Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

In contemporary medicine, cancers are recognized as significant concerns warranting attention. Over time, scientific advancements have assisted physicians worldwide in exploring novel approaches. Among these potential solutions are calcium channel blockers (CCBs), which hold considerable importance and find extensive application across various medical conditions. CCBs, classified as dihydropyridines and non-dihydropyridines, have been widely utilized in the management of diverse cancer types. Given the diverse facets of dihydropyridine CCBs, our objective was to comprehensively gather and summarize pertinent data regarding the impact of this medication class on different cancer types.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947307639240822120814
2024-09-03
2025-12-05
Loading full text...

Full text loading...

References

  1. ClaphamD.E. Calcium Signaling.Cell200713161047105810.1016/j.cell.2007.11.02818083096
    [Google Scholar]
  2. McKeeverRG HamiltonRJ Calcium channel blockers.Treasure Island (FL)StatPearls2018
    [Google Scholar]
  3. FrishmanWH Calcium channel blockers: Differences between subclasses.Am J Cardiovasc Drugs20077Suppl 1172710.2165/00129784‑200707001‑00003
    [Google Scholar]
  4. KeyhanfarF. KhaniS. BohlooliS. Evaluation of Lipid-based Drug Delivery System (Phytosolve) on Oral Bioavailability of Dibudipine.Iran. J. Pharm. Res.20141341149115625587302
    [Google Scholar]
  5. KhaniS. KeyhanfarF. AmaniA. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine.Drug Deliv.20162362035204310.3109/10717544.2015.108859726406153
    [Google Scholar]
  6. KhaniS. AbbasiS. KeyhanfarF. AmaniA. Use of artificial neural networks for analysis of the factors affecting particle size in mebudipine nanoemulsion.J. Biomol. Struct. Dyn.201937123162316710.1080/07391102.2018.151034130238824
    [Google Scholar]
  7. KhaniS. KeyhanfarF. Improved oral bioavalability of mebudipine upon administration in PhytoSolve and Phosal-based formulation (PBF).AAPS PharmSciTech20141519610210.1208/s12249‑013‑0039‑x24151144
    [Google Scholar]
  8. DenmeadeS.R. IsaacsJ.T. A history of prostate cancer treatment.Nat. Rev. Cancer20022538939610.1038/nrc80112044015
    [Google Scholar]
  9. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  10. RawlaP. Epidemiology of prostate cancer.World J. Oncol.2019102638910.14740/wjon119131068988
    [Google Scholar]
  11. McEnieryC.M. WilkinsonI.B. AvolioA.P. Age, hypertension and arterial function.Clin. Exp. Pharmacol. Physiol.200734766567110.1111/j.1440‑1681.2007.04657.x17581227
    [Google Scholar]
  12. ElliottW.J. RamC.V.S. Calcium channel blockers.J. Clin. Hypertens. (Greenwich)201113968768910.1111/j.1751‑7176.2011.00513.x21896151
    [Google Scholar]
  13. YangH YuY HuX WangW YangX LiuH Association between the overall risk of prostate cancer and use of calcium channel blockers: A systematic review and meta-analysis.Clin Ther202042917271727.e210.1016/j.clinthera.2020.06.021
    [Google Scholar]
  14. PochM.A. MehedintD. GreenD.J. Payne-OndracekR. FonthamE.T.H. BensenJ.T. AttwoodK. WildingG.E. GuruK.A. UnderwoodW. MohlerJ.L. HeemersH.V. The association between calcium channel blocker use and prostate cancer outcome.Prostate201373886587210.1002/pros.2263223280547
    [Google Scholar]
  15. PahorM. GuralnikJ.M. FerrucciL. CortiM.C. SaliveM.E. CerhanJ.R. WallaceR.B. HavlikR.J. Calcium-channel blockade and incidence of cancer in aged populations.Lancet1996348902649349710.1016/S0140‑6736(96)04277‑88757150
    [Google Scholar]
  16. JickH. JickS. DerbyL.E. VasilakisC. MyersM.W. MeierC.R. Calcium-channel blockers and risk of cancer.Lancet1997349905152552810.1016/S0140‑6736(97)80084‑09048789
    [Google Scholar]
  17. VezinaR. LeskoS. RosenbergL. ShapiroS. Calcium channel blocker use and the risk of prostate cancer.Am. J. Hypertens.199811121420142510.1016/S0895‑7061(98)00176‑99880123
    [Google Scholar]
  18. DebesJ.D. RobertsR.O. JacobsonD.J. GirmanC.J. LieberM.M. TindallD.J. JacobsenS.J. Inverse association between prostate cancer and the use of calcium channel blockers.Cancer Epidemiol. Biomarkers Prev.200413225525910.1158/1055‑9965.EPI‑03‑009314973089
