Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

The five-year survival rate for people with colon cancer has increased explosively over the last two decades due to major advances in treatment. Colon cancer survival rates have improved significantly over the past few decades, with some of this success owing to aggressive surgical care and breakthroughs in other complementary treatments. As a new option for Colorectal Cancer (CRC) patients, targeted therapy has been shown to be effective in extending the overall life. A dramatic increase in the number of novel drugs targeting multiple key pathways and immunological checkpoints has been observed after the success of cetuximab (an EGFR inhibitor) and bevacizumab (an anti-angiogenic agent). Neutralizing an already present dysbiosis in the gut microbiome is a novel strategy for combating colorectal cancer and its metastases. Several methods have been employed to date, such as prebiotics, postbiotics, antibiotics, and the transplantation of faecal microbiota. An overview of the epidemiological study and possible mechanisms of colon cancer is presented in this review. We have covered a wide range of targeted treatments for CRC in addition to diagnostic biomarkers as therapeutic targets.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947302126240924050845
2024-10-04
2025-12-05
Loading full text...

Full text loading...

References

  1. JiaS.N. HanY.B. YangR. YangZ.C. Chemokines in colon cancer progression.Semin. Cancer Biol.202286Pt 340040710.1016/j.semcancer.2022.02.00735183412
    [Google Scholar]
  2. RawlaP. SunkaraT. BarsoukA. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors.Prz. Gastroenterol.20191428910310.5114/pg.2018.8107231616522
    [Google Scholar]
  3. XiY. XuP. Global colorectal cancer burden in 2020 and projections to 2040.Transl. Oncol.2021141010117410.1016/j.tranon.2021.10117434243011
    [Google Scholar]
  4. KijimaS. SasakiT. NagataK. UtanoK. LeforA.T. SugimotoH. Preoperative evaluation of colorectal cancer using CT colonography, MRI, and PET/CT.World J. Gastroenterol.20142045169641697510.3748/wjg.v20.i45.1696425493009
    [Google Scholar]
  5. NieQ. PengW.W. WangY. ZhongL. ZhangX. ZengL. β-catenin correlates with the progression of colon cancers and berberine inhibits the proliferation of colon cancer cells by regulating the β-catenin signaling pathway.Gene202281814620710.1016/j.gene.2022.14620735063579
    [Google Scholar]
  6. LuoC. CenS. DingG. WuW. Mucinous colorectal adenocarcinoma: Clinical pathology and treatment options.Cancer Commun.201939111310.1186/s40880‑019‑0361‑030922401
    [Google Scholar]
  7. ShengH. WeiX. MaoM. HeJ. LuoT. LuS. ZhouL. HuangZ. YangA. Adenocarcinoma with mixed subtypes is a rare but aggressive histologic subtype in colorectal cancer.BMC Cancer2019191107110.1186/s12885‑019‑6245‑531703713
    [Google Scholar]
  8. ParkP.Y. GoldinT. ChangJ. MarkmanM. KundrandaM.N. Signet-ring cell carcinoma of the colon: A case report and review of the literature.Case Rep. Oncol.20158346647110.1159/00044177226600781
    [Google Scholar]
  9. RemoA. FassanM. VanoliA. BonettiL.R. BarresiV. TatangeloF. GafàR. GiordanoG. PancioneM. GrilloF. MastracciL. Morphology and molecular features of rare colorectal carcinoma histotypes.Cancers2019117103610.3390/cancers1107103631340478
    [Google Scholar]
  10. FaresJ. FaresM.Y. KhachfeH.H. SalhabH.A. FaresY. Molecular principles of metastasis: A hallmark of cancer revisited.Signal Transduct. Target. Ther.2020512810.1038/s41392‑020‑0134‑x32296047
    [Google Scholar]
