Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer is the uninhibited proliferation of aberrant body cells. Cancer treatments and disorders might have adverse implications. Side effects occur when medication affects healthy organs or tissues. Identifying potential biological targets in cancer treatment is a tough and diverse process that requires consideration of the underlying molecular mechanisms that drive cancer growth and development. Drug identification methods are mostly based on drug screening and animal studies. The biologically-based therapy technique has also been successfully utilized to identify anti-cancer medications, as evidenced by studies and investigations based on a biological target-protein interaction, drug-target relationship, and disease-gene network. To identify biological targets, the researchers have looked for specific genetic alterations that aid in tumor development and growth. This review focuses on the biological targets' role in cancer disease and the usefulness of studies to understand the target protein-drug interaction and predict therapeutic drug molecules for cancer treatment.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947314317240805204339
2024-08-20
2025-12-05
Loading full text...

Full text loading...

References

  1. SiegelR. MillerK. WagleN. JemalA. Cancer statistics, 2023.CA Cancer J Clin20237311748
    [Google Scholar]
  2. MathurP. SathishkumarK. ChaturvediM. DasP. SudarshanK.L. SanthappanS. NallasamyV. JohnA. NarasimhanS. RoselindF.S. ICMR-NCDIR-NCRP Investigator Group Cancer statistics, 2020: Report from national cancer registry programme, India.JCO Glob. Oncol.2020661063107510.1200/GO.20.0012232673076
    [Google Scholar]
  3. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.20219.10.1177/2050312121103436634408877
    [Google Scholar]
  4. VentolaC.L. Cancer immunotherapy, part 3: Challenges and future trends.P&T201742851452128781505
    [Google Scholar]
  5. PucciC. MartinelliC. CiofaniG. Innovative approaches for cancer treatment: Current perspectives and new challenges.Ecancermedicalscience20191396110.3332/ecancer.2019.96131537986
    [Google Scholar]
  6. HauserA.S. AttwoodM.M. Rask-AndersenM. SchiöthH.B. GloriamD.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov.2017161282984210.1038/nrd.2017.17829075003
    [Google Scholar]
  7. OttoT. SicinskiP. Cell cycle proteins as promising targets in cancer therapy.Nat. Rev. Cancer20171729311510.1038/nrc.2016.13828127048
    [Google Scholar]
  8. JingwenB. YaochenL. GuojunZ. Cell cycle regulation and anticancer drug discovery.Cancer Biol. Med.201714434836210.20892/j.issn.2095‑3941.2017.003329372101
    [Google Scholar]
  9. YipH.Y.K. PapaA. Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments.Cells202110365910.3390/cells1003065933809714
    [Google Scholar]
  10. AkcakanatA. ZhengX. Cruz PicoC.X. KimT.B. ChenK. KorkutA. SahinA. HollaV. TarcoE. SinghG. DamodaranS. MillsG.B. Gonzalez-AnguloA.M. Meric-BernstamF. Genomic, transcriptomic, and proteomic profiling of metastatic breast cancer.Clin. Cancer Res.202127113243325210.1158/1078‑0432.CCR‑20‑404833782032
    [Google Scholar]
  11. AustinB.K. FiroozA. ValafarH. BlendaA.V. An updated overview of existing cancer databases and identified needs.Biology2023128115210.3390/biology1208115237627037
    [Google Scholar]
  12. AldewachiH. Al-ZidanR.N. ConnerM.T. SalmanM.M. High-throughput screening platforms in the discovery of novel drugs for neurodegenerative diseases.Bioengineering2021823010.3390/bioengineering802003033672148
    [Google Scholar]
  13. WeiR. LiuS. ZhangS. MinL. ZhuS. Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers.Anal. Cell. Pathol.2020202011310.1155/2020/628379632377504
