Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer immunotherapy has proven its potential application by enhancing the capacity of the immune system to destroy cancer cells. However, several challenges, such as non-specific targeting, variability in clinical response, and therapeutic resistance, are associated with immunotherapy, making it less efficacious. Nanoparticles (NPs) as a drug delivery system provide additional advantages during immunotherapy by ensuring targeted delivery of antigens. NPs can also change the cancer environment through adjuvant delivery, forcing cancer cells to be destroyed. Here, several applications of NPs are summarized to help enhance the therapeutic values of immunotherapy through several mechanisms. This article outlines the important developments and possible applications of NPs to fully realize the promise of cancer immunotherapy, which will eventually open the door to more personalized and efficient cancer treatments.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947321690240902093508
2024-09-11
2025-12-05
Loading full text...

Full text loading...

References

  1. YangM. OlaobaO.T. ZhangC. KimchiE.T. Staveley-O’CarrollK.F. LiG. Cancer Immunotherapy and Delivery System: An Update.Pharmaceutics2022148163010.3390/pharmaceutics1408163036015256
    [Google Scholar]
  2. MuluhT.A. ChenZ. LiY. XiongK. JinJ. FuS. WuJ. Enhancing cancer immunotherapy treatment goals by using nanoparticle delivery system.Int. J. Nanomedicine2021162389240410.2147/IJN.S29530033790556
    [Google Scholar]
  3. DuanC. YuM. XuJ. LiB.Y. ZhaoY. KankalaR.K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges.Biomed. Pharmacother.202316211464310.1016/j.biopha.2023.11464337031496
    [Google Scholar]
  4. HeY. ZanJ. HeZ. BaiX. ShuaiC. PanH. A Photochemically Active Cu2O Nanoparticle Endows Scaffolds with Good Antibacterial Performance by Efficiently Generating Reactive Oxygen Species.Nanomaterials (Basel)202414545210.3390/nano1405045238470782
    [Google Scholar]
  5. KumariL. MishraL. PatelP. SharmaN. GuptaG.D. KurmiB.D. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer.J. Drug Target.202331988990710.1080/1061186X.2023.224557937539789
    [Google Scholar]
  6. ZhengD.W. GaoF. ChengQ. BaoP. DongX. FanJ.X. SongW. ZengX. ChengS.X. ZhangX.Z. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy.Nat. Commun.2020111198510.1038/s41467‑020‑15927‑032332752
    [Google Scholar]
  7. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  8. FinnO.J. Cancer Immunology.N. Engl. J. Med.2008358252704271510.1056/NEJMra07273918565863
    [Google Scholar]
  9. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.00131854162
    [Google Scholar]
  10. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  11. YadavD. PuranikN. MeshramA. ChavdaV. LeeP.C.W. JinJ.O. How Advanced are Cancer Immuno-Nanotherapeutics? A Comprehensive Review of the Literature.Int. J. Nanomedicine202318354810.2147/IJN.S38834936636642
    [Google Scholar]
  12. KouryJ. LuceroM. CatoC. ChangL. GeigerJ. HenryD. HernandezJ. HungF. KaurP. TeskeyG. TranA. Immunotherapies: Exploiting the immune system for cancer treatment.J. Immunol. Res.2018201811610.1155/2018/958561429725606
    [Google Scholar]
  13. SharmaP. OttoM. Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy.Bioact. Mater.20243144046210.1016/j.bioactmat.2023.08.02237701452
