Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Chemotherapy drugs are not fully selective for cancer cells - they can also destroy healthy cells. Recent advances in nanotechnology have offered hope to overcome this problem. Liposome carriers are widely studied for their use to deliver drugs and genes inside cancer cells. Gemini quaternary ammonium salts (QAS) show great application potential among lipid carriers. Structures made of Gemini surfactants are characterized by a lower critical micelle concentration (CMC) and higher effectiveness in lowering the surface tension compared to monomeric forms of this type of compound. Encapsulation of a drug or genetic material is one of the critical steps in the formation of liposomal carriers. This efficient process allows one to minimize the number of necessary liposomes capable of delivering a certain amount of active substance. Delivery of a liposome to a solid tumor depends on the physiological factors of the tumor - vascularity, lymphatic drainage, interstitial fluid pressure – and on the physicochemical properties of the carrier. Many nanoparticles for targeted drug delivery have been tested in animal studies but have not achieved satisfactory clinical success. Promising preclinical research results are not always reflected in the treatment of patients. Therefore, understanding the relationships governing the transport of the drug and the carrier to the cancer cell seems to be a key challenge in modern nanotechnology.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947312894240930110609
2024-10-11
2025-12-05
Loading full text...

Full text loading...

References

  1. LiuP. ChenG. ZhangJ. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules2704137235209162
    [Google Scholar]
  2. DuongV.A. NguyenT.T.L. MaengH.J. Recent advances in intranasal liposomes for drug, gene, and vaccine delivery.Pharmaceutics202315120710.3390/pharmaceutics1501020736678838
    [Google Scholar]
  3. FultonM.D. Najahi-MissaouiW. Liposomes in cancer therapy: How did we start and where are we now.Int. J. Mol. Sci.2023247661510.3390/ijms2407661537047585
    [Google Scholar]
  4. RommasiF. EsfandiariN. Liposomal nanomedicine: Applications for drug delivery in cancer therapy.Nanoscale Res. Lett.20211619510.1186/s11671‑021‑03553‑834032937
    [Google Scholar]
  5. AkkewarA. MahajanN. KharwadeR. GanganeP. Liposomes in the targeted gene therapy of cancer: A critical review.Curr. Drug Deliv.202320435037010.2174/156720181966622042111312735593362
    [Google Scholar]
  6. GuZ. Da SilvaC. Van der MaadenK. OssendorpF. CruzL. Liposome-based drug delivery systems in cancer immunotherapy.Pharmaceutics20201211105410.3390/pharmaceutics1211105433158166
    [Google Scholar]
  7. DymekM. SikoraE. Liposomes as biocompatible and smart delivery systems – The current state.Adv. Colloid Interface Sci.202230910275710.1016/j.cis.2022.10275736152374
    [Google Scholar]
  8. Guerrero-HernándezL. Meléndez-OrtizH.I. Cortez-MazatanG.Y. Vaillant-SánchezS. Peralta-RodríguezR.D. Gemini and bicephalous surfactants: A review on their synthesis, micelle formation, and uses.Int. J. Mol. Sci.2022233179810.3390/ijms2303179835163721
    [Google Scholar]
  9. PisárčikM. PolakovičováM. MarkuliakM. LukáčM. DevínskyF. Self-assembly properties of cationic gemini surfactants with biodegradable groups in the spacer.Molecules2019248148110.3390/molecules2408148130991746
    [Google Scholar]