  11. SawickiT. RuszkowskaM. DanielewiczA. NiedźwiedzkaE. ArłukowiczT. PrzybyłowiczK.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis.Cancers2021139202510.3390/cancers1309202533922197
    [Google Scholar]
  12. Valderrama-TreviñoAI Barrera-MeraB Ceballos-VillalvaJC Montalvo-JavéEE Hepatic metastasis from colorectal cancer.Euroasian J. Hepato-Gastroenterol.20177216617510.5005/jp‑journals‑10018‑1241
    [Google Scholar]
  13. AugestadK.M. BakakiP.M. RoseJ. CrawshawB.P. LindsetmoR.O. DørumL.M. KoroukianS.M. DelaneyC.P. Metastatic spread pattern after curative colorectal cancer surgery. A retrospective, longitudinal analysis.Cancer Epidemiol.201539573474410.1016/j.canep.2015.07.00926277328
    [Google Scholar]
  14. PretzschE. BöschF. NeumannJ. GanschowP. BazhinA. GubaM. WernerJ. AngeleM. Mechanisms of metastasis in colorectal cancer and metastatic organotropism: Hematogenous versus peritoneal spread.J. Oncol.2019201911310.1155/2019/740719031641356
    [Google Scholar]
  15. KranenburgO. SpeetenK. HinghI. Peritoneal metastases from colorectal cancer: Defining and addressing the challenges.Front. Oncol.20211165009810.3389/fonc.2021.65009833816304
    [Google Scholar]
  16. JelskiW. MroczkoB. Biochemical markers of colorectal cancer – Present and future.Cancer Manag. Res.2020124789479710.2147/CMAR.S25336932606968
    [Google Scholar]
  17. BondeA. SmithD.A. KikanoE. YoestJ.M. TirumaniS.H. RamaiyaN.H. Overview of serum and tissue markers in colorectal cancer: A primer for radiologists.Abdom. Radiol.202146125521553510.1007/s00261‑021‑03243‑034415413
    [Google Scholar]
  18. XingH. WangJ. WangY. TongM. HuH. HuangC. Diagnostic value of CA 19-9 and carcinoembryonic antigen for pancreatic cancer: A meta-analysis.Gastroenterol. Res. Pract.20188704751
    [Google Scholar]
  19. ElessawiD.F. AlkadyM.M. IbrahimI.M. Diagnostic and prognostic value of serum IL-23 in colorectal cancer.Arab J. Gastroenterol.2019202656810.1016/j.ajg.2019.05.00231155425
    [Google Scholar]
  20. KotzevA.I. DraganovP.V. Carbohydrate antigen 19-9, carcinoembryonic antigen, and carbohydrate antigen 72-4 in gastric cancer: Is the old band still playing?Gastrointest. Tumors201851-211310.1159/00048824030574476
    [Google Scholar]
  21. KuipersE.J. GradyW.M. LiebermanD. SeufferleinT. SungJ.J. BoelensP.G. van de VeldeC.J.H. WatanabeT. Colorectal cancer.Nat. Rev. Dis. Primers2015111506510.1038/nrdp.2015.6527189416
    [Google Scholar]
  22. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules2105055927136524
    [Google Scholar]
  23. ZhaiM. GongP. LiH. PengJ. XuW. SongS. LiuX. LiuJ. LiuJ. LiuZ. Metastable interface biomimetic synthesis of a smart nanosystem for enhanced starvation/gas therapy.J. Colloid Interface Sci.202159914915710.1016/j.jcis.2021.04.04233940438
    [Google Scholar]
  24. PengJ. GongP. LiS. KongF. GeX. WangB. GuoL. LiuZ. YouJ. A smart bioresponsive nanosystem with dual-modal imaging for drug visual loading and targeted delivery.Chem. Eng. J.2020391123619[Internet].10.1016/j.cej.2019.123619
    [Google Scholar]
  25. PengJ. GongP. SongS. ZhaoK. ZhengX. LiuJ. LiuZ. Biomineralized synthesis of a smart O2-regenerating nanoreactor for highly efficient starvation/gas therapy.Mater. Sci. Eng. C202112611213210.1016/j.msec.2021.11213234082949
    [Google Scholar]
  26. BhaskaranN.A. KumarL. Treating colon cancers with a non-conventional yet strategic approach: An overview of various nanoparticulate systems.J. Control. Release2021336163910.1016/j.jconrel.2021.06.00834118336
    [Google Scholar]