    [Google Scholar]
  14. DebeleT.A. YehC.F. SuW.P. Cancer immunotherapy and application of nanoparticles in cancers immunotherapy as the delivery of immunotherapeutic agents and as the immunomodulators.Cancers (Basel)20201212377310.3390/cancers1212377333333816
    [Google Scholar]
  15. MohanS. BhaskaranM. GeorgeA. ThirutheriA. SomasundaranM. PavithranA. Immunotherapy in oral cancer.J. Pharm. Bioallied Sci.2019116Suppl. 210710.4103/JPBS.JPBS_31_1931198321
    [Google Scholar]
  16. AvilaJ.P. CarvalhoB.M. CoimbraE.C. A Comprehensive view of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and prospects for emerging therapeutic opportunities.Cancers (Basel)2023154133310.3390/cancers1504133336831674
    [Google Scholar]
  17. SharmaP. WagnerK. WolchokJ.D. AllisonJ.P. Novel cancer immunotherapy agents with survival benefit: Recent successes and next steps.Nat. Rev. Cancer2011111180581210.1038/nrc315322020206
    [Google Scholar]
  18. MahoneyK.M. RennertP.D. FreemanG.J. Combination cancer immunotherapy and new immunomodulatory targets.Nat. Rev. Drug Discov.201514856158410.1038/nrd459126228759
    [Google Scholar]
  19. HammerC. MellmanI. Coming of Age: Human Genomics and the Cancer–Immune Set Point.Cancer Immunol. Res.202210667467910.1158/2326‑6066.CIR‑21‑101735471657
    [Google Scholar]
  20. PatelM. ThakkarA. BhattP. ShahU. PatelA. SolankiN. PatelS. PatelS. GandhiK. PatelB. Prominent Targets for Cancer Care: Immunotherapy Perspective.Curr. Cancer Ther. Rev.202319429831710.2174/1573394719666230306121408
    [Google Scholar]
  21. MarzukiN.F.N. ZakariaY. FatinN. Medicinal plants in the regulation of PD-L1/PD-1 Immune checkpoint of various human cancer cells: A Narrative review.Curr. Cancer Ther. Rev.202319211713110.2174/1573394718666220829125338
    [Google Scholar]
  22. ApavaloaeiA. HardyM.P. ThibaultP. PerreaultC. The origin and immune recognition of Tumor-Specific antigens.Cancers (Basel)2020129260710.3390/cancers1209260732932620
    [Google Scholar]
  23. SharmaA. SharmaN. SinghS. DuaK. Review on theranostic and neuroprotective applications of nanotechnology in multiple sclerosis.J. Drug Deliv. Sci. Technol.20238110422010.1016/j.jddst.2023.104220
    [Google Scholar]
  24. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-Based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  25. AshiqueS. AlmohaywiB. HaiderN. YasminS. HussainA. MishraN. GargA. siRNA-based nanocarriers for targeted drug delivery to control breast cancer.Advances Cancer Biol. - Metast.2022410004710.1016/j.adcanc.2022.100047
    [Google Scholar]
  26. AshiqueS. KumarS. HussainA. MishraN. GargA. GowdaB.H.J. FaridA. GuptaG. DuaK. Taghizadeh-HesaryF. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer.J. Health Popul. Nutr.20234217410.1186/s41043‑023‑00423‑0
    [Google Scholar]
  27. ChengC.J. TietjenG.T. Saucier-SawyerJ.K. SaltzmanW.M. A holistic approach to targeting disease with polymeric nanoparticles.Nat. Rev. Drug Discov.201514423924710.1038/nrd450325598505
    [Google Scholar]
  28. AshiqueS. UpadhyayA. HussainA. BagS. ChaterjeeD. RihanM. MishraN. BhattS. PuriV. SharmaA. PrasherP. SinghS.K. ChellappanD.K. GuptaG. DuaK. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives.J. Drug Deliv. Sci. Technol.20227710387610.1016/j.jddst.2022.103876
    [Google Scholar]
