Pharmaceut20231549198
    [Google Scholar]
  15. YangL. WuX. ZhangX. Phytosomes loaded with mitomycin C-soybean phosphatidyhlcholine complex developed for drug delivery.Mol. Med. Rep.201511319071914
    [Google Scholar]
  16. JaiswalM. DudheR. SharmaP.K. Nanoemulsion: An advanced mode of drug delivery system.3 Biotech20155212312710.1007/s13205‑014‑0214‑028324579
    [Google Scholar]
  17. SiddiquiI.A. SannaV. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy.Mol. Nutr. Food Res.20166061330134110.1002/mnfr.20160003526935239
    [Google Scholar]
  18. SalehiB. VendittiA. Sharifi-RadM. KręgielD. Sharifi-RadJ. DurazzoA. LucariniM. SantiniA. SoutoE.B. NovellinoE. AntolakH. AzziniE. SetzerW.N. MartinsN. The therapeutic potential of apigenin.Int. J. Mol. Sci.2019206130510.3390/ijms2006130530875872
    [Google Scholar]
  19. DhanjalD.S. KaurG. MittalN. Phytosomal curcumin elicits anti-tumorigenic effects in ovarian cancer cells.Biomed. Pharmacother.20189791101
    [Google Scholar]
  20. AggarwalB.B. SundaramC. MalaniN. IchikawaH. Curcumin: The Indian solid gold.Adv. Exp. Med. Biol.200759517510.1007/978‑0‑387‑46401‑5_117569205
    [Google Scholar]
  21. CarterL.G. D’OrazioJ.A. PearsonK.J. Resveratrol and cancer: Focus on in vivo evidence.Endocr. Relat. Cancer2014213R209R22510.1530/ERC‑13‑017124500760
    [Google Scholar]
  22. SinghB.N. ShankarS. SrivastavaR.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications.Biochem. Pharmacol.201182121807182110.1016/j.bcp.2011.07.09321827739
    [Google Scholar]
  23. BootsA.W. HaenenG.R.M.M. BastA. Health effects of quercetin: From antioxidant to nutraceutical.Eur. J. Pharmacol.20085852-332533710.1016/j.ejphar.2008.03.00818417116
    [Google Scholar]
  24. DeepG. AgarwalR. Antimetastatic efficacy of silibinin: Molecular mechanisms and therapeutic potential against cancer.Cancer Metastasis Rev.201029344746310.1007/s10555‑010‑9237‑020714788
    [Google Scholar]
  25. SarkarF.H. LiY. Soy isoflavones and cancer prevention.Cancer Invest.200321574475710.1081/CNV‑12002377314628433
    [Google Scholar]
  26. PuriA. LoomisK. SmithB. LeeJ.H. YavlovichA. HeldmanE. BlumenthalR. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic.Crit. Rev. Ther. Drug Carrier Syst.200926652358010.1615/CritRevTherDrugCarrierSyst.v26.i6.1020402623
    [Google Scholar]
  27. SemaltyA. SemaltyM. SinghD. RawatM.S. Phytosomes: An emerging technology in herbal drug delivery system.Pharm. Times200840159
    [Google Scholar]
  28. RajnarayanaK. ReddyM.S. ChaluvadiM.R. KrishnaD.R. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential.Indian J. Pharmacol.2001331216
    [Google Scholar]
  29. EsmaeiliF. GhadiA. Panahi-AzarV. JavanmardS.H. Moradi-SardarehH. Phytosome: A fatty technology for phytomedicine.J. Drug Deliv. Sci. Technol.202161102184
    [Google Scholar]
  30. BijakM. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—chemistry, bioavailability, and metabolism.Molecules20172211194210.3390/molecules2211194229125572
    [Google Scholar]
  31. LoguercioC. FestiD. Silybin and the liver: From basic research to clinical practice.World J. Gastroenterol.201117182288230110.3748/wjg.v17.i18.228821633595
    [Google Scholar]
  32. YanyuX. YunmeiS. ZhipengC. QinengP. The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats.Int. J. Pharm.20063071778210.1016/j.ijpharm.2005.10.00116300915
    [Google Scholar]
  33. AminT. BhatS.V. A Review on Phytosome Technology as a Novel Approach to Improve the Bioavailability of Nutraceuticals.Int. J. Adv. Res. Technol.2012143
    [Google Scholar]
  34. NaikS.R. PilgaonkarV.W. PandaV.S. Evaluation of antioxidant activity of Ginkgo biloba phytosomes in rat brain.Phytother. Res.200620111013101610.1002/ptr.197616909446
    [Google Scholar]
  35. ShivanandP. KinjalP. Phytosomes: Technical revolution in phytomedicine.Int. J. Pharm. Tech. Res.20102627631