  10. Al BadriY.N. ChawC.S. ElkordyA.A. Insights into asymmetric liposomes as a potential intervention for drug delivery including pulmonary nanotherapeutics.Pharmaceutics202315129410.3390/pharmaceutics1501029436678922
    [Google Scholar]
  11. ObłąkE. PiecuchA. Rewak-SoroczyńskaJ. PaluchE. Activity of gemini quaternary ammonium salts against microorganisms.Appl. Microbiol. Biotechnol.2019103262563210.1007/s00253‑018‑9523‑230460534
    [Google Scholar]
  12. NakhaeiP. MargianaR. BokovD.O. AbdelbassetW.K. Jadidi KouhbananiM.A. VarmaR.S. MarofiF. JarahianM. BeheshtkhooN. RETRACTED: Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol.Front. Bioeng. Biotechnol.2021970588610.3389/fbioe.2021.70588634568298
    [Google Scholar]
  13. Aguirre-RamírezM. Silva-JiménezH. BanatI.M. Díaz De RienzoM.A. Surfactants: Physicochemical interactions with biological macromolecules.Biotechnol. Lett.202143352353510.1007/s10529‑020‑03054‑133534014
    [Google Scholar]
  14. SingerO.M. CampbellJ.W. HoareJ.G. MasudaJ.D. MarangoniG. SingerR.D. Improved green synthesis and crystal structures of symmetrical cationic gemini surfactants.ACS Omega2022739353263533010.1021/acsomega.2c0507336211064
    [Google Scholar]
  15. AnchevB.A. TsekovaD.S. MirchevaK.M. GrozevN.A. Monolayer formed by l -Asp-based gemini surfactants self-assembled in 1D nanostructures.RSC Advances2019957330713307910.1039/C9RA06390K35529116
    [Google Scholar]
  16. BryckiB. SzulcA. BabkovaM. Synthesis of silver nanoparticles with gemini surfactants as efficient capping and stabilizing agents.Appl. Sci.202011115410.3390/app11010154
    [Google Scholar]
  17. AzumN. RubM.A. KhanA. AlotaibiM.M. AsiriA.M. RahmanM.M. Mixed micellization, thermodynamic and adsorption behavior of tetracaine hydrochloride in the presence of cationic gemini/conventional surfactants. Gels20228212810.3390/gels802012835200509
    [Google Scholar]
  18. LiuC. ZhangL. ZhuW. GuoR. SunH. ChenX. DengN. Barriers and strategies of cationic liposomes for cancer gene therapy.Mol. Ther. Methods Clin. Dev.20201875176410.1016/j.omtm.2020.07.01532913882
    [Google Scholar]
  19. PisaniS. Di MartinoD. CerriS. GentaI. DoratiR. BertinoG. BenazzoM. ContiB. Investigation and comparison of active and passive encapsulation methods for loading proteins into liposomes.Int. J. Mol. Sci.202324171354210.3390/ijms24171354237686348
    [Google Scholar]
  20. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  21. SurS. FriesA.C. KinzlerK.W. ZhouS. VogelsteinB. Remote loading of preencapsulated drugs into stealth liposomes.Proc. Natl. Acad. Sci. USA201411162283228810.1073/pnas.132413511124474802
    [Google Scholar]
  22. AmarandiR.M. IbanescuA. CaraseviciE. MarinL. DragoiB. Liposomal-based formulations: A path from basic research to temozolomide delivery inside glioblastoma tissue.Pharmaceutics202214230810.3390/pharmaceutics1402030835214041
    [Google Scholar]
  23. RobertsS.A. LeeC. SinghS. AgrawalN. Versatile encapsulation and synthesis of potent liposomes by thermal equilibration.Membranes202212331910.3390/membranes1203031935323794
    [Google Scholar]
  24. XuZ. ChenX. TanT. WuS. ZhangJ. ZhouG. Anionic Gemini surfactant: A novel cation responsive system based on fluorescence quenching mechanism.Spectrochim. Acta A Mol. Biomol. Spectrosc.202023611832710.1016/j.saa.2020.118327
    [Google Scholar]
  25. WangZ. LiC. SunW. Accelerated self-assembled nanomicelles for enhanced hypoxic tumor therapy via magnetic navigation.ACS Appl. Mater. Interfaces20221422324233710.1021/acsami.1c18878
    [Google Scholar]
