Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer is a serious health problem and one of the leading causes of death in humans in both developing and underdeveloped countries. Researchers are using nanotechnology to improve the specificity and effectiveness of cancer therapy as the number of cancer cases worldwide increases daily. The aim of this bibliometric analysis is to examine current advances in nanomedicine based on existing scientific work on the use of amygdalin in cancer research. Bibliometric analysis was performed with VOSviewer software using the Scopus database. Out of 439 articles in the literature, 149 were found for bibliometric analysis, 11 of which were about nanomedicine and were recently published. China was the most productive country in this field, with Tabriz University being the leading research organization. The journals that published the most articles on this topic were Anti-Cancer Agents in Medicinal Chemistry and Molecular Biology Reports. The most frequently occurring keywords in these clusters were “cancer”,” “tumour” and “amygdalin.” This work provides a summary of the literature with a graphical representation of the research on the development of amygdalin through a bibliographic analysis. In addition, this study offers a new perspective that could serve as a guide for future research directions.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947309632240805114318
2024-08-20
2025-12-05
Loading full text...

Full text loading...

References

  1. CaoM. LiH. SunD. HeS. YanX. YangF. ZhangS. XiaC. LeiL. PengJ. ChenW. Current cancer burden in China: Epidemiology, etiology, and prevention.Cancer Biol. Med.20221981121113810.20892/j.issn.2095‑3941.2022.023136069534
    [Google Scholar]
  2. DonahueP.M.C. MacKenzieA. FilipovicA. KoelmeyerL. Advances in the prevention and treatment of breast cancer-related lymphedema.Breast Cancer Res. Treat.2023200111410.1007/s10549‑023‑06947‑737103598
    [Google Scholar]
  3. DeshmukhR. PrajapatiM. HarwanshR.K. A review on emerging targeted therapies for the management of metastatic colorectal cancers.Med. Oncol.202340615910.1007/s12032‑023‑02020‑x37097307
    [Google Scholar]
  4. HarwanshR.K. DeshmukhR. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs.Crit. Rev. Oncol. Hematol.202015410307010.1016/j.critrevonc.2020.10307032871325
    [Google Scholar]
  5. NaeemA. HuP. YangM. ZhangJ. LiuY. ZhuW. ZhengQ. Natural products as anticancer agents: Current status and future perspectives.Molecules20222723836710.3390/molecules2723836736500466
    [Google Scholar]
  6. MurtiY. AgrawalK.K. SemwalB.C. GuptaJ. GuptaR. A review on novel herbal drug delivery system and its application.Curr. Tradit. Med.202392e28042220415410.2174/2215083808666220428092638
    [Google Scholar]
  7. GuptaJ. AhujaA. GuptaR. Green approaches for cancers management: An effective tool for health care.Anticancer. Agents Med. Chem.202122110111410.2174/187152062166621011909182633463475
    [Google Scholar]
  8. SaleemM. AsifJ. AsifM. SaleemU. Amygdalin from apricot kernels induces apoptosis and causes cell cycle arrest in cancer cells: An updated review.Anticancer. Agents Med. Chem.201918121650165510.2174/187152061866618010516113629308747
    [Google Scholar]
  9. MakoviC.M. ParkerC.H. ZhangK. Determination of amygdalin in apricot kernels and almonds using LC-MS/MS.J. AOAC Int.2023106245746310.1093/jaoacint/qsac15436453858
    [Google Scholar]
  10. ChristodoulouP. BoutsikosP. NeophytouC.M. KyriakouT.C. ChristodoulouM.I. PapageorgisP. StephanouA. PatrikiosI. Amygdalin as a chemoprotective agent in co-treatment with cisplatin.Front. Pharmacol.202213101369210.3389/fphar.2022.101369236204233
    [Google Scholar]