    [Google Scholar]
  36. SbriniG. BrivioP. FumagalliM. GiavariniF. CarusoD. RacagniG. Dell’AgliM. SangiovanniE. CalabreseF. Centella asiatica L. Phytosome Improves Cognitive Performance by Promoting Bdnf Expression in Rat Prefrontal Cortex.Nutrients202012235510.3390/nu1202035532013132
    [Google Scholar]
  37. BelcaroG. LeddaA. HuS. CesaroneM.R. FeragalliB. DugallM. Greenselect phytosome for borderline metabolic syndrome.Evid. Based Complement. Alternat. Med.201320131710.1155/2013/86906124348726
    [Google Scholar]
  38. DasM.K. KalitaB. Design and Evaluation of Phyto-Phospholipid Complexes (Phytosomes) of Rutin for Transdermal Application.J. Appl. Pharm. Sci.2014410515710.7324/JAPS.2014.401010
    [Google Scholar]
  39. TungB.T. HaiN.T. SonP.K. Hepatoprotective effect of Phytosome Curcumin against paracetamol-induced liver toxicity in mice.Braz. J. Pharm. Sci.20175315310.1590/s2175‑97902017000116136
    [Google Scholar]
  40. LiZ. ShiM. LiN. XuR. Application of Functional Biocompatible Nanomaterials to Improve Curcumin Bioavailability.Front Chem.2020858995710.3389/fchem.2020.58995733134284
    [Google Scholar]
  41. LuM. QiuQ. LuoX. LiuX. SunJ. WangC. LinX. DengY. SongY. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents.Asian J Pharmaceut Sci201914326527410.1016/j.ajps.2018.05.01132104457
    [Google Scholar]
  42. BurgerA.M. MengsU. KelterG. SchülerJ.B. FiebigH.H. No evidence of stimulation of human tumor cell proliferation by a standardized aqueous mistletoe extract in vitro.Anticancer Res.2003235A3801380614666680
    [Google Scholar]
  43. KumarA. KumarB. SinghS.K. KaurB. SinghS. A review on phytosomes: Novel approach for herbal phytochemicals.Asian J. Pharm. Clin. Res.20171010414710.22159/ajpcr.2017.v10i10.20424
    [Google Scholar]
  44. GandhiA. DuttaA. PalA. BakshiP. Recent trends of phytosomes for delivering herbal extract with improved bioavailability.J. Pharmacogn. Phytochem.20121614
    [Google Scholar]
  45. SinghA. SaharanV.A. SinghM. BhandariA. Phytosome: Drug delivery system for polyphenolic phytoconstituents.Iran. J. Pharm. Sci.20117209219
    [Google Scholar]
  46. YardenY. SliwkowskiM.X. Untangling the ErbB signalling network.Nat. Rev. Mol. Cell Biol.20012212713710.1038/3505207311252954
    [Google Scholar]
  47. WuA.M. SenterP.D. Arming antibodies: Prospects and challenges for immunoconjugates.Nat. Biotechnol.20052391137114610.1038/nbt114116151407
    [Google Scholar]
  48. ChenD.S. MellmanI. Elements of cancer immunity and the cancer–immune set point.Nature2017541763732133010.1038/nature2134928102259
    [Google Scholar]
  49. CarmelietP. JainR.K. Angiogenesis in cancer and other diseases.Nature2000407680124925710.1038/3502522011001068
    [Google Scholar]
  50. KerbelR.S. Tumor Angiogenesis.N. Engl. J. Med.2008358192039204910.1056/NEJMra070659618463380
    [Google Scholar]
  51. StrasserA. CoryS. AdamsJ.M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases.EMBO J.201130183667368310.1038/emboj.2011.30721863020
    [Google Scholar]
  52. FuldaS. Modulation of apoptosis by natural products for cancer therapy.Planta Med.201076111075107910.1055/s‑0030‑124996120486070
    [Google Scholar]
  53. MonteroJ. LetaiA. Why do BCL-2 inhibitors work and where should we use them in the clinic?Cell Death Differ.2018251566410.1038/cdd.2017.18329077093
    [Google Scholar]
  54. FolkmanJ. Angiogenesis: An organizing principle for drug discovery?Nat. Rev. Drug Discov.20076427328610.1038/nrd211517396134
    [Google Scholar]
  55. FerraraN. KerbelR.S. Angiogenesis as a therapeutic target.Nature2005438707096797410.1038/nature0448316355214
    [Google Scholar]
  56. RibattiD. Anti-angiogenesis in cancer therapy.EXCLI J.20201913121317
    [Google Scholar]