    [Google Scholar]
  19. GrahamSM HolzbeierleinJM ThrasherJB LiB 227 calcium channel blocker modulates androgen receptor-mediated gene expression and induces cytotoxicity in prostate cancer cells.J Urol.20121874Se94-e
    [Google Scholar]
  20. NamG. T-type calcium channel blockers: A patent review (2012–2018).Expert Opin. Ther. Pat.2018281288390110.1080/13543776.2018.154198230372652
    [Google Scholar]
  21. ArisawaC. KageyamaY. KawakamiS. KiharaK. TNP-470 combined with nicardipine suppresses in vivo growth of PC-3, a human prostate cancer cell line.Urol. Oncol.20027622923410.1016/S1078‑1439(02)00195‑312504843
    [Google Scholar]
  22. CaoL. ZhangS. JiaC. HeW. WuL. LiY. WangW. LiZ. MaJ. Antihypertensive drugs use and the risk of prostate cancer: A meta-analysis of 21 observational studies.BMC Urol.20181811710.1186/s12894‑018‑0318‑729514670
    [Google Scholar]
  23. FanY. ZhouY. GongD. ZouC. No evidence for increased prostate cancer risk among calcium channel blockers user.Int. J. Cardiol.201520125525710.1016/j.ijcard.2015.08.04626301650
    [Google Scholar]
  24. RotshildV. Hirsh RaccahB. GazaweM. MatokI. Calcium Channel Blocker Use and the Risk for Breast Cancer: A Population-Based Nested Case-Control Study.Cancers (Basel)2022149234410.3390/cancers1409234435565473
    [Google Scholar]
  25. PerronL. BairatiI. HarelF. MeyerF. Antihypertensive drug use and the risk of prostate cancer (Canada).Cancer Causes Control200415653554110.1023/B:CACO.0000036152.58271.5e15280632
    [Google Scholar]
  26. BoenteM.P. GodwinA.K. HoganW.M. Screening, imaging, and early diagnosis of ovarian cancer.Clin. Obstet. Gynecol.199437237739110.1097/00003081‑199406000‑000158033450
    [Google Scholar]
  27. Gaona-LuvianoP. Medina-GaonaL.A. Magaña-PérezK. Epidemiology of ovarian cancer.Chin. Clin. Oncol.2020944710.21037/cco‑20‑3432648448
    [Google Scholar]
  28. MasonR.P. Calcium channel blockers, apoptosis and cancer: Is there a biologic relationship?J. Am. Coll. Cardiol.19993471857186610.1016/S0735‑1097(99)00447‑710588195
    [Google Scholar]
  29. LeeH. KimJ.W. LeeD.S. MinS.H. Combined Poziotinib with Manidipine Treatment Suppresses Ovarian Cancer Stem-Cell Proliferation and Stemness.Int. J. Mol. Sci.20202119737910.3390/ijms2119737933036254
    [Google Scholar]
  30. HardingB.N. DelaneyJ.A. UrbanR.R. WeissN.S. Use of Statin Medications Following Diagnosis in Relation to Survival among Women with Ovarian Cancer.Cancer Epidemiol. Biomarkers Prev.20192871127113310.1158/1055‑9965.EPI‑18‑119431064757
    [Google Scholar]
  31. PiccartM.J. BertelsenK. JamesK. CassidyJ. MangioniC. SimonsenE. StuartG. KayeS. VergoteI. BlomR. GrimshawR. AtkinsonR.J. SwenertonK.D. TropeC. NardiM. KaernJ. TumoloS. TimmersP. RoyJ.A. LhoasF. LindvallB. BaconM. BirtA. AndersenJ.E. ZeeB. PaulJ. BaronB. PecorelliS. Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: Three-year results.J. Natl. Cancer Inst.200092969970810.1093/jnci/92.9.69910793106
    [Google Scholar]
  32. GornatiD. ZaffaroniN. VillaR. MarcoC.D. SilvestriniR. Modulation of melphalan and cisplatin cytotoxicity in human ovarian cancer cells resistant to alkylating drugs.Anticancer Drugs19978550951610.1097/00001813‑199706000‑000149215615
    [Google Scholar]
  33. PasqualiR. CantobelliS. VicennatiV. CasimirriF. SpinucciG. de IasioR. MesiniP. BoschiS. NestlerJ.E. Nitrendipine treatment in women with polycystic ovarian syndrome: Evidence for a lack of effects of calcium channel blockers on insulin, androgens, and sex hormone-binding globulin.J. Clin. Endocrinol. Metab.19958011334633507593449
    [Google Scholar]
  34. HuangT. SoodA.K. TworogerS.S. Abstract 4252: Antihypertensive medication use and ovarian cancer survival.Cancer Res.20187813_SupplementSuppl.425210.1158/1538‑7445.AM2018‑4252
    [Google Scholar]
  35. LeeH. KimJ.W. KimD.K. ChoiD.K. LeeS. YuJ.H. KwonO.B. LeeJ. LeeD.S. KimJ.H. MinS.H. Calcium channels as novel therapeutic targets for ovarian cancer stem cells.Int. J. Mol. Sci.2020217232710.3390/ijms2107232732230901