  27. WangT. ZhangY. TaaffeD.R. KimJ.S. LuoH. YangL. FairmanC.M. QiaoY. NewtonR.U. GalvãoD.A. Protective effects of physical activity in colon cancer and underlying mechanisms: A review of epidemiological and biological evidence.Crit. Rev. Oncol. Hematol.2022a17010357810.1016/j.critrevonc.2022.10357835007701
    [Google Scholar]
  28. KasiA. HandaS. BhattiS. UmarS. BansalA. SunW. Molecular pathogenesis and classification of colorectal carcinoma.Curr. Colorectal Cancer Rep.20201659710610.1007/s11888‑020‑00458‑z32905465
    [Google Scholar]
  29. AzzouzL.L. SharmaS. Physiology, large intestine.StatPearls.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  30. SaridakiZ. SouglakosJ. Genetic alterations in colorectal cancer in older patients.Management of Colorectal Cancers in Older People.Springer.London201392010.1007/978‑0‑85729‑984‑0_2
    [Google Scholar]
  31. ComptonC.C. Colorectal carcinoma: Diagnostic, prognostic, and molecular features.Mod. Pathol.200316437638810.1097/01.MP.0000062859.46942.9312692203
    [Google Scholar]
  32. SimmangC.L. HuberP.J. Chapter 64 - management of cancer of the colon (including adjuvant therapy).Delaney CPBT-CT in C and RS MosbyPhiladelphia2005379388
    [Google Scholar]
  33. BosmanF.T. YanP. The many faces of colorectal cancer. Pathobiology of Human DiseaseAcademic PressSan Diego201410.1016/B978‑0‑12‑386456‑7.03810‑7
    [Google Scholar]
  34. KeighleyM.R. WilliamsN.S. ChurchJ.M. PahlmanL. ScholefieldJ.H. Colorectal cancer: Epidemiology, aetiology, pathology, staging systems, clinical features, diagnosis. W.B. SaundersEdinburgh20089791027
    [Google Scholar]
  35. PetrasR.E. FrankelW.L. Large Intestine (Colon).Weidner N, Cote RJ, Suster S, Weiss LMBT-MSP.Chapter 23 SecondE. PhiladelphiaW.B. Saunders2009755836
    [Google Scholar]
  36. BansalM. SinghN. PalS. DevI. AnsariK.M. Chapter three - Chemopreventive role of dietary phytochemicals in colorectal cancer.Advances in Molecular ToxicologyElsevier20181269121
    [Google Scholar]
  37. SmitW.L. SpaanC.N. Johannes de BoerR. RameshP. Martins GarciaT. MeijerB.J. VermeulenJ.L.M. LezzeriniM. MacInnesA.W. KosterJ. MedemaJ.P. van den BrinkG.R. MuncanV. HeijmansJ. Driver mutations of the adenoma-carcinoma sequence govern the intestinal epithelial global translational capacity.Proc. Natl. Acad. Sci. USA202011741255602557010.1073/pnas.191277211732989144
    [Google Scholar]
  38. SafiejkoK. TarkowskiR. KoselakM. JuchimiukM. TarasikA. PrucM. SmerekaJ. SzarpakL. Robotic-assisted vs. Standard laparoscopic surgery for rectal cancer resection: A systematic review and meta-analysis of 19,731 patients.Cancers202114118010.3390/cancers1401018035008344
    [Google Scholar]
  39. DawsonH. KirschR. MessengerD. DrimanD. A review of current challenges in colorectal cancer reporting.Arch. Pathol. Lab. Med.2019143786988210.5858/arpa.2017‑0475‑RA30672337
    [Google Scholar]
  40. HuT. LiZ. GaoC.Y. ChoC.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies.World J. Gastroenterol.201622306876688910.3748/wjg.v22.i30.687627570424
    [Google Scholar]
  41. MalkiA. ElRuzR.A. GuptaI. AllouchA. VranicS. Al MoustafaA.E. Molecular mechanisms of colon cancer progression and metastasis: Recent insights and advancements.Int. J. Mol. Sci.202022113010.3390/ijms2201013033374459
    [Google Scholar]
  42. HaglandH.R. BergM. JolmaI.W. CarlsenA. SøreideK. Molecular pathways and cellular metabolism in colorectal cancer.Dig. Surg.2013301122510.1159/00034716623595116
    [Google Scholar]