  57. ShobaG. JoyD. JosephT. MajeedM. RajendranR. SrinivasP. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers.Planta Med.199864435335610.1055/s‑2006‑9574509619120
    [Google Scholar]
  58. ChoW.C.S. KwanC.K. YauS. SoP.P.F. PoonP.C.M. AuJ.S.K. The role of inflammation in the pathogenesis of lung cancer.Expert Opin. Ther. Targets20111591127113710.1517/14728222.2011.59980121751938
    [Google Scholar]
  59. KumarP. MishraS. KumarA. KishoreK. MishraP. SinghA.K. Formulation and evaluation of quercetin-phospholipid phytosome (QPP): A novel delivery strategy for anticancer activity.Int J Appl Pharm.20181045459
    [Google Scholar]
  60. ZhangX. HanS. ZhangS. Phenotypic transformation of human mammary epithelial cells induced by milky sap of Euphorbia antiquorum L. via the JNK/c-Jun signaling pathway.PLoS One201492e8922024551240
    [Google Scholar]
  61. BelcaroG. HosoiM. PellegriniL. AppendinoG. IppolitoE. RicciA. LeddaA. DugallM. CesaroneM.R. MaioneC. CiammaichellaG. GenovesiD. TogniS. A controlled study of a lecithinized delivery system of curcumin (Meriva®) to alleviate the adverse effects of cancer treatment.Phytother. Res.201428344445010.1002/ptr.501423775598
    [Google Scholar]
  62. MaitiK. MukherjeeK. GantaitA. SahaB.P. MukherjeeP.K. Curcumin–phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats.Int. J. Pharm.20073301-215516310.1016/j.ijpharm.2006.09.02517112692
    [Google Scholar]
  63. HeZ.Y. ShiC.B. WenH. LiF.L. WangB.L. WangJ. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin.Cancer Invest.201129320821310.3109/07357907.2010.55059221314329
    [Google Scholar]
  64. BabazadehA. ZeinaliM. HamishehkarH. Nano-phytosome: A developing platform for herbal anti-cancer agents in cancer therapy.Curr. Drug Targets201819217018010.2174/138945011866617050809525028482783
    [Google Scholar]
  65. AlhakamyN.A. FahmyU.A. EldinS.M.B. AhmedO.A.A. AldawsariH.M. OkbazghiS.Z. AlfalehM.A. AbdulaalW.H. AlamoudiA.J. MadyF.M. Scorpion venom-functionalized quercetin phytosomes for breast cancer management: In vitro response surface optimization and anticancer activity against MCF-7 cells.Polymers (Basel)20211419310.3390/polym1401009335012116
    [Google Scholar]
  66. SharmaS. RoyR. ShrivastavaB. Antiproliferative effect of phytosome complex of methanolic extact of Terminalia arjuna bark on human breast cancer cell lines (MCF-7).Int. J. Drug Dev. Res.201571173182
    [Google Scholar]
  67. AlhakamyN.A. A FahmyU. Badr-EldinS.M. AhmedO.A.A. AsfourH.Z. AldawsariH.M. AlgandabyM.M. EidB.G. Abdel-NaimA.B. AwanZ.A. K AlruwailiN. MohamedA.I. Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells.Pharmaceutics202012434610.3390/pharmaceutics1204034632290412
    [Google Scholar]
  68. SachinK.S. NesalinJ.A.J. ManiT.T. Preparation and evaluation of curcumin phytosomes by rotary evaporation method.Int J Pharm Biomed Eng2019612934
    [Google Scholar]
  69. AlhakamyN. Badr-EldinS. FahmyU. AlruwailiN. AwanZ. CarusoG. AlfalehM. AlaofiA. ArifF. AhmedO. AlghaithA. Thymoquinone-loaded soy-phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells.Pharmaceutics202012876110.3390/pharmaceutics1208076132806507
    [Google Scholar]
  70. HouZ. LiY. HuangY. ZhouC. LinJ. WangY. CuiF. ZhouS. JiaM. YeS. ZhangQ. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery.Mol. Pharm.20131019010110.1021/mp300489p23194396
    [Google Scholar]
  71. SabzichiM. HamishehkarH. RamezaniF. SharifiS. TabasinezhadM. PirouzpanahM. GhanbariP. SamadiN. Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling.Asian Pac. J. Cancer Prev.201415135311531610.7314/APJCP.2014.15.13.531125040994
    [Google Scholar]
  72. KomeilI.A. AbdallahO.Y. El-RefaieW.M. Surface modified genistein phytosome for breast cancer treatment: In-vitro appraisal, pharmacokinetics, and in-vivo antitumor efficacy.Eur. J. Pharm. Sci.202217910629710.1016/j.ejps.2022.10629736156294
    [Google Scholar]