    [Google Scholar]
  14. ChenY. XuR. Context-sensitive network-based disease genetics prediction and its implications in drug discovery.Bioinformatics20173371031103910.1093/bioinformatics/btw73728062449
    [Google Scholar]
  15. ChengY. HeC. WangM. MaX. MoF. YangS. HanJ. WeiX. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials.Signal Transduct. Target. Ther.2019416210.1038/s41392‑019‑0095‑031871779
    [Google Scholar]
  16. DalwadiS.M. HuntA. BonnenM.D. GhebreY.T. Computational approaches for drug repurposing in oncology: Untapped opportunity for high value innovation.Front. Oncol.202313119828410.3389/fonc.2023.119828437274281
    [Google Scholar]
  17. IdrisovaK.F. SimonH.U. GomzikovaM.O. Role of patient-derived models of cancer in translational oncology.Cancers202215113910.3390/cancers1501013936612135
    [Google Scholar]
  18. ChandranU. MehendaleN. PatilS. ChaguturuR. PatwardhanB. Network Pharmacology.Innovative Approaches in Drug Discover201712716410.1016/B978‑0‑12‑801814‑9.00005‑2
    [Google Scholar]
  19. SkredeO.J. De RaedtS. KleppeA. HveemT.S. LiestølK. MaddisonJ. AskautrudH.A. PradhanM. NesheimJ.A. AlbregtsenF. Deep learning for prediction of colorectal cancer outcome: A discovery and validation study.Lancet20203951022135036010.1016/S0140‑6736(19)32998‑8
    [Google Scholar]
  20. SpreaficoA. HansenA.R. Abdul RazakA.R. BedardP.L. SiuL.L. The future of clinical trial design in oncology.Cancer Discov.202111482283710.1158/2159‑8290.CD‑20‑130133811119
    [Google Scholar]
  21. HassanM. AwanF.M. NazA. deAndrés-GalianaE.J. AlvarezO. CerneaA. Fernández-BrilletL. Fernández-MartínezJ.L. KloczkowskiA. Innovations in genomics and big data analytics for personalized medicine and health care: A review.Int. J. Mol. Sci.2022239464510.3390/ijms2309464535563034
    [Google Scholar]
  22. AmaravadiR. KimmelmanA.C. WhiteE. Recent insights into the function of autophagy in cancer.Genes Dev.201630171913193010.1101/gad.287524.11627664235
    [Google Scholar]
  23. MadhukarN.S. KhadeP.K. HuangL. GayvertK. GallettiG. StogniewM. AllenJ.E. GiannakakouP. ElementoO. A Bayesian machine learning approach for drug target identification using diverse data types.Nat. Commun.2019101522110.1038/s41467‑019‑12928‑631745082
    [Google Scholar]
  24. MueggeI. BergnerA. KrieglJ.M. Computer-aided drug design at Boehringer Ingelheim.J. Comput. Aided Mol. Des.201731327528510.1007/s10822‑016‑9975‑327650777
    [Google Scholar]
  25. WangL. SongY. WangH. ZhangX. WangM. HeJ. LiS. ZhangL. LiK. CaoL. Advances of artificial intelligence in anti-cancer drug design: A review of the past decade.Pharmaceuticals202316225310.3390/ph1602025337259400
    [Google Scholar]
  26. KumarB. SinghS. SkvortsovaI. KumarV. Promising targets in anti-cancer drug development: Recent updates.Curr. Med. Chem.201724424729475228393696
    [Google Scholar]
  27. MansooriB. MohammadiA. DavudianS. ShirjangS. BaradaranB. The different mechanisms of cancer drug resistance: A brief review.Adv. Pharm. Bull.20177333934810.15171/apb.2017.04129071215
    [Google Scholar]
  28. MuhammadA. KatsayalB.S. ForcadosG.E. MalamiI. AbubakarI.B. kandiA.I. IdrisA.M. YusufS. MusaS.M. MondayN. UmarZ.S. In silico predictions on the possible mechanism of action of selected bioactive compounds against breast cancer. In Silico Pharmacol.202081410.1007/s40203‑020‑00057‑833194532
    [Google Scholar]
  29. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  30. RahmanM.M. IslamM.R. RahmanF. RahamanM.S. KhanM.S. AbrarS. RayT.K. UddinM.B. KaliM.S.K. DuaK. KamalM.A. ChellappanD.K. Emerging promise of computational techniques in anti-cancer research: At a glance.Bioengineering20229833510.3390/bioengineering908033535892749