    [Google Scholar]
  36. ZhangC. LiH. Effects of calcium channel on ovarian cancer cells.Oncol. Lett.20171466341634410.3892/ol.2017.706129163676
    [Google Scholar]
  37. MakkerV. MacKayH. Ray-CoquardI. LevineD.A. WestinS.N. AokiD. OakninA. Endometrial cancer.Nat. Rev. Dis. Primers2021718810.1038/s41572‑021‑00324‑834887451
    [Google Scholar]
  38. HuangT. FengX. WangJ. ZhouJ. WangJ. Calcium-Related Genes Predicting Outcomes and Serving as Therapeutic Targets in Endometrial Cancer.Cells20221119315610.3390/cells1119315636231119
    [Google Scholar]
  39. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  40. DalingJ.R. Calcium channel blockers and cancer: Is an association biologically plausible?Am. J. Hypertens.1996977137148806988
    [Google Scholar]
  41. CyrusK. WangQ. SharawiZ. NoguchiG. KaushalM. ChangT. RydzewskiW. YeguechW. GibrelF. PsaltisJ.B. HaddadB.R. MartinM.B. Role of calcium in hormone-independent and-resistant breast cancer.Int. J. Cancer2021149101817182710.1002/ijc.3374534289100
    [Google Scholar]
  42. ShihJ.H. KaoL.T. ChungC.H. LiaoG.S. FannL.Y. ChienW.C. LiI.H. Protective association between calcium channel blocker use and breast cancer recurrence in postsurgical women: A population-based case-control study in Taiwan.J. Clin. Pharmacol.202060678579210.1002/jcph.157932020656
    [Google Scholar]
  43. StolarzA.J. LakkadM. KlimbergV.S. PainterJ.T. Calcium Channel Blockers and Risk of Lymphedema among Breast Cancer Patients: Nested Case–Control Study.Cancer Epidemiol. Biomarkers Prev.201928111809181510.1158/1055‑9965.EPI‑19‑044831399477
    [Google Scholar]
  44. BraskyT.M. Krok-SchoenJ.L. LiuJ. ChlebowskiR.T. FreudenheimJ.L. LavasaniS. MargolisK.L. QiL. RedingK.W. ShieldsP.G. SimonM.S. Wactawski-WendeJ. WangA. WomackC. MansonJ.E. Use of calcium channel blockers and breast cancer risk in the women’s health initiative.Cancer Epidemiol. Biomarkers Prev.20172681345134810.1158/1055‑9965.EPI‑17‑009628765339
    [Google Scholar]
  45. DavisS. MirickD.K. Medication use and the risk of breast cancer.Eur. J. Epidemiol.200722531932510.1007/s10654‑007‑9135‑017487555
    [Google Scholar]
  46. WilsonL.E. D’AloisioA.A. SandlerD.P. TaylorJ.A. Long-term use of calcium channel blocking drugs and breast cancer risk in a prospective cohort of US and Puerto Rican women.Breast Cancer Res.20161816110.1186/s13058‑016‑0720‑627378129
    [Google Scholar]
  47. ChaugaiS. SherpaL.Y. SepehryA.A. KermanS.R.J. ArimaH. Effects of Long- and Intermediate-Acting Dihydropyridine Calcium Channel Blockers in Hypertension.J. Cardiovasc. Pharmacol. Ther.201823543344510.1177/107424841877134129739234
    [Google Scholar]
  48. ChangC.H. ChiangC.H. YenC.J. WuL.C. LinJ.W. LaiM.S. Antihypertensive agents and the risk of breast cancer in women aged 55 years and older.J. Hypertens.201634355856610.1097/HJH.000000000000081326818924
    [Google Scholar]
  49. ChenL. MaloneK.E. LiC.I. Use of Antihypertensive Medications Not Associated with Risk of Contralateral Breast Cancer among Women Diagnosed with Estrogen Receptor–Positive Invasive Breast Cancer.Cancer Epidemiol. Biomarkers Prev.20152491423142610.1158/1055‑9965.EPI‑15‑054726084603
    [Google Scholar]
  50. OpieL.H. Calcium channel antagonists, part I: Fundamental properties: Mechanisms. classification, sites of action.Cardiovasc. Drugs Ther.19871441143010.1007/BF022090832856470
    [Google Scholar]
  51. GuoD.Q. ZhangH. TanS.J. GuY.C. Nifedipine promotes the proliferation and migration of breast cancer cells.PLoS One2014912e11364910.1371/journal.pone.011364925436889
    [Google Scholar]
  52. MeierC.R. DerbyL.E. JickS.S. JickH. Angiotensin-converting enzyme inhibitors, calcium channel blockers, and breast cancer.Arch. Intern. Med.2000160334935310.1001/archinte.160.3.34910668837
    [Google Scholar]
  53. HolmesF.A. LopezA. MavligitG. FraschiniG. FryeD. HortobagyiG.N. Secondary drug resistance in breast cancer: Failure to reverse with oral nifedipine.Int. J. Cancer199773218418610.1002/(SICI)1097‑0215(19971009)73:2<184::AID‑IJC3>3.0.CO;2‑S9335439
    [Google Scholar]