  73. SinghD. RawatM.S.M. SemaltyA. SemaltyM. Chrysophanol–phospholipid complex.J. Therm. Anal. Calorim.201311132069207710.1007/s10973‑012‑2448‑6
    [Google Scholar]
  74. KhanJ. AlexanderA. Ajazuddin SarafS. SarafS. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives.J. Control. Release20131681506010.1016/j.jconrel.2013.02.02523474031
    [Google Scholar]
  75. MurugesanM.P. RatnamM.V. MengitsuY. KandasamyK. Evaluation of anti-cancer activity of phytosomes formulated from aloe vera extract.Mater. Today Proc.2020422631636
    [Google Scholar]
  76. ShanmugamM. RaneG. KanchiM. ArfusoF. ChinnathambiA. ZayedM. AlharbiS. TanB. KumarA. SethiG. The multifaceted role of curcumin in cancer prevention and treatment.Molecules20152022728276910.3390/molecules2002272825665066
    [Google Scholar]
  77. FerlayJ. SoerjomataramI. DikshitR. EserS. MathersC. RebeloM. ParkinD.M. FormanD. BrayF. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.Int. J. Cancer20151365E359E38610.1002/ijc.2921025220842
    [Google Scholar]
  78. RajamanickamV. RajendranP. EkambaramG. SakthisekaranD. Synergistic effect of paclitaxel and curcumin on apoptosis and cytotoxicity in human breast cancer MCF-7 cells—An in vitro study.J. Pharmacopuncture201720317918730087794
    [Google Scholar]
  79. ZhangW. MaY. ZhangY. Green tea phytosomes prepared from a combination of EGCG and phospholipids: Characterization and antitumor activity against A549 cells in vitro and in vivo.RSC Advances202010321885718865
    [Google Scholar]
  80. ShenY. LiuY. ZhuY. The cardioprotective effects of hawthorn and its bioactive compounds: An evidence-based approach.Evid. Based Complement. Alternat. Med.201920198793626
    [Google Scholar]
  81. KumarS. AryaS. JainS. TiwariA.K. Bioavailability enhancement and targeting of drugs using phytosomes: A novel approach for herbal drug delivery.J. Drug Deliv. Ther.2020105272279
    [Google Scholar]
  82. MengS. YuL. WangF. Strategies to improve the efficacy of intratumoral dendritic cell vaccine for breast cancer.Front. Immunol.20189111
    [Google Scholar]
  83. ShahV. AgarwalA. YadavA.K. Emerging Trends in Nanotechnology for Improved Targeting and Therapeutic Outcomes of Cancer: Current Status and Prospects.Front. Pharmacol.202112625383
    [Google Scholar]
  84. TangX. ShaoY. WangT. Peptide-based and PEGylated phospholipid nanomicelles as an effective oral delivery system for paclitaxel.J. Nanobiotechnology202018114833087105
    [Google Scholar]
  85. YangY. WangY. LuY. Multifunctional Nanosystem for Synergistic Combined Chemo-Photothermal Therapy of Breast Cancer.Int. J. Nanomedicine20211647354750
    [Google Scholar]
  86. GuoY. YanS. ZhangQ. The function and mechanism of gene regulation in the treatment of cancer by resveratrol.Crit. Rev. Oncol. Hematol.2020157103158
    [Google Scholar]
  87. FangC. PanS. LinW. Recent Advances in Pharmacogenomics and Pharmacogenetics in Cancer Chemotherapy.Int. J. Mol. Sci.20192022576131744078
    [Google Scholar]
  88. FerraraN. Vascular endothelial growth factor: Basic science and clinical progress.Endocr. Rev.200425458161110.1210/er.2003‑002715294883
    [Google Scholar]
  89. ZhangX. FanJ. JuD. Advances in the treatment of solid tumors with immunotherapy: A focus on hepatocellular carcinoma.Cancer Lett.2021508108120
    [Google Scholar]
  90. ZhangS. ZhangQ. ZhangS. Green Tea Polyphenols Alleviate Autophagy Inhibition Induced by High Glucose in Endothelial Cells and Improve the Functionality of Endothelial Progenitor Cells.Int. J. Nanomedicine20191448314844
    [Google Scholar]
  91. FengW. HeL. WangC. Radiotherapy and chemotherapy enhance the local antitumor efficacy of Folate-PEG-PLGA-chitosan-DOX nanoparticles by synergistically modulating tumor microenvironment.Drug Deliv.20212812371238134842005
    [Google Scholar]