  43. YamagishiH. KurodaH. ImaiY. HiraishiH. Molecular pathogenesis of sporadic colorectal cancers.Chin. J. Cancer2016351410.1186/s40880‑015‑0066‑y26738600
    [Google Scholar]
  44. MüllerM.F. IbrahimA.E.K. ArendsM.J. Molecular pathological classification of colorectal cancer.Virchows Arch.2016469212513410.1007/s00428‑016‑1956‑327325016
    [Google Scholar]
  45. PinoM.S. ChungD.C. The chromosomal instability pathway in colon cancer.Gastroenterology201013862059207210.1053/j.gastro.2009.12.06520420946
    [Google Scholar]
  46. MiglioreL. MigheliF. SpisniR. CoppedèF. Genetics, cytogenetics, and epigenetics of colorectal cancer.J. Biomed. Biotechnol.2011792362
    [Google Scholar]
  47. AghabozorgiA.S. BahreyniA. SoleimaniA. BahramiA. KhazaeiM. FernsG.A. AvanA. HassanianS.M. Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; Current status and perspectives.Biochimie2019157647110.1016/j.biochi.2018.11.00330414835
    [Google Scholar]
  48. YangV.W. APC as a checkpoint gene: The beginning or the end?Gastroenterology2002123393593910.1053/gast.2002.3577312198717
    [Google Scholar]
  49. FeldmanM. HershkovitzI. SklanE.H. Kahila Bar-GalG. PapI. SzikossyI. Rosin-ArbesfeldR. Detection of a tumor suppressor gene variant predisposing to colorectal cancer in an 18th century hungarian mummy.PLoS One2016112e014721710.1371/journal.pone.014721726863316
    [Google Scholar]
  50. PreislerL. HabibA. ShapiraG. Kuznitsov-YanovskyL. MaysharY. Carmel-GrossI. MalcovM. AzemF. ShomronN. KarivR. HershkovitzD. Ben-YosefD. Heterozygous APC germline mutations impart predisposition to colorectal cancer.Sci. Rep.2021111511310.1038/s41598‑021‑84564‑433664379
    [Google Scholar]
  51. Nazemalhosseini MojaradE. KuppenP.J. AghdaeiH.A. ZaliM.R. The CpG island methylator phenotype (CIMP) in colorectal cancer.Gastroenterol. Hepatol. Bed Bench20136312012824834258
    [Google Scholar]
  52. AdvaniS.M. AdvaniP. DeSantisS.M. BrownD. VonVilleH.M. LamM. LoreeJ.M. Mehrvarz SarshekehA. BresslerJ. LopezD.S. DanielC.R. SwartzM.D. KopetzS. Clinical, pathological, and molecular characteristics of CpG island methylator phenotype in colorectal cancer: A systematic review and meta-analysis.Transl. Oncol.20181151188120110.1016/j.tranon.2018.07.00830071442
    [Google Scholar]
  53. JiaM. GaoX. ZhangY. HoffmeisterM. BrennerH. Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: A systematic review.Clin. Epigenetics2016812510.1186/s13148‑016‑0191‑826941852
    [Google Scholar]
  54. AdvaniS.M. AdvaniP.S. BrownD.W. DeSantisS.M. KorphaisarnK. VonVilleH.M. BresslerJ. LopezD.S. DavisJ.S. DanielC.R. SarshekehA.M. BraithwaiteD. SwartzM.D. KopetzS. Global differences in the prevalence of the CpG island methylator phenotype of colorectal cancer.BMC Cancer201919196410.1186/s12885‑019‑6144‑931623592
    [Google Scholar]
  55. ZhangX. ZhangW. CaoP. Advances in CpG island methylator phenotype colorectal cancer therapies.Front. Oncol.20211162939010.3389/fonc.2021.62939033718206
    [Google Scholar]
  56. Roman-GomezJ. Jimenez-VelascoA. AgirreX. ProsperF. HeinigerA. TorresA. Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis.J. Clin. Oncol.200523287043704910.1200/JCO.2005.01.494416192589
    [Google Scholar]
  57. CurtinK. SlatteryM.L. SamowitzW.S. CpG island methylation in colorectal cancer: Past, present and future.Pathol. Res. Int.2011902674
    [Google Scholar]
  58. SmithG. CareyF.A. BeattieJ. WilkieM.J.V. LightfootT.J. CoxheadJ. GarnerR.C. SteeleR.J.C. WolfC.R. Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer.Proc. Natl. Acad. Sci. USA200299149433943810.1073/pnas.12261289912093899
    [Google Scholar]