  54. CharlierC. BruyneelE. LechanteurC. BrackeM. MareelM. CastronovoV. Enhancement of tamoxifen-induced E-cadherin function by Ca2+ channel antagonists in human breast cancer MCF7/6 cells.Eur. J. Pharmacol.19963172-341341610.1016/S0014‑2999(96)00816‑38997629
    [Google Scholar]
  55. BusbyJ. MillsK. ZhangS.D. LiberanteF.G. CardwellC.R. Postdiagnostic Calcium Channel Blocker Use and Breast Cancer Mortality.Epidemiology201829340741310.1097/EDE.000000000000081429608546
    [Google Scholar]
  56. ZhaoT. GuoD. GuY. LingY. Nifedipine stimulates proliferation and migration of different breast cancer cells by distinct pathways.Mol. Med. Rep.20171622259226310.3892/mmr.2017.681828656309
    [Google Scholar]
  57. AzoulayL. SolderaS. YinH. BouganimN. Use of Calcium Channel Blockers and Risk of Breast Cancer.Epidemiology201627459460110.1097/EDE.000000000000048327031042
    [Google Scholar]
  58. ChenQ. ZhangQ. ZhongF. GuoS. JinZ. ShiW. ChenC. HeJ. Association between calcium channel blockers and breast cancer: A meta‐analysis of observational studies.Pharmacoepidemiol. Drug Saf.201423771171810.1002/pds.364524829113
    [Google Scholar]
  59. ZhangY. LiR.J. YingX. TianW. YaoH.J. MenY. YuY. ZhangL. JuR.J. WangX.X. ZhouJ. ChenJ.X. LiN. LuW.L. Targeting therapy with mitosomal daunorubicin plus amlodipine has the potential to circumvent intrinsic resistant breast cancer.Mol. Pharm.20118116217510.1021/mp100249x21062083
    [Google Scholar]
  60. KretschyN. TeichmannM. KopfS. AtanasovA.G. SaikoP. VonachC. ViolaK. GiessriglB. HuttaryN. RaabI. KriegerS. JägerW. SzekeresT. NijmanS.M. MikulitsW. DirschV.M. DolznigH. GruschM. KrupitzaG. In vitro inhibition of breast cancer spheroid-induced lymphendothelial defects resembling intravasation into the lymphatic vasculature by acetohexamide, isoxsuprine, nifedipin and proadifen.Br. J. Cancer2013108357057810.1038/bjc.2012.58023299527
    [Google Scholar]
  61. RaebelM.A. ZengC. CheethamT.C. SmithD.H. FeigelsonH.S. CarrollN.M. GoddardK. TavelH.M. BoudreauD.M. ShetterlyS. XuS. Risk of breast cancer with long-term use of calcium channel blockers or angiotensin-converting enzyme inhibitors among older women.Am. J. Epidemiol.2017185426427310.1093/aje/kww21728186527
    [Google Scholar]
  62. YeX. DuQ. LiH. YuB. ZhaiQ. Calcium channel blockers and risk of breast cancer: A meta-analysis.Int. J. Clin. Exp. Med.201692042520431
    [Google Scholar]
  63. KmietowiczZ. Calcium channel blockers are not associated with increased risk of breast cancer, study finds.BMJ2016354i369810.1136/bmj.i369827384532
    [Google Scholar]
  64. LiC.I. DalingJ.R. TangM.T.C. HaugenK.L. PorterP.L. MaloneK.E. Use of antihypertensive medications and breast cancer risk among women aged 55 to 74 years.JAMA Intern. Med.2013173171629163710.1001/jamainternmed.2013.907123921840
    [Google Scholar]
  65. KhalafN. El-SeragH.B. AbramsH.R. ThriftA.P. Burden of pancreatic cancer: From epidemiology to practice.Clin. Gastroenterol. Hepatol.202119587688410.1016/j.cgh.2020.02.05432147593
    [Google Scholar]
  66. PishvaianMJ BrodyJR Therapeutic Implications of Molecular Subtyping for Pancreatic Cancer.Oncology (Williston Park, NY)2017313815966
    [Google Scholar]
  67. RouetteJ. McDonaldE.G. SchusterT. BrophyJ.M. AzoulayL. Dihydropyridine Calcium Channel Blockers and Risk of Pancreatic Cancer: A Population-Based Cohort Study.J. Am. Heart Assoc.20221124e02678910.1161/JAHA.122.02678936515246
    [Google Scholar]
  68. PrincipeD.R. AissaA.F. KumarS. PhamT.N.D. UnderwoodP.W. NairR. KeR. RanaB. TrevinoJ.G. MunshiH.G. BenevolenskayaE.V. RanaA. Calcium channel blockers potentiate gemcitabine chemotherapy in pancreatic cancer.Proc. Natl. Acad. Sci. USA202211918e220014311910.1073/pnas.220014311935476525
    [Google Scholar]
  69. TingleS.J. SeversG.R. MoirJ.A.G. WhiteS.A. Calcium channel blockers in pancreatic cancer: Increased overall survival in a retrospective cohort study.Anticancer Drugs202031773774110.1097/CAD.000000000000094732639282
    [Google Scholar]