    [Google Scholar]
  31. BaudinoT. Targeted cancer therapy: The next generation of cancer treatment.Curr. Drug Discov. Technol.201512132010.2174/157016381266615060214431026033233
    [Google Scholar]
  32. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x21091654
    [Google Scholar]
  33. AgamahF.E. MazanduG.K. HassanR. BopeC.D. ThomfordN.E. GhansahA. ChimusaE.R. Computational/in silico methods in drug target and lead prediction.Brief. Bioinform.20202151663167510.1093/bib/bbz10331711157
    [Google Scholar]
  34. ShiravandY. KhodadadiF. KashaniS.M.A. Hosseini-FardS.R. HosseiniS. SadeghiradH. LadwaR. O’ByrneK. KulasingheA. Immune checkpoint inhibitors in cancer therapy.Curr. Oncol.20222953044306010.3390/curroncol2905024735621637
    [Google Scholar]
  35. WilkesG.M. Targeted therapy: Attacking cancer with molecular and immunological targeted agents.Asia Pac. J. Oncol. Nurs.20185213715510.4103/apjon.apjon_79_1729607374
    [Google Scholar]
  36. BethuneG. BethuneD. RidgwayN. XuZ. Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update.J. Thorac. Dis.201021485122263017
    [Google Scholar]
  37. NiuZ. JinR. ZhangY. LiH. Signaling pathways and targeted therapies in lung squamous cell carcinoma: Mechanisms and clinical trials.Signal Transduct. Target. Ther.20227135310.1038/s41392‑022‑01200‑x36198685
    [Google Scholar]
  38. O’SullivanC.C. SumanV.J. GoetzM.P. The emerging role of CDK4/6i in HER2-positive breast cancer.Ther. Adv. Med. Oncol.20191110.1177/175883591988766531832106
    [Google Scholar]
  39. KoiralaN. DeyN. AskeJ. DeP. Targeting cell cycle progression in HER2+ breast cancer: An emerging treatment opportunity.Int. J. Mol. Sci.20222312654710.3390/ijms2312654735742993
    [Google Scholar]
  40. DingY. Oliveira-FerrerL. VettorazziE. LeglerK. Milde-LangoschK. WoelberL. JaegerA. PrieskeK. MuellerV. SchmalfeldtB. KuertiS. VEGF-C serum level is associated with response to bevacizumab maintenance therapy in primary ovarian cancer patients.PLoS One2022176e026968010.1371/journal.pone.026968035687576
    [Google Scholar]
  41. JananiB. VijayakumarM. PriyaK. KimJ.H. PrabakaranD.S. ShahidM. Al-GhamdiS. AlsaidanM. Othman BahakimN. Hassan AbdelzaherM. RameshT. EGFR-based targeted therapy for colorectal cancer—promises and challenges.Vaccines202210449910.3390/vaccines1004049935455247
    [Google Scholar]
  42. HansenT.F. QvortrupC. PfeifferP. Angiogenesis inhibitors for colorectal cancer. A review of the clinical data.Cancers2021135103110.3390/cancers1305103133804554
    [Google Scholar]
  43. BellmuntJ. PowlesT. VogelzangN.J. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: The future is now.Cancer Treat. Rev.201754586710.1016/j.ctrv.2017.01.00728214651
    [Google Scholar]
  44. GrapaC.M. MocanT. GonciarD. ZdrehusC. MosteanuO. PopT. MocanL. Epidermal growth factor receptor and its role in pancreatic cancer treatment mediated by nanoparticles.Int. J. Nanomedicine2019149693970610.2147/IJN.S22662831849462
    [Google Scholar]
  45. ZhuZ. XiaoS. HaoH. HouQ. FuX. Kirsten rat sarcoma viral oncogene homologue (KRAS) mutations in the occurrence and treatment of pancreatic cancer.Curr. Top. Med. Chem.201919232176218610.2174/156802661966619082816080431456520
    [Google Scholar]
  46. HeideggerI. PircherA. PichlerR. Targeting the tumor microenvironment in renal cell cancer biology and therapy.Front. Oncol.2019949010.3389/fonc.2019.0049031259150
    [Google Scholar]
  47. CrisciS. AmitranoF. SaggeseM. MutoT. SarnoS. MeleS. VitaleP. RongaG. BerrettaM. Di FranciaR. Overview of current targeted anti-cancer drugs for therapy in onco-hematology.Medicina201955841410.3390/medicina5508041431357735