  59. RobertiM.P. RauberC. KroemerG. ZitvogelL. Impact of the ileal microbiota on colon cancer.Semin. Cancer Biol.202134624451
    [Google Scholar]
  60. MackowiakP.A. Recycling metchnikoff: Probiotics, the intestinal microbiome and the quest for long life.Front. Public Health201315210.3389/fpubh.2013.0005224350221
    [Google Scholar]
  61. FongW. LiQ. YuJ. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer.Oncogene202039264925494310.1038/s41388‑020‑1341‑132514151
    [Google Scholar]
  62. GibsonG.R. RoberfroidM.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics.J. Nutr.199512561401141210.1093/jn/125.6.14017782892
    [Google Scholar]
  63. GibsonG.R. HutkinsR. SandersM.E. PrescottS.L. ReimerR.A. SalminenS.J. ScottK. StantonC. SwansonK.S. CaniP.D. VerbekeK. ReidG. Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat. Rev. Gastroenterol. Hepatol.201714849150210.1038/nrgastro.2017.7528611480
    [Google Scholar]
  64. GillP. StaudacherH.M. Are postbiotics key to the potential benefits of fermented foods?Lancet Gastroenterol. Hepatol.20238650910.1016/S2468‑1253(23)00120‑6
    [Google Scholar]
  65. NigamM. PanwarA.S. SinghR.K. Orchestrating the fecal microbiota transplantation: Current technological advancements and potential biomedical application.Frontiers in Medical Technology2022496156910.3389/fmedt.2022.96156936212607
    [Google Scholar]
  66. ZappavignaS. CossuA.M. GrimaldiA. BocchettiM. FerraroG.A. NicolettiG.F. FilosaR. CaragliaM. Anti-inflammatory drugs as anticancer agents.Int. J. Mol. Sci.2020217260510.3390/ijms2107260532283655
    [Google Scholar]
  67. TinsleyH.N. GrizzleW.E. AbadiA. KeetonA. ZhuB. XiY. PiazzaG.A. New NSAID targets and derivatives for colorectal cancer chemoprevention.Recent Results Cancer Res.201319110512010.1007/978‑3‑642‑30331‑9_622893202
    [Google Scholar]
  68. KolawoleO.R. KashfiK. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase.Int. J. Mol. Sci.2022233143210.3390/ijms2303143235163356
    [Google Scholar]
  69. FinettiF. TravelliC. ErcoliJ. ColomboG. BuosoE. TrabalziniL. Prostaglandin E2 and cancer: Insight into tumor progression and immunity.Biology202091243410.3390/biology912043433271839
    [Google Scholar]
  70. Jara-GutiérrezÁ. BaladrónV. The role of prostaglandins in different types of cancer.Cells2021106148710.3390/cells1006148734199169
    [Google Scholar]
  71. JeonS.M. ShinE.A. Exploring vitamin D metabolism and function in cancer.Exp. Mol. Med.201850411410.1038/s12276‑018‑0038‑929657326
    [Google Scholar]
  72. KarpishehV. JoshiN. ZekiyA.O. BeyzaiB. Hojjat-FarsangiM. NamdarA. EdalatiM. Jadidi-NiaraghF. EP4 receptor as a novel promising therapeutic target in colon cancer.Pathol. Res. Pract.20202161215324710.1016/j.prp.2020.15324733190014
    [Google Scholar]
  73. KonyaV. MarscheG. SchuligoiR. HeinemannA. E-type prostanoid receptor 4 (EP4) in disease and therapy.Pharmacol. Ther.2013138348550210.1016/j.pharmthera.2013.03.00623523686
    [Google Scholar]
  74. OnedaE. ZaniboniA. Adjuvant treatment of colon cancer with microsatellite instability – the state of the art.Crit. Rev. Oncol. Hematol.202216910353710.1016/j.critrevonc.2021.10353734801698
    [Google Scholar]
  75. CohenM.H. GootenbergJ. KeeganP. PazdurR. FDA drug approval summary: Bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer.Oncologist200712335636110.1634/theoncologist.12‑3‑35617405901
    [Google Scholar]
  76. VerdaguerH. TaberneroJ. MacarullaT. Ramucirumab in metastatic colorectal cancer: Evidence to date and place in therapy.Ther. Adv. Med. Oncol.20168323024210.1177/175883401663588827239240