  70. KirkegårdJ. MortensenF.V. Cronin-FentonD. Antihypertensive drugs and pancreatic cancer risk in patients with chronic pancreatitis: A Danish nationwide population-based cohort study.Br. J. Cancer2019121762262410.1038/s41416‑019‑0562‑y31474760
    [Google Scholar]
  71. LauE.S. PaniaguaS.M. LiuE. JovaniM. LiS.X. TakvorianK. SuthaharN. ChengS. SplanskyG.L. JanuzziJ.L.Jr WangT.J. VasanR.S. KregerB. LarsonM.G. LevyD. de BoerR.A. HoJ.E. Cardiovascular risk factors are associated with future cancer.JACC: CardioOncology202131485810.1016/j.jaccao.2020.12.00333870217
    [Google Scholar]
  72. WangL. HuD. FanZ. YuJ. ZhangS. LinY. ChenX. LinX. YanX. LinJ. PengF. Prognostic value of long-term antidiabetic and antihypertensive therapy in postoperative gastric cancer patients: The FIESTA study.BMC Gastroenterol.202222142910.1186/s12876‑022‑02514‑436210441
    [Google Scholar]
  73. PanneerpandianP. RaoD.B. GanesanK. Calcium channel blockers lercanidipine and amlodipine inhibit YY1/ERK/TGF-β mediated transcription and sensitize the gastric cancer cells to doxorubicin.Toxicol. In Vitro20217410515210.1016/j.tiv.2021.10515233771646
    [Google Scholar]
  74. LiB. CheungK.S. WongI.Y.H. LeungW.K. LawS. Calcium channel blockers are associated with lower gastric cancer risk: A territory‐wide study with propensity score analysis.Int. J. Cancer202114892148215710.1002/ijc.3337933152125
    [Google Scholar]
  75. MaY. YangX. ZhaoW. YangY. ZhangZ. Calcium channel α2δ1 subunit is a functional marker and therapeutic target for tumor-initiating cells in non-small cell lung cancer.Cell Death Dis.202112325710.1038/s41419‑021‑03522‑033707423
    [Google Scholar]
  76. ShiozakiA. KatsuraharaK. KudouM. ShimizuH. KosugaT. ItoH. AritaT. KonishiH. KomatsuS. KubotaT. FujiwaraH. OkamotoK. OtsujiE. Amlodipine and Verapamil, Voltage-Gated Ca2+ Channel Inhibitors, Suppressed the Growth of Gastric Cancer Stem Cells.Ann. Surg. Oncol.20212895400541110.1245/s10434‑021‑09645‑033566246
    [Google Scholar]
  77. InoueH. ShiozakiA. OtsujiE. ASO Author Reflections: CACNA2D1 may have a Potential as a Biomarker for Cancer Growth and as a Therapeutic Target for Gastric Cancer.Ann. Surg. Oncol.20222974536453710.1245/s10434‑022‑11753‑435430659
    [Google Scholar]
  78. MullerC. BaillyJ.D. GoubinF. LaredoJ. JaffrézouJ.P. BordierC. LaurentG. Verapamil decreases P-glycoprotein expression in multidrug-resistant human leukemic cell lines.Int. J. Cancer199456574975410.1002/ijc.29105605237906257
    [Google Scholar]
  79. ParkinD.M. BrayF. FerlayJ. PisaniP. Global cancer statistics, 2002.CA Cancer J. Clin.20055527410810.3322/canjclin.55.2.7415761078
    [Google Scholar]
  80. WuL. LinW. LiaoQ. WangH. LinC. TangL. LianW. ChenZ. LiK. XuL. ZhouR. DingY. ZhaoL. Calcium channel blocker nifedipine suppresses colorectal cancer progression and immune escape by preventing NFAT2 nuclear translocation.Cell Rep.202033410832710.1016/j.celrep.2020.10832733113363
    [Google Scholar]
  81. LiuG. HuX. PremkumarL. ChakrabartyS. Nifedipine synergizes with calcium in activating the calcium sensing receptor, suppressing the expression of thymidylate synthase and survivin and promoting sensitivity to fluorouracil in human colon carcinoma cells.Mol. Carcinog.2011501292293010.1002/mc.2075221374737
    [Google Scholar]
  82. BoudreauD.M. KoehlerE. RulyakS.J. HaneuseS. HarrisonR. MandelsonM.T. Cardiovascular medication use and risk for colorectal cancer.Cancer Epidemiol. Biomarkers Prev.200817113076308010.1158/1055‑9965.EPI‑08‑009518957524
    [Google Scholar]
  83. YangJ.L. FriedlanderM.L. Effect of nifedipine in metastatic colon cancer with DNA mismatch repair gene defect.Lancet200135792701767176810.1016/S0140‑6736(00)04892‑311403819
    [Google Scholar]
  84. RazumilavaN. GoresG.J. Cholangiocarcinoma.Lancet201438399352168217910.1016/S0140‑6736(13)61903‑024581682
    [Google Scholar]
  85. LamarcaA. EdelineJ. GoyalL. How I treat biliary tract cancer.ESMO Open20227110037810.1016/j.esmoop.2021.10037835032765
    [Google Scholar]