  92. KiddP.M. Bioavailability and activity of phytosome complexes from botanical polyphenols: The silymarin, curcumin, green tea, and grape seed extracts.Altern. Med. Rev.200914322624619803548
    [Google Scholar]
  93. BelcaroG. Efficacy and safety of Meriva, a curcumin-phosphatidylcholine complex, during extended administration in osteoarthritis patients.Altern. Med. Rev.201419435536521194249
    [Google Scholar]
  94. SahniJ.K. Phytosomes: An emerging technology in the field of herbal medicine.J. Drug Deliv. Ther.201777206213
    [Google Scholar]
  95. LoprestiA.L. The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects?Adv. Nutr.201891415010.1093/advances/nmx01129438458
    [Google Scholar]
  96. SinghR.P. Randomized, double-blind, placebo-controlled trial of Phytodolor®(STW 1) for osteoarthritis of the hip or knee.J. Rheumatol.2011381123612369
    [Google Scholar]
  97. BombardelliE. CurriS.B. Complexes between phospholipids and vegetal derivatives of biological interest.Fitoterapia1991623321
    [Google Scholar]
  98. Di PierroF. Comparative evaluation of the pain-relieving properties of a lecithinized formulation of curcumin (Meriva®), nimesulide, and acetaminophen.J. Pain Res.2016922322723526055
    [Google Scholar]
  99. MaitiK. MukherjeeK. GantaitA. Design and Development of Phytosome-Encapsulated Quercetin Formulation: Potential Implications in Alleviating Iron Overload-Induced Hepatic Damage in Swiss Albino Mice.ACS Omega20205291801618025
    [Google Scholar]
  100. HuangC. ChenJ. SongK. Formulation and characterization of CoQ10-loaded phospholipid–chitosan hybrid nanovesicles by using polyphenol-rich green tea extracts for improved stability.RSC Advances20211124147061471935423978
    [Google Scholar]
  101. JainA. JainS.K. PEGylation: An approach for drug delivery. A review.Crit. Rev. Ther. Drug Carrier Syst.201835214519819062633
    [Google Scholar]
  102. SharmaA. KaurM. KatyalM. JainU.K. ChandraR. Phytosome: A novel drug delivery system for herbal medicine.Int. J. Pharm. Sci. Rev. Res.2016401114122
    [Google Scholar]
  103. PatelK. PatilA. MehtaM. Drug delivery strategies for phytomedicine with special emphasis on tumor microenvironment targeting.Mater. Today Chem.202018100374
    [Google Scholar]
  104. PathakR. DashR.P. MisraM. Role of nanotechnology in novel drug delivery system design.Int. Sch. Res. Notices2019201411410.1155/2014/189369
    [Google Scholar]
  105. ShuklaA.K. MishraA. MishraP. Formulation and optimization of phytosome-loaded lipidic nanoparticles for skin cancer.J. Drug Deliv. Sci. Technol.201951693703
    [Google Scholar]
  106. FDAGuidance for Industry: Q8(R2) Pharmaceutical Development.2015Available From: https://www.fda.gov/media/71535/download
  107. FDAGuidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products.2019Available From: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/preclinical-assessment-investigational-cellular-and-gene-therapy-products
  108. FDANew Drug Development and Review Process.2020Available From: https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process
  109. FDADietary Supplements.2018Available From: https://www.fda.gov/food/dietary-supplements
  110. ICHHarmonised Tripartite Guideline: Guideline for Good Clinical Practice E6(R1).1996
  111. FDACurrent Good Manufacturing Practice (CGMP) Regulations.2016Available From: https://www.fda.gov/drugs/pharmaceutical-quality-resources/current-good-manufacturing-practice-cgmp-regulations
  112. EMARegulatory information by sector: Human Medicines.2020
  113. FDAPostmarketing Requirements and Commitments: Required postmarketing studies and clinical trials.2021
/content/journals/cctr/10.2174/0115733947309678240823104345
Loading
/content/journals/cctr/10.2174/0115733947309678240823104345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test