  26. IbrahimM. AbuwatfaW.H. AwadN.S. SabouniR. HusseiniG.A. Encapsulation, release, and cytotoxicity of doxorubicin loaded in liposomes, micelles, and metal-organic frameworks: A review.Pharmaceutics202214225410.3390/pharmaceutics1402025435213987
    [Google Scholar]
  27. KherC. KumarS. The application of nanotechnology and nanomaterials in cancer diagnosis and treatment: A review.Cureus2022149e2905910.7759/cureus.2905936259014
    [Google Scholar]
  28. AminM. SeynhaeveA.L.B. SharifiM. FalahatiM. ten HagenT.L.M. Liposomal drug delivery systems for cancer therapy: The rotterdam experience.Pharmaceutics20221410216510.3390/pharmaceutics1410216536297598
    [Google Scholar]
  29. WuJ. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application.J. Pers. Med.202111877110.3390/jpm1108077134442415
    [Google Scholar]
  30. LeporattiS. Thinking about enhanced permeability and retention effect (EPR).J. Pers. Med.2022128125910.3390/jpm1208125936013208
    [Google Scholar]
  31. MaedaH. The 35th anniversary of the discovery of epr effect: A new wave of nanomedicines for tumor-targeted drug delivery—personal remarks and future prospects.J. Pers. Med.202111322910.3390/jpm1103022933810037
    [Google Scholar]
  32. GolombekS.K. MayJ.N. TheekB. AppoldL. DrudeN. KiesslingF. LammersT. Tumor targeting via EPR: Strategies to enhance patient responses.Adv. Drug Deliv. Rev.2018130173810.1016/j.addr.2018.07.00730009886
    [Google Scholar]
  33. SubhanM.A. ParveenF. FilipczakN. YalamartyS.S.K. TorchilinV.P. Approaches to improve EPR-based drug delivery for cancer therapy and diagnosis.J. Pers. Med.202313338910.3390/jpm1303038936983571
    [Google Scholar]
  34. WeiK. FarajY. YaoG. XieR. LaiB. Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress.Chem. Eng. J.202141412878310.1016/j.cej.2021.128783
    [Google Scholar]
  35. AshiqueS. BhowmickM. PalR. KhatoonH. KumarP. SharmaH. GargA. KumarS. DasU. Multi drug resistance in Colorectal Cancer- approaches to overcome, advancements and future success.Adv. Cancer Biol. Metastasis20241010011410.1016/j.adcanc.2024.100114
    [Google Scholar]
  36. LeeH.J. HuangY.W. ChiouS.H. AronstamR.S. Polyhistidine facilitates direct membrane translocation of cell-penetrating peptides into cells.Sci. Rep.201991939810.1038/s41598‑019‑45830‑831253836
    [Google Scholar]
  37. ChengY. OuZ. LiQ. YangJ. HuM. ZhouY. ZhuangX. ZhangZ. GuanS. Cabazitaxel liposomes with aptamer modification enhance tumor-targeting efficacy in nude mice.Mol. Med. Rep.201819149049810.3892/mmr.2018.968930483775
    [Google Scholar]
  38. WangY. YuL. HanL. ShaX. ZengL. LiL. In vitro and in vivo studies on the complexes of cationic liposomes and PEG-modified poly (amidoamine) dendrimers as potential carriers for gene delivery.J. Control. Release2005110232333610.1016/j.jconrel.2005.09.03916290118
    [Google Scholar]
  39. Boix-MontesinosP. Soriano-TeruelP.M. ArmiñánA. OrzáezM. VicentM.J. The past, present, and future of breast cancer models for nanomedicine development.Adv. Drug Deliv. Rev.202117330633010.1016/j.addr.2021.03.01833798642
    [Google Scholar]
  40. KumarP. PandeyS.N. AhmadF. VermaA. SharmaH. AshiqueS. BhattacharyyaS.P. BhattacharyyaI. KumarS. MishraN. GargA. Carbon nanotubes: A targeted drug delivery against cancer cell.Curr. Nanosci.202420676980010.2174/0115734137271865231105070727
    [Google Scholar]
  41. KarmacharyaM. KumarS. ChoY.K. Tuning the extracellular vesicles membrane through fusion for biomedical applications.J. Funct. Biomater.202314211710.3390/jfb1402011736826916
    [Google Scholar]