  86. KodamaK. KawaokaT. KosakaM. JohiraY. ShiraneY. MiuraR. YanoS. MurakamiS. AmiokaK. NarutoK. AndoY. KosakaY. UchikawaS. FujinoH. NakaharaT. MurakamiE. OkamotoW. YamauchiM. MikiD. ImamuraM. KurodaS. KobayashiT. OhdanH. AikataH. ChayamaK. Calcium channel blockers improve the prognosis of patients with intrahepatic cholangiocarcinoma after resection.J. Gastroenterol.202257967668310.1007/s00535‑022‑01887‑335849192
    [Google Scholar]
  87. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑333479224
    [Google Scholar]
  88. HosakaT. SekimotoM. NemotoK. DegawaM. Augmentation of 3‐methylcholanthrene‐induced bioactivation in the human hepatoma cell line HepG2 by the calcium channel blocker nicardipine.Cancer Sci.2010101365265710.1111/j.1349‑7006.2009.01454.x20067464
    [Google Scholar]
  89. KademaniD. Oral cancer.Symp. Solid Tumors2007827878887
    [Google Scholar]
  90. YadalamP.K. AnegundiR.V. RamadossR. JosephB. VeeramuthuA. Felodipine repurposed for targeting TRPV1 receptor to relieve oral cancer pain.Oral Oncol.202213410609410.1016/j.oraloncology.2022.10609436030559
    [Google Scholar]
  91. AbbasG. KrasnaM. Overview of esophageal cancer.Ann. Cardiothorac. Surg.20176213113610.21037/acs.2017.03.0328447001
    [Google Scholar]
  92. KurookaM. HongyoT. NakajimaH. BaskarR. LiL.Y. FukudaK. SutohK. MiyataM. MatsudaH. NomuraT. High incidence of esophageal cancer in esophageal achalasia by the oral administration of N-amyl-N-methylnitrosamine and its prevention by nicardipine hydrochloride in mice.Cancer Lett.19981271-2556110.1016/S0304‑3835(98)00006‑89619858
    [Google Scholar]
  93. SanliO. DobruchJ. KnowlesM.A. BurgerM. AlemozaffarM. NielsenM.E. LotanY. Bladder cancer.Nat. Rev. Dis. Primers2017311702210.1038/nrdp.2017.2228406148
    [Google Scholar]
  94. SantalaE.E.E. KotsarA. VeitonmäkiT. TammelaT.L.J. MurtolaT.J. Risk of urothelial cancer death among people using antihypertensive drugs—a cohort study from Finland.Scand. J. Urol.201953418519210.1080/21681805.2019.163414731250699
    [Google Scholar]
  95. CairnsP. Renal cell carcinoma. Cancer biomarkers: Section.Dis. Markers201091-6461473
    [Google Scholar]
  96. MickischG.H. KössigJ. TschadaR.K. KeilhauerG. SchlickE. AlkenP.M. Circumvention of multidrug resistance mediated by P-170 glycoprotein using calcium antagonists in primary human renal cell carcinoma.Urol. Int.199147311812510.1159/0002822041685271
    [Google Scholar]
  97. KristensenK.B. HabelL.A. GagneJ.J. FriisS. AndersenK.K. HallasJ. PottegårdA. Risk of Renal Cell Carcinoma Associated with Calcium Channel Blockers.Epidemiology202031686087110.1097/EDE.000000000000125632897909
    [Google Scholar]
  98. BadeB.C. Dela CruzC.S. Lung Cancer 2020.Clin. Chest Med.202041112410.1016/j.ccm.2019.10.00132008623
    [Google Scholar]
  99. JonesG.S. BaldwinD.R. Recent advances in the management of lung cancer.Clin. Med. (Lond.)2018182s41s4610.7861/clinmedicine.18‑2‑s4129700092
    [Google Scholar]
  100. RotshildV. AzoulayL. ZarifehM. MasarwaR. Hirsh-RaccahB. PerlmanA. MuszkatM. MatokI. The Risk for Lung Cancer Incidence with Calcium Channel Blockers: A Systematic Review and Meta-Analysis of Observational Studies.Drug Saf.201841655556410.1007/s40264‑018‑0644‑429484611
    [Google Scholar]
  101. ZacharskiL.R. MoritzT.E. HaakensonC.M. O’DonnellJ.F. BallardH.S. JohnsonG.J. RingenbergQ.S. SchilskyR.L. SpauldingM.B. TornyosK. WilliamsC.C. Chronic calcium antagonist use in carcinoma of the lung and colon: A retrospective cohort observational study.Cancer Invest.19908545145810.3109/073579090090120672176124
    [Google Scholar]
  102. PancrazioJ.J. OieH.K. KimY.I. Voltage‐sensitive calcium channels in a human small‐cell lung cancer cell line.Acta Physiol. Scand.1992144446346810.1111/j.1748‑1716.1992.tb09321.x1318636
    [Google Scholar]
  103. RotshildV. AzoulayL. FeldhamerI. PerlmanA. GlazerM. MuszkatM. MatokI. Calcium Channel Blockers and the Risk for Lung Cancer: A Population-Based Nested Case-Control Study.Ann. Pharmacother.201953544545210.1177/106002801881468430442036
    [Google Scholar]
  104. WongB.S. ChiuL.Y. TuD.G. SheuG.T. ChanT.T. Anticancer Effects of Antihypertensive L-Type Calcium Channel Blockers on Chemoresistant Lung Cancer Cells via Autophagy and Apoptosis.Cancer Manag. Res.2020121913192710.2147/CMAR.S22871832214849