    [Google Scholar]
  48. ZhuX.D. TangZ.Y. SunH.C. Targeting angiogenesis for liver cancer: Past, present, and future.Genes Dis.20207332833510.1016/j.gendis.2020.03.01032884987
    [Google Scholar]
  49. AdamsC.M. Clark-GarveyS. PorcuP. EischenC.M. Targeting the Bcl-2 family in B cell lymphoma.Front. Oncol.2019863610.3389/fonc.2018.0063630671383
    [Google Scholar]
  50. NguyenN.M. ChoJ. ANguyen Hedgehog pathway inhibitors as targeted cancer therapy and strategies to overcome drug resistance.Int. J. Mol. Sci.2022233173310.3390/ijms2303173335163655
    [Google Scholar]
  51. HanY. LiuD. LiL. PD-1/PD-L1 pathway: Current researches in cancer.Am. J. Cancer Res.202010372774232266087
    [Google Scholar]
  52. AiL. ChenJ. YanH. HeQ. LuoP. XuZ. YangX. Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy.Drug Des. Devel. Ther.2020143625364910.2147/DDDT.S26743332982171
    [Google Scholar]
  53. ŚmiechM. LeszczyńskiP. KonoH. WardellC. TaniguchiH. Emerging BRAF mutations in cancer progression and their possible effects on transcriptional networks.Genes20201111134210.3390/genes1111134233198372
    [Google Scholar]
  54. SantarpiaL. LippmanS.M. El-NaggarA.K. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy.Expert Opin. Ther. Targets201216110311910.1517/14728222.2011.64580522239440
    [Google Scholar]
  55. Fernández-MedardeA. SantosE. Ras in cancer and developmental diseases.Genes Cancer20112334435810.1177/194760191141108421779504
    [Google Scholar]
  56. HamarshehS. GroßO. BrummerT. ZeiserR. Immune modulatory effects of oncogenic KRAS in cancer.Nat. Commun.2020111543910.1038/s41467‑020‑19288‑633116132
    [Google Scholar]
  57. AndersonA.C. JollerN. KuchrooV.K. Tim-3 and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation.Immunity201644989100410.1016/j.immuni.2016.05.001
    [Google Scholar]
  58. NiuG. ChenX. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy.Curr. Drug Targets20101181000101710.2174/13894501079159139520426765
    [Google Scholar]
  59. GutierrezC. SchiffR. HER2: Biology, detection, and clinical implications.Arch. Pathol. Lab. Med.20111351556210.5858/2010‑0454‑RAR.121204711
    [Google Scholar]
  60. YumJ.E.I. HongY.K. Terminating cancer by blocking VISTA as a novel immunotherapy: See you, baby. Front. Oncol.20211165848810.3389/fonc.2021.65848833937071
    [Google Scholar]
  61. BouyahyaA. El AllamA. AboulaghrasS. BakrimS. El MenyiyN. AlshahraniM.M. Al AwadhA.A. BenaliT. LeeL.H. El OmariN. GohK.W. MingL.C. MubarakM.S. Targeting mTOR as a cancer therapy: Recent advances in natural bioactive compounds and immunotherapy.Cancers20221422552010.3390/cancers1422552036428613
    [Google Scholar]
  62. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers2017955210.3390/cancers905005228513565
    [Google Scholar]
  63. TianT. LiX. ZhangJ. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy.Int. J. Mol. Sci.201920375510.3390/ijms2003075530754640
    [Google Scholar]
  64. RascioF. SpadaccinoF. RocchettiM.T. CastellanoG. StalloneG. NettiG.S. RanieriE. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review.Cancers20211316394910.3390/cancers1316394934439105
    [Google Scholar]
  65. Quintás-CardamaA. CortesJ. Molecular biology of bcr-abl1–positive chronic myeloid leukemia.Blood200911381619163010.1182/blood‑2008‑03‑14479018827185
    [Google Scholar]
  66. KarimiM.R. KarimiA.H. AbolmaaliS. SadeghiM. SchmitzU. Prospects and challenges of cancer systems medicine: From genes to disease networks.Brief. Bioinform.2022231bbab34310.1093/bib/bbab34334471925
    [Google Scholar]