  29. NguyenT.L. ChaB.G. ChoiY. ImJ. KimJ. Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold.Biomaterials202023911985910.1016/j.biomaterials.2020.11985932070828
    [Google Scholar]
  30. ParkY.M. LeeS.J. KimY.S. LeeM.H. ChaG.S. JungI.D. KangT.H. HanH.D. Nanoparticle-based vaccine delivery for cancer immunotherapy.Immune Netw.201313517718310.4110/in.2013.13.5.17724198742
    [Google Scholar]
  31. PeiM. XuR. ZhangC. WangX. LiC. HuY. Mannose-functionalized antigen nanoparticles for targeted dendritic cells, accelerated endosomal escape and enhanced MHC-I antigen presentation.Colloids Surf. B Biointerfaces202119711137810.1016/j.colsurfb.2020.11137833010719
    [Google Scholar]
  32. KiaieS.H. Salehi-ShadkamiH. SanaeiM.J. AziziM. Shokrollahi BaroughM. NasrM.S. SheibaniM. Nano-immunotherapy: Overcoming delivery challenge of immune checkpoint therapy.J. Nanobiotechnol.202321133910.1186/s12951‑023‑02083‑y37735656
    [Google Scholar]
  33. YadavD. KwakM. ChauhanP.S. PuranikN. LeeP.C.W. JinJ.O. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials.Semin. Cancer Biol.202286Pt 290992210.1016/j.semcancer.2022.02.01635181474
    [Google Scholar]
  34. AlmeidaJ.P.M. FigueroaE.R. DrezekR.A. Gold nanoparticle mediated cancer immunotherapy.Nanomedicine201410350351410.1016/j.nano.2013.09.01124103304
    [Google Scholar]
  35. XuH.Z. LiT.F. WangC. MaY. LiuY. ZhengM.Y. LiuZ.J.Y. ChenJ.B. LiK. SunS.K. KomatsuN. XuY.H. ZhaoL. ChenX. Synergy of nanodiamond–doxorubicin conjugates and PD-L1 blockade effectively turns tumor-associated macrophages against tumor cells.J. Nanobiotechnol.202119126810.1186/s12951‑021‑01017‑w34488792
    [Google Scholar]
  36. HavelJ.J. ChowellD. ChanT.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy.Nat. Rev. Cancer201919313315010.1038/s41568‑019‑0116‑x30755690
    [Google Scholar]
  37. SanaeiM.J. Pourbagheri-SigaroodiA. KavehV. AbolghasemiH. GhaffariS.H. MomenyM. BashashD. Recent advances in immune checkpoint therapy in non-small cell lung cancer and opportunities for nanoparticle-based therapy.Eur. J. Pharmacol.202190917440410.1016/j.ejphar.2021.17440434363829
    [Google Scholar]
  38. YangM. LiJ. GuP. FanX. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment.Bioact. Mater.2021671973198710.1016/j.bioactmat.2020.12.01033426371
    [Google Scholar]
  39. RajuG.S.R. PavitraE. VaraprasadG.L. BandaruS.S. NagarajuG.P. FarranB. HuhY.S. HanY.K. Nanoparticles mediated tumor microenvironment modulation: Current advances and applications.J. Nanobiotechnol.202220127410.1186/s12951‑022‑01476‑935701781
    [Google Scholar]
  40. HanS. ChiY. YangZ. MaJ. WangL. Tumor microenvironment regulation and cancer targeting therapy based on nanoparticles.J. Funct. Biomater.202314313610.3390/jfb1403013636976060
    [Google Scholar]
  41. ChenL. ZhaoR. ShenJ. LiuN. ZhengZ. MiaoY. ZhuJ. ZhangL. WangY. FangH. ZhouJ. LiM. YangY. LiuZ. ChenQ. Antibacterial fusobacterium nucleatum‐Mimicking nanomedicine to selectively eliminate Tumor‐Colonized bacteria and enhance immunotherapy against colorectal cancer.Adv. Mater.20233545230628110.1002/adma.20230628137722134
    [Google Scholar]
  42. LiJ. ZhaoM. SunM. WuS. ZhangH. DaiY. WangD. Multifunctional nanoparticles boost cancer immunotherapy based on modulating the immunosuppressive tumor microenvironment.ACS Appl. Mater. Interfaces20201245507345074710.1021/acsami.0c1490933124808
    [Google Scholar]