  42. CardosoR.V. PereiraP.R. FreitasC.S. PaschoalinV.M.F. Trends in drug delivery systems for natural bioactive molecules to treat health disorders: The importance of nano-liposomes.Pharmaceutics20221412280810.3390/pharmaceutics1412280836559301
    [Google Scholar]
  43. QiuC XiaF ZhangJ ShiQ MengY WangC PangH GuL XuC GuoQ WangJ. Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery.Research (Wash D C)202360148
    [Google Scholar]
  44. RoyS. HoJ.C.S. TeoD.L.C. GuptaS. NallaniM. Biomimetic stratum corneum liposome models: Lamellar organization and permeability studies.Membranes202313213510.3390/membranes1302013536837639
    [Google Scholar]
  45. ChienP.Y. WangJ. CarbonaroD. LeiS. MillerB. SheikhS. AliS.M. AhmadM.U. AhmadI. Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo.Cancer Gene Ther.200512332132810.1038/sj.cgt.770079315578064
    [Google Scholar]
  46. GilevaA.M. KoloskovaO.O. NosovaA. L iV. v AS. L AK. e AE. v vS. U AB. Yu LS. N eS. M RK. eM. Transfection efficacy and drug release depends upon the PEG derivative in cationic lipoplexes: Evaluation in 3D in vitro model and in vivo.J. Biomed. Mater. Res. B Appl. Biomater.202311191614162810.1002/jbm.b.3525937132593
    [Google Scholar]
  47. ZakharovaL.Y. PashirovaT.N. DoktorovovaS. FernandesA.R. Sanchez-LopezE. SilvaA.M. SoutoS.B. SoutoE.B. Cationic surfactants: Self-assembly, structure-activity correlation and their biological applications.Int. J. Mol. Sci.20192022553410.3390/ijms2022553431698783
    [Google Scholar]
  48. YadavM.R. KumarM. MurumkarP.R. Further studies on cationic gemini amphiphiles as carriers for gene delivery─the effect of linkers in the structure and other factors affecting the transfection efficacy of these amphiphiles.ACS Omega2021649333703338810.1021/acsomega.1c0366734926887
    [Google Scholar]
  49. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  50. AllahouL.W. MadaniS.Y. SeifalianA. Investigating the application of liposomes as drug delivery systems for the diagnosis and treatment of cancer.Int. J. Biomater.2021202111610.1155/2021/304196934512761
    [Google Scholar]
  51. ParkK. Facing the truth about nanotechnology in drug delivery.ACS Nano2013797442744710.1021/nn404501g24490875
    [Google Scholar]
  52. TorriceM. Does nanomedicine have a delivery problem?ACS Cent. Sci.20162743443710.1021/acscentsci.6b0019027504489
    [Google Scholar]
  53. GustafsonH.H. Holt-CasperD. GraingerD.W. GhandehariH. Nanoparticle uptake: The phagocyte problem.Nano Today201510448751010.1016/j.nantod.2015.06.00626640510
    [Google Scholar]
  54. FamS.Y. CheeC.F. YongC.Y. HoK.L. MariatulqabtiahA.R. TanW.S. Stealth coating of nanoparticles in drug-delivery systems.Nanomaterials202010478710.3390/nano1004078732325941
    [Google Scholar]
  55. HoshyarN. GrayS. HanH. BaoG. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction.Nanomedicine201611667369210.2217/nnm.16.527003448
    [Google Scholar]
  56. SadatS.M.A. JahanS.T. HaddadiA. Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications.J. Biomater. Nanobiotechnol.2016729110810.4236/jbnb.2016.72011
    [Google Scholar]
  57. Padín-GonzálezE. LancasterP. BottiniM. GascoP. TranL. FadeelB. WilkinsT. MonopoliM.P. Understanding the role and impact of poly (Ethylene Glycol) (PEG) on nanoparticle formulation: Implications for covid-19 vaccines.Front. Bioeng. Biotechnol.20221088236310.3389/fbioe.2022.88236335747492
    [Google Scholar]
  58. SukJS XuQ KimN HanesJ EnsignLM PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.201699Pt A285110.1016/j.addr.2015.09.012