  67. KrzyszczykP. AcevedoA. DavidoffE.J. TimminsL.M. Marrero-BerriosI. PatelM. WhiteC. LoweC. SherbaJ.J. HartmanshennC. O’NeillK.M. BalterM.L. FritzZ.R. AndroulakisI.P. SchlossR.S. YarmushM.L. The growing role of precision and personalized medicine for cancer treatment.Technology2018603n047910010.1142/S233954781830002030713991
    [Google Scholar]
  68. KhalighiS. SinghS. VaradanV. Untangling a complex web: Computational analyses of tumor molecular profiles to decode driver mechanisms.J. Genet. Genomics2020471059560910.1016/j.jgg.2020.11.00133423960
    [Google Scholar]
  69. YakhiniZ. JurisicaI. Cancer computational biology.BMC Bioinformatics201112112010.1186/1471‑2105‑12‑12021521513
    [Google Scholar]
  70. SaikiaS. BordoloiM. Molecular docking: Challenges, advances and its use in drug discovery perspective.Curr. Drug Targets201920550152110.2174/138945011966618102215301630360733
    [Google Scholar]
  71. SartoriG. AlbuquerqueA. Santos-CostaA. AndradeL. AlmeidaD. GaietaE. SampaioJ. AlbuquerqueV. Martins Da SilvaJ. In silico mapping of the dynamic interactions and structure-activity relationship of flavonoid compounds against the immune checkpoint programmed-cell.Frontiers2022
    [Google Scholar]
  72. PurushothamanB. SuganthiN. JothiA. ShanmugamK. Molecular docking studies of potential anticancer agents from Ocimum basilicum L. against human colorectal cancer regulating genes: An in silico approach.Res J Pharm Technol.20191273423342710.5958/0974‑360X.2019.00579.1
    [Google Scholar]
  73. PodlesnykhS.V. LampatovV.V. KhlebnikovA.I. ChapovalA.I. Molecular docking and experimental analysis of a peptide interacting with CTLA-4.Biomed. Khim.202066215616110.18097/pbmc2020660215632420897
    [Google Scholar]
  74. MendieL.E. HemalathaS. Molecular docking of phytochemicals targeting GFRs as therapeutic sites for cancer: An in silico study.Appl. Biochem. Biotechnol.2022194121523110.1007/s12010‑021‑03791‑734988844
    [Google Scholar]
  75. CacaceE. KritikosG. TypasA. Chemical genetics in drug discovery.Curr. Opin. Syst. Biol.20174354210.1016/j.coisb.2017.05.02032715163
    [Google Scholar]
  76. JhaV. DevkarS. GharatK. KasbeS. MatharooD.K. PendseS. BhosaleA. BhargavaA. Screening of phytochemicals as potential inhibitors of breast cancer using structure based multitargeted molecular docking analysis.Phytomed. Plus.20222100227
    [Google Scholar]
  77. ShahikS.M. SalauddinA. HossainM.S. NoyonS.H. MoinA.T. MizanS. RazaM.T. Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: An integrated computational approach.Genomics Inform.2021191e610.5808/gi.2006833840170
    [Google Scholar]
  78. MustafaG. YounasS. MahroshH.S. AlbeshrM.F. BhatE.A. Molecular docking and simulation-binding analysis of plant phytochemicals with the hepatocellular carcinoma targets epidermal growth factor receptor and caspase-9.Molecules2023288358310.3390/molecules2808358337110817
    [Google Scholar]
  79. LamichhaneS. RaiR.P. KhatriA. AdhikariR. ShresthaB.G. ShresthaS.K. Screening of phytochemicals as potential anti-breast cancer agents targeting HER2: An in-silico approach.J. Biomol. Struct. Dyn.202341389791110.1080/07391102.2021.201497234957911
    [Google Scholar]
  80. WarakeR.A. JaragR.J. DhavaleR.P. Evaluation of in vitro antioxidant, anticancer activities and molecular docking studies of Capparis Zeylanica Linn. Leaves.Futur J Pharm Sci20217
    [Google Scholar]
  81. OyedeleA-Q.K. The discovery of some promising putative binders of KRAS G12D receptor using computer-aided drug discovery approach.Inform. Med. Unlocked20233710117010.1016/j.imu.2023.101170
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947314317240805204339
Loading
/content/journals/cctr/10.2174/0115733947314317240805204339
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test