    [Google Scholar]
  77. LenzH.J. Cetuximab in the management of colorectal cancer.Biologics200712779119707318
    [Google Scholar]
  78. CaiW.Q. ZengL.S. WangL.F. WangY.Y. ChengJ.T. ZhangY. HanZ.W. ZhouY. HuangS.L. WangX.W. PengX.C. XiangY. MaZ. CuiS.Z. XinH.W. The latest battles between EGFR monoclonal antibodies and resistant tumor cells.Front. Oncol.202010124910.3389/fonc.2020.0124932793499
    [Google Scholar]
  79. García-FoncillasJ. SunakawaY. AderkaD. WainbergZ. RongaP. WitzlerP. StintzingS. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors.Front. Oncol.2019984910.3389/fonc.2019.0084931616627
    [Google Scholar]
  80. SarshekehA.M. OvermanM.J. KopetzS. Nivolumab in the treatment of microsatellite instability high metastatic colorectal cancer.Future Oncol.201814181869187410.2217/fon‑2017‑069629473436
    [Google Scholar]
  81. CasakS.J. MarcusL. Fashoyin-AjeL. MushtiS.L. ChengJ. ShenY.L. PierceW.F. HerL. GoldbergK.B. TheoretM.R. KluetzP.G. PazdurR. LemeryS.J. FDA approval summary: Pembrolizumab for the first-line treatment of patients with MSI-H/dMMR advanced unresectable or metastatic colorectal carcinoma.Clin. Cancer Res.202127174680468410.1158/1078‑0432.CCR‑21‑055733846198
    [Google Scholar]
  82. DeStefano ShieldsC.E. Van MeerbekeS.W. HousseauF. WangH. HusoD.L. CaseroR.A.Jr O’HaganH.M. SearsC.L. Reduction of murine colon tumorigenesis driven by enterotoxigenic Bacteroides fragilis using cefoxitin treatment.J. Infect. Dis.2016214112212910.1093/infdis/jiw06926908749
    [Google Scholar]
  83. GellerL.T. Barzily-RokniM. DaninoT. JonasO.H. ShentalN. NejmanD. GavertN. ZwangY. CooperZ.A. SheeK. ThaissC.A. ReubenA. LivnyJ. AvrahamR. FrederickD.T. LigorioM. ChatmanK. JohnstonS.E. MosherC.M. BrandisA. FuksG. GurbatriC. GopalakrishnanV. KimM. HurdM.W. KatzM. FlemingJ. MaitraA. SmithD.A. SkalakM. BuJ. MichaudM. TraugerS.A. BarshackI. GolanT. SandbankJ. FlahertyK.T. MandinovaA. GarrettW.S. ThayerS.P. FerroneC.R. HuttenhowerC. BhatiaS.N. GeversD. WargoJ.A. GolubT.R. StraussmanR. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine.Science201735763561156116010.1126/science.aah504328912244
    [Google Scholar]
  84. KimS.K. ChoS.W. The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment.Front. Pharmacol.20221386869510.3389/fphar.2022.86869535685630
    [Google Scholar]
  85. DaillèreR. VétizouM. WaldschmittN. YamazakiT. IsnardC. Poirier-ColameV. DuongC.P.M. FlamentC. LepageP. RobertiM.P. RoutyB. JacquelotN. ApetohL. BecharefS. RusakiewiczS. LangellaP. SokolH. KroemerG. EnotD. RouxA. EggermontA. TartourE. JohannesL. WoertherP.L. ChachatyE. SoriaJ.C. GoldenE. FormentiS. PlebanskiM. MadondoM. RosenstielP. RaoultD. CattoirV. BonecaI.G. ChamaillardM. ZitvogelL. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects.Immunity201645493194310.1016/j.immuni.2016.09.00927717798
    [Google Scholar]
  86. Van CutsemE. KöhneC.H. HitreE. ZaluskiJ. Chang ChienC.R. MakhsonA. D’HaensG. PintérT. LimR. BodokyG. RohJ.K. FolprechtG. RuffP. StrohC. TejparS. SchlichtingM. NippgenJ. RougierP. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer.N. Engl. J. Med.2009360141408141710.1056/NEJMoa080501919339720
    [Google Scholar]
  87. LeowattanaW. LeowattanaP. LeowattanaT. Systemic treatment for metastatic colorectal cancer.World J. Gastroenterol.202329101569158810.3748/wjg.v29.i10.156936970592
    [Google Scholar]