  43. MaoQ. MinJ. ZengR. LiuH. LiH. ZhangC. ZhengA. LinJ. LiuX. WuM. Self-assembled traditional Chinese nanomedicine modulating tumor immunosuppressive microenvironment for colorectal cancer immunotherapy.Theranostics202212146088610510.7150/thno.7250936168633
    [Google Scholar]
  44. CevaalP.M. AliA. Czuba-WojnilowiczE. SymonsJ. LewinS.R. Cortez-JugoC. CarusoF. In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design.ACS Nano20211533736375310.1021/acsnano.0c0951433600163
    [Google Scholar]
  45. Est-WitteS.E. LivingstonN.K. OmotosoM.O. GreenJ.J. SchneckJ.P. Nanoparticles for generating antigen-specific T cells for immunotherapy.Semin. Immunol.20215610154110.1016/j.smim.2021.10154134922816
    [Google Scholar]
  46. PericaK. BielerJ.G. SchützC. VarelaJ.C. DouglassJ. SkoraA. ChiuY.L. OelkeM. KinzlerK. ZhouS. VogelsteinB. SchneckJ.P. Enrichment and Expansion with Nanoscale Artificial Antigen Presenting Cells for Adoptive Immunotherapy.ACS Nano2015976861687110.1021/acsnano.5b0282926171764
    [Google Scholar]
  47. LiW. ZhangX. ZhangC. YanJ. HouX. DuS. ZengC. ZhaoW. DengB. McCombD.W. ZhangY. KangD.D. LiJ. CarsonW.E.III DongY. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy.Nat. Commun.2021121726410.1038/s41467‑021‑27434‑x34907171
    [Google Scholar]
  48. LiF. WangY. ChenD. DuY. Nanoparticle-Based immunotherapy for reversing T-Cell exhaustion.Int. J. Mol. Sci.2024253139610.3390/ijms2503139638338674
    [Google Scholar]
  49. BalakrishnanP.B. SweeneyE.E. Nanoparticles for enhanced adoptive T cell therapies and future perspectives for CNS tumors.Front. Immunol.20211260065910.3389/fimmu.2021.60065933833751
    [Google Scholar]
  50. PardiN. HoganM.J. PorterF.W. WeissmanD. mRNA vaccines — a new era in vaccinology.Nat. Rev. Drug Discov.201817426127910.1038/nrd.2017.24329326426
    [Google Scholar]
  51. WangC. SunW. YeY. HuQ. BombaH.N. GuZ. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy.Nat. Biomed. Eng.201712001110.1038/s41551‑016‑001130214831
    [Google Scholar]
  52. WangC. YeY. HuQ. BellottiA. GuZ. Tailoring biomaterials for cancer immunotherapy: Emerging trends and future outlook.Adv. Mater.20172929160603610.1002/adma.20160603628556553
    [Google Scholar]
  53. ZhangJ. WangS. ZhangD. HeX. WangX. HanH. QinY. Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors.Front. Immunol.202314123089310.3389/fimmu.2023.123089337600822
    [Google Scholar]
  54. SandeepD. AlSawaftahN.M. HusseiniG.A. Immunoliposomes: Synthesis, Structure, and their Potential as Drug Delivery Carriers.Curr. Cancer Ther. Rev.202016430631910.2174/1573394716666200227095521
    [Google Scholar]
  55. KranzL.M. DikenM. HaasH. KreiterS. LoquaiC. ReuterK.C. MengM. FritzD. VascottoF. HefeshaH. GrunwitzC. VormehrM. HüsemannY. SelmiA. KuhnA.N. BuckJ. DerhovanessianE. RaeR. AttigS. DiekmannJ. JabulowskyR.A. HeeschS. HasselJ. LangguthP. GrabbeS. HuberC. TüreciÖ. SahinU. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy.Nature2016534760739640110.1038/nature1830027281205
    [Google Scholar]
  56. LiY. XiaoK. LuoJ. XiaoW. LeeJ.S. GonikA.M. KatoJ. DongT.A. LamK.S. Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery.Biomaterials201132276633664510.1016/j.biomaterials.2011.05.05021658763
    [Google Scholar]
  57. HeJ. LiuS. ZhangY. ChuX. LinZ. ZhaoZ. QiuS. GuoY. DingH. PanY. PanJ. The application of and strategy for gold nanoparticles in cancer immunotherapy.Front. Pharmacol.20211268739910.3389/fphar.2021.68739934163367