    [Google Scholar]
  105. Amercian Cancer SocietyKey statistics for basal and squamous cell skin cancers.2019Available From: https://www.cancer.org/cancer/types/basal-and-squamous-cell-skin-cancer/about/key-statistics.html
  106. TangH. FuS. ZhaiS. SongY. AsgariM.M. HanJ. Use of antihypertensive drugs and risk of keratinocyte carcinoma: A meta‐analysis of observational studies.Pharmacoepidemiol. Drug Saf.201827327928810.1002/pds.438429318704
    [Google Scholar]
  107. DruckerA.M. HollesteinL. NaY. WeinstockM.A. LiW.Q. Abdel-QadirH. ChanA.W. Association between antihypertensive medications and risk of skin cancer in people older than 65 years: A population-based study.CMAJ202119315E508E51610.1503/cmaj.20197133846199
    [Google Scholar]
  108. WilliamsN.M. VincentL.T. RodriguezG.A. NouriK. Antihypertensives and melanoma: An updated review.Pigment Cell Melanoma Res.202033680681310.1111/pcmr.1291832757474
    [Google Scholar]
  109. OnodaJ.M. NelsonK.K. PilarskiS.M. WhiteN.S. MihuO.G. HonnK.V. Combination chemotherapy with cisplatin and nifedipine: Synergistic antitumor effects against a cisplatin-resistant subline of the B16 amelanotic melanoma.Clin. Exp. Metastasis199081597310.1007/BF001555932293914
    [Google Scholar]
  110. YoshidaJ. IshibashiT. NishioM. Antitumor effects of amlodipine, a Ca 2+ channel blocker, on human epidermoid carcinoma A431 cells in vitro and in vivo.Eur. J. Pharmacol.20044922-310311210.1016/j.ejphar.2004.04.00615178352
    [Google Scholar]
  111. YoshidaJ. IshibashiT. NishioM. Antiproliferative effect of Ca2+ channel blockers on human epidermoid carcinoma A431 cells.Eur. J. Pharmacol.20034721-2233110.1016/S0014‑2999(03)01831‑412860469
    [Google Scholar]
  112. AldapeK. BrindleK.M. CheslerL. ChopraR. GajjarA. GilbertM.R. GottardoN. GutmannD.H. HargraveD. HollandE.C. JonesD.T.W. JoyceJ.A. KearnsP. KieranM.W. MellinghoffI.K. MerchantM. PfisterS.M. PollardS.M. RamaswamyV. RichJ.N. RobinsonG.W. RowitchD.H. SampsonJ.H. TaylorM.D. WorkmanP. GilbertsonR.J. Challenges to curing primary brain tumours.Nat. Rev. Clin. Oncol.201916850952010.1038/s41571‑019‑0177‑530733593
    [Google Scholar]
  113. KondoS. YinD. MorimuraT. TakeuchiJ. Combination therapy with cisplatin and nifedipine inducing apoptosis in multidrug-resistant human glioblastoma cells.J. Neurosurg.199582346947410.3171/jns.1995.82.3.04697861226
    [Google Scholar]
  114. KondoS. YinD. MorimuraT. KuboH. NakatsuS. TakeuchiJ. Combination therapy with cisplatin and nifedipine induces apoptosis in cisplatin-sensitive and cisplatin-resistant human glioblastoma cells.Br. J. Cancer199571228228910.1038/bjc.1995.577841041
    [Google Scholar]
  115. KiwitJ.C.W. HertelA. MatuschekA.E. Reversal of chemoresistance in malignant gliomas by calcium antagonists: Correlation with the expression of multidrug-resistant p-glycoprotein.J. Neurosurg.199481458759410.3171/jns.1994.81.4.05877931593
    [Google Scholar]
  116. Kunert-RadekJ. StepienH. RadekA. LysonK. PawlikowskiM. Inhibitory effect of calcium channel blockers on proliferation of human glioma cells in vitro.Acta Neurol. Scand.198979216616910.1111/j.1600‑0404.1989.tb03731.x2711824
    [Google Scholar]
  117. YamasakiT. EnomotoK.I. MoritakeK. MaenoT. Analysis of intra- and intercellular calcium signaling in a mouse malignant glioma cell line.J. Neurosurg.199481342042610.3171/jns.1994.81.3.04208057150
    [Google Scholar]
  118. GenkaS. ShitaraN. NakamuraH. TakakuraK. Effect of chemoradiotherapy using ACNU, vincristine, and nicardipine with high-dose irradiation on malignant astrocytomas.Neurol. Med. Chir. (Tokyo)199333529529910.2176/nmc.33.2957687035
    [Google Scholar]
  119. DurmazR. DeliormanS. UyarR. IşiksoyS. ErolK. TelE. The effects of anticancer drugs in combination with nimodipine and verapamil on cultured cells of glioblastoma multiforme.Clin. Neurol. Neurosurg.1999101423824410.1016/S0303‑8467(99)00061‑X10622452
    [Google Scholar]
  120. KabaK. TaniE. MorimuraT. MatsumotoT. Potentiation of vincristine effect in human and murine gliomas by calcium channel blockers or calmodulin inhibitors.J. Neurosurg.198563690591110.3171/jns.1985.63.6.09054056904