  88. MorrisV.K. KennedyE.B. BaxterN.N. BensonA.B.III CercekA. ChoM. CiomborK.K. CremoliniC. DavisA. DemingD.A. FakihM.G. GholamiS. HongT.S. JaiyesimiI. KluteK. LieuC. SanoffH. StricklerJ.H. WhiteS. WillisJ.A. EngC. Treatment of metastatic colorectal cancer: ASCO guideline.J. Clin. Oncol.202341367870010.1200/JCO.22.0169036252154
    [Google Scholar]
  89. WangZ. QinB.D. YeC.Y. WangM.M. YuanL.Y. DaiW.P. SunL. LiuK. QinW.X. JiaoX.D. LiX.N. ZangY.S. Cetuximab and vemurafenib plus FOLFIRI (5-fluorouracil/leucovorin/irinotecan) for BRAF V600E-mutated advanced colorectal cancer (IMPROVEMENT): An open-label, single-arm, phase II trial.Eur. J. Cancer202216315216210.1016/j.ejca.2021.12.02835074651
    [Google Scholar]
  90. YuanC. NgK. Vitamin D supplementation: A potential therapeutic agent for metastatic colorectal cancer.Br. J. Cancer202012381205120610.1038/s41416‑020‑0958‑832624575
    [Google Scholar]
  91. CasakS.J. HoribaM.N. YuanM. ChengJ. LemeryS.J. ShenY.L. FuW. MooreJ.N. LiY. BiY. AuthD. FesenkoN. KluetzP.G. PazdurR. Fashoyin-AjeL.A. FDA approval summary: Tucatinib with trastuzumab for advanced unresectable or metastatic, chemotherapy refractory, HER2 -positive RAS wild-type colorectal cancer.Clin. Cancer Res.202329214326433010.1158/1078‑0432.CCR‑23‑104137318379
    [Google Scholar]
  92. KoroukianS.M. BookerB.D. VuL. SchumacherF.R. RoseJ. CooperG.S. SelfridgeJ.E. MarktS.C. Receipt of targeted therapy and survival outcomes in patients with metastatic colorectal cancer.JAMA Netw. Open202361e225003010.1001/jamanetworkopen.2022.5003036656585
    [Google Scholar]
  93. CorcoranR.B. AndréT. AtreyaC.E. SchellensJ.H.M. YoshinoT. BendellJ.C. HollebecqueA. McReeA.J. SienaS. MiddletonG. MuroK. GordonM.S. TaberneroJ. YaegerR. O’DwyerP.J. HumbletY. De VosF. JungA.S. BraseJ.C. JaegerS. BettingerS. MookerjeeB. RangwalaF. Van CutsemE. Combined BRAF, EGFR, and MEK inhibition in patients with BRAF(V600E)-mutant colorectal cancer.Cancer Discov.20188442844310.1158/2159‑8290.CD‑17‑122629431699
    [Google Scholar]
  94. Sartore-BianchiA. TrusolinoL. MartinoC. BencardinoK. LonardiS. BergamoF. ZagonelV. LeoneF. DepetrisI. MartinelliE. TroianiT. CiardielloF. RaccaP. BertottiA. SiravegnaG. TorriV. AmatuA. GhezziS. MarrapeseG. PalmeriL. ValtortaE. CassingenaA. LauricellaC. VanzulliA. ReggeD. VeroneseS. ComoglioP.M. BardelliA. MarsoniS. SienaS. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): A proof-of-concept, multicentre, open-label, phase 2 trial.Lancet Oncol.201617673874610.1016/S1470‑2045(16)00150‑927108243
    [Google Scholar]
  95. SclafaniF. KimT.Y. CunninghamD. KimT.W. TaberneroJ. SchmollH.J. RohJ.K. KimS.Y. ParkY.S. GurenT.K. HawkesE. ClarkeS.J. FerryD. FrödinJ.E. AyersM. NebozhynM. PeckittC. LobodaA. MauroD.J. WatkinsD.J. A randomized phase II/III study of dalotuzumab in combination with cetuximab and irinotecan in chemorefractory, KRAS wild-type, metastatic colorectal cancer.J. Natl. Cancer Inst.201510712djv25810.1093/jnci/djv25826405092
    [Google Scholar]
  96. ReidyD.L. VakianiE. FakihM.G. SaifM.W. HechtJ.R. Goodman-DavisN. HollywoodE. ShiaJ. SchwartzJ. ChandrawansaK. DontabhaktuniA. YoussoufianH. SolitD.B. SaltzL.B. Randomized, phase II study of the insulin-like growth factor-1 receptor inhibitor IMC-A12, with or without cetuximab, in patients with cetuximab- or panitumumab-refractory metastatic colorectal cancer.J. Clin. Oncol.201028274240424610.1200/JCO.2010.30.415420713879
    [Google Scholar]
  97. TaberneroJ. YoshinoT. CohnA.L. ObermannovaR. BodokyG. Garcia-CarboneroR. CiuleanuT.E. PortnoyD.C. Van CutsemE. GrotheyA. PrausováJ. Garcia-AlfonsoP. YamazakiK. ClinganP.R. LonardiS. KimT.W. SimmsL. ChangS.C. NasroulahF. RAISE Study Investigators Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study.Lancet Oncol.201516549950810.1016/S1470‑2045(15)70127‑025877855