    [Google Scholar]
  58. WangC. YeY. HochuG.M. SadeghifarH. GuZ. Enhanced cancer immunotherapy by microneedle Patch-Assisted delivery of Anti-PD1 antibody.Nano Lett.20161642334234010.1021/acs.nanolett.5b0503026999507
    [Google Scholar]
  59. García-DomínguezD.J. López-EnríquezS. AlbaG. GarnachoC. Jiménez-CorteganaC. Flores-CamposR. de la Cruz-MerinoL. HajjiN. Sánchez-MargaletV. Hontecillas-PrietoL. Cancer Nano-Immunotherapy: The novel and promising weapon to fight cancer.Int. J. Mol. Sci.2024252119510.3390/ijms2502119538256268
    [Google Scholar]
  60. ZhuX. LiS. Nanomaterials in tumor immunotherapy: New strategies and challenges.Mol. Cancer20232219410.1186/s12943‑023‑01797‑937312116
    [Google Scholar]
  61. YangY. ZengW. HuangP. ZengX. MeiL. Smart materials for drug delivery and cancer therapy.VIEW2021222020004210.1002/VIW.20200042
    [Google Scholar]
  62. WangL. XuH. WengL. SunJ. JinY. XiaoC. Activation of cancer immunotherapy by nanomedicine.Front. Pharmacol.202213104107310.3389/fphar.2022.104107336618938
    [Google Scholar]
  63. SharmaN. KurmiB.D. SinghD. MehanS. KhannaK. KarwasraR. KumarS. ChaudharyA. JakhmolaV. SharmaA. SinghS.K. DuaK. KakkarD. Nanoparticles toxicity: An overview of its mechanism and plausible mitigation strategies.J. Drug Target.202432545746910.1080/1061186X.2024.231678538328920
    [Google Scholar]
  64. PalaniappanK. Clinical progress in gold nanoparticle (GNP)-Mediated photothermal cancer therapy.Curr. Cancer Ther. Rev.2023191131810.2174/1573394718666220823154459
    [Google Scholar]
  65. KarwasraR. FatihiS. RazaK. SinghS. KhannaK. SharmaS. SharmaN. VarmaS. Filgrastim loading in PLGA and SLN nanoparticulate system: A bioinformatics approach.Drug Dev. Ind. Pharm.20204681354136110.1080/03639045.2020.178807132643442
    [Google Scholar]
  66. ParesishviliT. KakabadzeZ. Challenges and opportunities associated with drug delivery for the treatment of solid tumors.Oncol. Rev.2023171057710.3389/or.2023.1057737711860
    [Google Scholar]
  67. HerdianaY. WathoniN. ShamsuddinS. MuchtaridiM. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges.OpenNano2022710004810.1016/j.onano.2022.100048
    [Google Scholar]
  68. AshiqueS. UpadhyayA. KumarN. ChauhanS. MishraN. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery- A review.Advances Cancer Biol. - Metast.2022410004110.1016/j.adcanc.2022.100041
    [Google Scholar]
  69. SincereN. I. AnandK. AshiqueS. YangJ. YouC. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies.Molecules20232810401410.3390/molecules28104014
    [Google Scholar]
  70. AshiqueS. AfzalO. HussainA. ZeyaullahM. AltamimiM.A. MishraN. AhmadM.F. DuaK. AltamimiA.S.A. AnandK. It’s all about plant derived natural phytoconstituents and phytonanomedicine to control skin cancer.J. Drug Deliv. Sci. Technol.20238410449510.1016/j.jddst.2023.104495
    [Google Scholar]
  71. AshiqueS. GargA. MishraN. RainaN. MingL.C. TulliH.S. BehlT. RaniR. GuptaM. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC).Naunyn Schmiedebergs Arch. Pharmacol.2023396112769279210.1007/s00210‑023‑02522‑537219615
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947321690240902093508
Loading
/content/journals/cctr/10.2174/0115733947321690240902093508
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test