    [Google Scholar]
  121. ParkH.J. KimH.J. Inhibitory effect of nicardipine on rotenone-induced apoptosis in SH-SY5Y human neuroblastoma cells.Mol. Med. Rep.20137394194610.3892/mmr.2013.126023291720
    [Google Scholar]
  122. YuX. LiX. JiangG. WangX. ChangH.C. HsuW.H. LiQ. Isradipine prevents rotenone-induced intracellular calcium rise that accelerates senescence in human neuroblastoma SH-SY5Y cells.Neuroscience201324624325310.1016/j.neuroscience.2013.04.06223664925
    [Google Scholar]
  123. TaghizadehghalehjoughiA. SezenS. HacimuftuogluA. GüllüceM. Vincristine combination with Ca+2 channel blocker increase antitumor effects.Mol. Biol. Rep.20194622523252810.1007/s11033‑019‑04706‑w30903573
    [Google Scholar]
  124. TakaharaA FujitaS MokiK OnoY KoganeiH IwayamaS Neuronal Ca2+ channel blocking action of an antihypertensive drug, cilnidipine, in IMR-32 human neuroblastoma cells.Hypertens Res20032697437
    [Google Scholar]
  125. WuL. KarpinskiE. WangR. PangP.T. Modification by solvents of the action of nifedipine on calcium channel currents in neuroblastoma cells.Naunyn Schmiedebergs Arch. Pharmacol.1992345447848410.1007/BF001766281320211
    [Google Scholar]
  126. DameshekW. GunzF. Leukemia.New YorkGrune & Stratton1958
    [Google Scholar]
  127. FischerK. SchollC. SàlatJ. FröhlingS. SchlenkR. BentzM. StilgenbauerS. LichterP. DöhnerH. Design and validation of DNA probe sets for a comprehensive interphase cytogenetic analysis of acute myeloid leukemia.Blood199688103962397110.1182/blood.V88.10.3962.bloodjournal881039628916963
    [Google Scholar]
  128. ChaeY.K. DimouA. PierceS. KantarjianH. AndreeffM. The effect of calcium channel blockers on the outcome of acute myeloid leukemia.Leuk. Lymphoma201455122822282910.3109/10428194.2014.90151324628293
    [Google Scholar]
  129. Gregorio-KingC.C. GoughT. Van Der MeerG.J. HoskingJ.B. WaughC.M. McLeodJ.L. CollierF.M. KirklandM.A. Mechanisms of resistance to the cytotoxic effects of oxysterols in human leukemic cells.J. Steroid Biochem. Mol. Biol.200488331132010.1016/j.jsbmb.2003.12.00715120425
    [Google Scholar]
  130. LiX RuanGR LuWL HongHY LiangGW ZhangYT A novel stealth liposomal topotecan with amlodipine: Apoptotic effect is associated with deletion of intracellular Ca2+ by amlodipine thus leading to an enhanced antitumor activity in leukemia.J Control Release2006112218698
    [Google Scholar]
  131. JiB.S. HeL. LiuG.Q. Reversal of p-glycoprotein-mediated multidrug resistance by CJX1, an amlodipine derivative, in doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells.Life Sci.200577182221223210.1016/j.lfs.2004.12.05015967469
    [Google Scholar]
  132. PierceW.A. HedermanA.D. GordonC.J. OstrengaA.R. HerringtonB. Angioedema associated with dihydropyridine calcium-channel blockers in a child with Burkitt lymphoma.Am. J. Health Syst. Pharm.201168540240610.2146/ajhp10027721330681
    [Google Scholar]
  133. ShamashJ. SalamA.H. DaviesD.C. WilliamsA. JoelS. ListerT.A. In vitro testing of calcium channel blockers and cytotoxic chemotherapy in B-cell low-grade non-Hodgkin’s lymphoma.Br. J. Cancer199877101598160310.1038/bjc.1998.2629635834
    [Google Scholar]
  134. FriedmanG.D. AsgariM.M. WartonE.M. ChanJ. HabelL.A. Antihypertensive drugs and lip cancer in non-Hispanic whites.Arch. Intern. Med.2012172161246125110.1001/archinternmed.2012.275422869299
    [Google Scholar]
  135. KumariN. BhargavaA. RathS.N. T-type calcium channel antagonist, TTA-A2 exhibits anti-cancer properties in 3D spheroids of A549, a lung adenocarcinoma cell line.Life Sci.202026011829110.1016/j.lfs.2020.11829132810510
    [Google Scholar]
  136. StewartD.J. EvansW.K. LoganD. Addition of pentoxifylline plus nifedipine to chemotherapy in patients with cisplatin-resistant cancers of the lung and other sites.Am. J. Clin. Oncol.199417431331610.1097/00000421‑199408000‑000068048393
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947307639240822120814
Loading
/content/journals/cctr/10.2174/0115733947307639240822120814
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test