    [Google Scholar]
  98. LouisP. HoldG.L. FlintH.J. The gut microbiota, bacterial metabolites and colorectal cancer.Nat. Rev. Microbiol.2014121066167210.1038/nrmicro334425198138
    [Google Scholar]
  99. SuhS.H. ChoeK. HongS.P. JeongS. MäkinenT. KimK.S. AlitaloK. SurhC.D. KohG.Y. SongJ.H. Gut microbiota regulates lacteal integrity by inducing VEGF‐C in intestinal villus macrophages.EMBO Rep.2019204e4692710.15252/embr.20184692730783017
    [Google Scholar]
  100. DingL. GongY. YangZ. ZouB. LiuX. ZhangB. LiJ. Lactobacillus rhamnosus GG ameliorates liver injury and hypoxic hepatitis in rat model of CLP-induced sepsis.Dig. Dis. Sci.201964102867287710.1007/s10620‑019‑05628‑031049763
    [Google Scholar]
  101. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑735043370
    [Google Scholar]
  102. SinghR PrasadJ SatapathyT JainP SinghS Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles.Indian J. Biochem. Biophys.202158156161
    [Google Scholar]
  103. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. AgrawalM. AlexanderA. JainP. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting.Curr. Cancer Drug Targets202424122
    [Google Scholar]
  104. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Ajazuddin Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/156720182066623011217003536644864
    [Google Scholar]
  105. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  106. NetamA.K. PrasadJ. SatapathyT. JainP. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model BT.Advances in Biomedical Engineering and Technology. RizvanovA.A. SinghB.K. GanasalaP. SingaporeSpringer Singapore2021207220
    [Google Scholar]
  107. ZhaoH. WuL. YanG. ChenY. ZhouM. WuY. LiY. Inflammation and tumor progression: Signaling pathways and targeted intervention.Signal Transduct. Target. Ther.20216126310.1038/s41392‑021‑00658‑534248142
    [Google Scholar]
  108. TrivediP.J. AdamsD.H. Chemokines and chemokine receptors as therapeutic targets in inflammatory bowel disease; Pitfalls and promise.J. Crohn’s Colitis201812Suppl. 2S641S65210.1093/ecco‑jcc/jjx14530137309
    [Google Scholar]
  109. WangC. FengH. ChengX. LiuK. CaiD. ZhaoR. Potential therapeutic targets of B7 family in colorectal cancer.Front. Immunol.20201168110.3389/fimmu.2020.0068132477326
    [Google Scholar]
  110. ChengW.Y. WuC.Y. YuJ. The role of gut microbiota in cancer treatment: Friend or foe?Gut202069101867187610.1136/gutjnl‑2020‑32115332759302
    [Google Scholar]
  111. WuJ. WangS. ZhengB. QiuX. WangH. ChenL. Modulation of gut microbiota to enhance effect of checkpoint inhibitor immunotherapy.Front. Immunol.20211266915010.3389/fimmu.2021.66915034267748
    [Google Scholar]
  112. TiwariA. SarafS. VermaA. PandaP.K. JainS.K. Novel targeting approaches and signaling pathways of colorectal cancer: An insight.World J. Gastroenterol.201824394428443510.3748/wjg.v24.i39.442830357011
    [Google Scholar]
  113. KrishnamurthyN. KurzrockR. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors.Cancer Treat. Rev.201862506010.1016/j.ctrv.2017.11.00229169144
    [Google Scholar]
  114. KimE.K. ChoiE.J. Compromised MAPK signaling in human diseases: An update.Arch. Toxicol.201589686788210.1007/s00204‑015‑1472‑225690731
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947302126240924050845
Loading
/content/journals/cctr/10.2174/0115733947302126240924050845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test