  11. BarakatH. AljutailyT. AlmujaydilM.S. AlgheshairyR.M. AlhomaidR.M. AlmutairiA.S. AlshimaliS.I. AbdellatifA.A.H. Amygdalin: A review on its characteristics, antioxidant potential, gastrointestinal microbiota intervention, anticancer therapeutic and mechanisms, toxicity, and encapsulation.Biomolecules20221210151410.3390/biom1210151436291723
    [Google Scholar]
  12. OrlikovaB. LegrandN. PanningJ. DicatoM. DiederichM. Anti-inflammatory and anticancer drugs from nature.Cancer Treat. Res.201415912314310.1007/978‑3‑642‑38007‑5_824114478
    [Google Scholar]
  13. LeaM.A. KochM.R. Effects of cyanate, thiocyanate, and amygdalin on metabolite uptake in normal and neoplastic tissues of the rat.J. Natl. Cancer Inst.197963512791283291753
    [Google Scholar]
  14. ShiJ. ChenQ. XuM. XiaQ. ZhengT. TengJ. LiM. FanL. Recent updates and future perspectives about amygdalin as a potential anticancer agent: A review.Cancer Med.2019863004301110.1002/cam4.219731066207
    [Google Scholar]
  15. HeX.Y. WuL.J. WangW.X. XieP.J. ChenY.H. WangF. Amygdalin - A pharmacological and toxicological review.J. Ethnopharmacol.202025411271710.1016/j.jep.2020.11271732114166
    [Google Scholar]
  16. El-ElaF.I.A. GamalA. ElbannaH.A. ElBannaA.H. SalemH.F. TulbahA.S. In vitro and in vivo evaluation of the effectiveness and safety of amygdalin as a cancer therapy.Pharmaceuticals20221511130610.3390/ph1511130636355478
    [Google Scholar]
  17. PandeyA. Sauraj AliA. NegiY. Synthesis of polygonal chitosan microcapsules for the delivery of amygdalin loaded silver nanoparticles in breast cancer therapy.Mater. Today Proc.2021433744374810.1016/j.matpr.2020.10.988
    [Google Scholar]
  18. SohailR. AbbasS.R. Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy.Int. J. Biol. Macromol.2020153364510.1016/j.ijbiomac.2020.02.19132097740
    [Google Scholar]
  19. ElderderyA.Y. AlzahraniB. HamzaS.M.A. Mostafa-HedeabG. MokP.L. SubbiahS.K. Synthesis, characterization, and antiproliferative effect of cuo-tio2-chitosan-amygdalin nanocomposites in human leukemic MOLT4 cells.Bioinorg. Chem. Appl.2022202211310.1155/2022/147392236199748
    [Google Scholar]
  20. TliliA. AltinayF. HuangR. AltinayZ. OlivierJ. MishraS. JemniM. BurgosD. Are we there yet? A systematic literature review of Open Educational Resources in Africa: A combined content and bibliometric analysis.PLoS One2022171e026261510.1371/journal.pone.026261535041695
    [Google Scholar]
  21. GargA. GargR. The research trends and scientometric assessment of rheumatoid arthritis in India during 2016-2021.Curr. Rheumatol. Rev.2023191263510.2174/157339711866622080416231335927825
    [Google Scholar]
  22. SinghS. GuptaA. GuptaN. Bioactive potential ofArtocarpus heterophyllus Lam.: PRISMA based review.Curr. Tradit. Med.202396e09012321246010.2174/2215083809666230109152218
    [Google Scholar]
  23. ChenW. YaoP. VongC.T. LiX. ChenZ. XiaoJ. WangS. WangY. Ginseng: A bibliometric analysis of 40-year journey of global clinical trials.J. Adv. Res.20213418719710.1016/j.jare.2020.07.01635024190
    [Google Scholar]
  24. LeeI.S. LeeH. ChenY.H. ChaeY. Bibliometric analysis of research assessing the use of acupuncture for pain treatment over the past 20 years.J. Pain Res.20201336737610.2147/JPR.S23504732104058
    [Google Scholar]
  25. SeoY. ParkH.S. KimH. KimK.W. ChoJ.H. ChungW.S. SongM.Y. A bibliometric analysis of research on herbal medicine for obesity over the past 20 years.Medicine202210123e2924010.1097/MD.000000000002924035687773
    [Google Scholar]
  26. El-DesoukyM.A. FahmiA.A. AbdelkaderI.Y. NasraldinK.M. Anticancer effect of amygdalin (Vitamin B-17) on Hepatocellular Carcinoma Cell Line (HepG2) in the presence and absence of zinc.Anticancer. Agents Med. Chem.202020448649410.2174/187152062066620012009552531958042
    [Google Scholar]
  27. WangX. WangX. WenM. LiX. Bibliometric analysis of literature on prevention and treatment of gastric ulcer with natural medicines.J Fut Foods20233322523310.1016/j.jfutfo.2023.02.004
    [Google Scholar]