    [Google Scholar]
  59. NieS. Understanding and overcoming major barriers in cancer nanomedicine.Nanomedicine20105452352810.2217/nnm.10.2320528447
    [Google Scholar]
  60. PapiniE. TavanoR. MancinF. Opsonins and dysopsonins of nanoparticles: Facts, concepts, and methodological guidelines.Front. Immunol.20201156736510.3389/fimmu.2020.56736533154748
    [Google Scholar]
  61. KreuterJ. The influence of coatings with surfactants on the body distribution of nanoparticles after intravenous injection to rats.Clin. Mater.1993131-413113410.1016/0267‑6605(93)90099‑S
    [Google Scholar]
  62. YingchoncharoenP. KalinowskiD.S. RichardsonD.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come.Pharmacol. Rev.201668370178710.1124/pr.115.01207027363439
    [Google Scholar]
  63. SolaroR. ChielliniF. BattistiA. Targeted delivery of protein drugs by nanocarriers.Materials2010331928198010.3390/ma3031928
    [Google Scholar]
  64. AhmadJ. AkhterS. GreigN.H. KamalM.A. MidouxP. PichonC. Engineered nanoparticles against MDR in cancer: The state of the art and its prospective.Curr. Pharm. Des.201622284360437310.2174/138161282266616061711211127319945
    [Google Scholar]
  65. WaghrayD. ZhangQ. Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment.J. Med. Chem.201861125108512110.1021/acs.jmedchem.7b0145729251920
    [Google Scholar]
  66. HuangY. ColeS.P.C. CaiT. CaiY. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer.Oncol. Lett.2016121111510.3892/ol.2016.459627347092
    [Google Scholar]
  67. WangY.F. LiuL. XueX. LiangX.J. Nanoparticle-based drug delivery systems: What can they really do in vivo? F1000 Res.2017668110.12688/f1000research.9690.128620465
    [Google Scholar]
  68. LiX. JiaX. NiuH. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy.Int. J. Nanomedicine2018134107411910.2147/IJN.S16392930034236
    [Google Scholar]
  69. Mercado-LuboR. ZhangY. ZhaoL. RossiK. WuX. ZouY. CastilloA. LeonardJ. BortellR. GreinerD.L. ShultzL.D. HanG. McCormickB.A. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.Nat. Commun.2016711222510.1038/ncomms1222527452236
    [Google Scholar]
  70. LouL. ZhangP. PiaoR. WangY. Salmonella pathogenicity Island 1 (SPI-1) and its complex regulatory network.Front. Cell. Infect. Microbiol.2019927010.3389/fcimb.2019.0027031428589
    [Google Scholar]
  71. DarwinK.H. MillerV.L. Molecular basis of the interaction of Salmonella with the intestinal mucosa.Clin. Microbiol. Rev.199912340542810.1128/CMR.12.3.40510398673
    [Google Scholar]
  72. RaffatelluM. WilsonR.P. ChessaD. Andrews-PolymenisH. TranQ.T. LawhonS. KhareS. AdamsL.G. BäumlerA.J. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells.Infect. Immun.200573114615410.1128/IAI.73.1.146‑154.200515618149
    [Google Scholar]
  73. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  74. EdisZ. WangJ. WaqasM.K. IjazM. IjazM. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives.Int. J. Nanomedicine2021161313133010.2147/IJN.S28944333628022
    [Google Scholar]
  75. HossainS. ChowdhuryE.H. AkaikeT. Nanoparticles and toxicity in therapeutic delivery: The ongoing debate.Ther. Deliv.20112212513210.4155/tde.10.10922833937
    [Google Scholar]
  76. SharmaS. ParveenR. ChatterjiB.P. Toxicology of nanoparticles in drug delivery.Curr. Pathobiol. Rep.20219413314410.1007/s40139‑021‑00227‑z34840918
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947312894240930110609
Loading
/content/journals/cctr/10.2174/0115733947312894240930110609
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test