  28. AskarM.A. El-SayyadG.S. GuidaM.S. KhalifaE. ShabanaE.S. AbdelrahmanI.Y. Amygdalin-folic acid-nanoparticles inhibit the proliferation of breast cancer and enhance the effect of radiotherapy through the modulation of tumor-promoting factors/ immunosuppressive modulators in vitro.BMC Complement Med Ther2023231162
    [Google Scholar]
  29. QinA. SunJ. GaoC. LiC. Bibliometrics analysis on the research status and trends of adult-onset Still’s disease: 1921-2021.Front. Immunol.20221395064110.3389/fimmu.2022.95064135924251
    [Google Scholar]
  30. ReddyB.S. SireeshaD. ReginaldB. SamathaM. KamalF. Effect of amygdalin on oral cancer cell line: An in vitro study.J. Oral Maxillofac. Pathol.201923110410710.4103/jomfp.JOMFP_281_1831110425
    [Google Scholar]
  31. Asadi-SamaniM. A systematic review of phytochemical and phytotherapeutic characteristics of bitter almond.eIJPPR20177219
    [Google Scholar]
  32. SamtiyaM. AlukoR.E. DhewaT. Moreno-RojasJ.M. Potential health benefits of plant food-derived bioactive components: An overview.Foods.2021104839
    [Google Scholar]
  33. MuraliC. MudgilP. GanC.Y. TaraziH. El-AwadyR. AbdallaY. AminA. MaqsoodS. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma.Sci. Rep.2021111706210.1038/s41598‑021‑86391‑z33782460
    [Google Scholar]
  34. MathewB.T. TorkyY. AminA. MouradA.H.I. AyyashM.M. El-KeblawyA. Hilal-AlnaqbiA. AbuQamarS.F. El-TarabilyK.A. Halotolerant marine rhizosphere-competent actinobacteria promote Salicornia bigelovii growth and seed production using seawater irrigation.Front. Microbiol.20201155210.3389/fmicb.2020.0055232308651
    [Google Scholar]
  35. XieY. MuC. KazybayB. SunQ. KutzhanovaA. NazarbekG. XuN. NurtayL. WangQ. AminA. LiX. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery.Drug Deliv.20212812187219710.1080/10717544.2021.197742234662244
    [Google Scholar]
  36. Al ShamsiM. AminA. AdeghateE. Vitamin E ameliorates some biochemical parameters in normal and diabetic rats.Ann. N. Y. Acad. Sci.20061084141143110.1196/annals.1372.03317151319
    [Google Scholar]
  37. Amr Amin Michael Buratovich The anti-cancer charm of flavonoids: A cup-of-tea will do!Recent Patents Anticancer Drug Discov.20072210911710.2174/15748920778083241418221056
    [Google Scholar]
  38. AbdallaY. AbdallaA. HamzaA.A. AminA. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation.Front. Pharmacol.20221277750010.3389/fphar.2021.77750035177980
    [Google Scholar]
  39. ElmehrathS. NguyenH.L. KaramS.M. AminA. GreishY.E. BioMOF-Based Anti-Cancer Drug Delivery Systems.Nanomaterials202313595310.3390/nano1305095336903831
    [Google Scholar]
  40. El-kharragR. AminA. GreishY.E. Low temperature synthesis of monolithic mesoporous magnetite nanoparticles.Ceram. Int.201238162763410.1016/j.ceramint.2011.07.052
    [Google Scholar]
  41. El-kharragR. Abdel HalimS.S. AminA. GreishY.E. Synthesis and characterization of chitosan-coated magnetite nanoparticles using a modified wet method for drug delivery applications.Int. J. Polym. Mater.2019681-3738210.1080/00914037.2018.1525725
    [Google Scholar]
  42. Al-HroutA.a. BaigB. Hilal-AlnaqbiA. AminA. Biotechnology and Production of Anti-Cancer Compounds. MalikS. ChamSpringer International Publishing2017739710.1007/978‑3‑319‑53880‑8_3
    [Google Scholar]
  43. NazarbekG. KutzhanovaA. NurtayL. MuC. KazybayB. LiX. MaC. AminA. XieY. Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: Cases of herbzymes of Taishan-Huangjing (Rhizoma polygonati) and Goji (Lycium chinense).Nanoscale Adv.20213236728673810.1039/D1NA00475A36132653
    [Google Scholar]
  44. BenassiE. FanH. SunQ. DukenbayevK. WangQ. ShaimoldinaA. TassanbiyevaA. NurtayL. NurkeshA. KutzhanovaA. MuC. DautovA. RazbekovaM. KabyldaA. YangQ. LiZ. AminA. LiX. XieY. Generation of particle assemblies mimicking enzymatic activity by processing of herbal food: The case of rhizoma polygonati and other natural ingredients in traditional Chinese medicine.Nanoscale Adv.2021382222223510.1039/D0NA00958J36133773
    [Google Scholar]
  45. ShaimoldinaA. SergazinaA. MyrzagaliS. NazarbekG. OmarovaZ. MirzaO. FanH. AminA. ZhouW. XieY. Carbon nanoparticles neutralize carbon dioxide (CO2) in cytotoxicity: Potent carbon emission induced resistance to anticancer nanomedicine and antibiotics.Ecotoxicol. Environ. Saf.202427311602410.1016/j.ecoenv.2024.11602438394753
    [Google Scholar]
  46. FanH. SunQ. DukenbayevK. BenassiE. ManarbekL. NurkeshA.A. KhamijanM. MuC. LiG. RazbekovaM. ChenZ. AminA. XieY. Carbon nanoparticles induce DNA repair and PARP inhibitor resistance associated with nanozyme activity in cancer cells.Cancer Nanotechnol.20221313910.1186/s12645‑022‑00144‑9
    [Google Scholar]
  47. XieY. ShaimoldinaA. FanH. MyrzagaliS. NazarbekG. MyrzagalievaA. OrassayA. AminA. BenassiE. Characterisation of a phosphatase-like nanozyme developed by baking cysteine and its application in reviving mung bean sprouts damaged by ash.Environ. Sci. Nano202411126627710.1039/D3EN00415E
    [Google Scholar]
  48. IbrahimS. BaigB. HisaindeeS. DarwishH. Abdel-GhanyA. El-MaghrabyH. AminA. GreishY. Development and Evaluation of Crocetin-Functionalized Pegylated Magnetite Nanoparticles for Hepatocellular Carcinoma.Molecules2023287288210.3390/molecules2807288237049645
    [Google Scholar]
  49. SeyhanS.A. AlkayaD.B. CesurS. SahinA. Investigation of the antitumor effect on breast cancer cells of the electrospun amygdalin-loaded poly(l-lactic acid)/poly(ethylene glycol) nanofibers.Int. J. Biol. Macromol.202323912420110.1016/j.ijbiomac.2023.12420137001771
    [Google Scholar]
  50. ThabetN.M. Abdel-RafeiM.K. El-SayyadG.S. ElkodousM.A. ShaabanA. DuY.C. RashedL.A. AskarM.A. Multifunctional nanocomposites DDMplusAF inhibit the proliferation and enhance the radiotherapy of breast cancer cells via modulating tumor-promoting factors and metabolic reprogramming.Cancer Nanotechnol.20221311610.1186/s12645‑022‑00122‑1
    [Google Scholar]
  51. MosayyebiB. ImaniM. MohammadiL. AkbarzadehA. ZarghamiN. AlizadehE. RahmatiM. Comparison between β-Cyclodextrin-amygdalin nanoparticle and amygdalin effects on migration and apoptosis of MCF-7 breast cancer cell line.J. Cluster Sci.202233393594710.1007/s10876‑021‑02019‑2
    [Google Scholar]
  52. ElderderyA.Y. AlzahraniB. AlanaziF. HamzaS.M.A. ElkhalifaA.M.E. AlhamidiA.H. AlabdulsalamA.A. MohamedainA. KumarS.S. MokP.L. Amelioration of human acute lymphoblastic leukemia (ALL) cells by ZnO-TiO2-Chitosan-Amygdalin nanocomposites.Arab. J. Chem.202215810399910.1016/j.arabjc.2022.103999
    [Google Scholar]
  53. ZhouJ. HouJ. RaoJ. ZhouC. LiuY. GaoW. Magnetically directed enzyme/prodrug prostate cancer therapy based on β-glucosidase/amygdalin.Int. J. Nanomedicine2020154639465710.2147/IJN.S24235932636623
    [Google Scholar]
  54. Abd Al-jabbarS. AtiroğluV. HameedR.M. Guney EskilerG. AtiroğluA. Deveci OzkanA. ÖzacarM. Fabrication of dopamine conjugated with protein @metal organic framework for targeted drug delivery: A biocompatible pH-Responsive nanocarrier for gemcitabine release on MCF-7 human breast cancer cells.Bioorg. Chem.202211810546710.1016/j.bioorg.2021.10546734781115
    [Google Scholar]
  55. Abdel-RafeiM.K. AzabK.S. El-SayyadG.S. AskarM.A. El KodousM.A. El FatihN.M. TawillG.E. ThabetN.M. FA-HA-Amygdalin@Fe2O3 and/or γ-Rays Affecting SIRT1 Regulation of YAP/TAZ-p53 Signaling and Modulates Tumorigenicity of MDA-MB231 or MCF-7 Cancer Cells.Curr. Cancer Drug Targets202323211814410.2174/156800962266622081612350835975846
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947309632240805114318
Loading
/content/journals/cctr/10.2174/0115733947309632240805114318
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Amygdalin; analysis; bibliometric analysis; cancer; cluster; VOS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test