Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Diagnosing and successfully treating cancer remains to be a formidable challenge. Cancer diagnosis by conventional methods is laborious and highly subjective, reliant on the knowledge and experience of radiologists and pathologists. With the combination of AI and ML technologies, cancer imaging has seen a paradigm change. Medical imaging like CT, MRI, and PET scans may be analyzed using AIML algorithms and deep neural networks for characteristics and patterns that might indicate malignancy. More precise diagnosis and tailored treatment programs are possible with their aid in tumor segmentation and categorization. A type of artificial intelligence that has shown promise in cancer detection is radiomics. One more key approach utilized in AI-powered cancer detection is texture analysis. This technique entails analyzing the spatial organization of pixel intensities in a picture. The genetic elements that contribute to the genesis and progression of cancer are becoming better understood with the development of artificial intelligence systems that can analyze genomic data in addition to medical imaging. This review article delves into the revolutionary effects of AI and ML on cancer imaging, showcasing significant progress, obstacles, and potential solutions. Early detection, diagnosis, and personalized treatment methods are being transformed by these technologies, which are making use of the massive quantities of medical data that are accessible. The result is an improvement in patient outcomes.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947304178240804182938
2024-08-13
2025-12-05
Loading full text...

Full text loading...

References

  1. HunterB. HindochaS. LeeR.W. The role of artificial intelligence in early cancer diagnosis.Cancers (Basel)2022146152410.3390/cancers1406152435326674
    [Google Scholar]
  2. GottesmanM. PatelR.R. ParnesG. OrtizA.O. Preparing for the unexpectedRadiol. Clin. North Am.202159451152310.1016/j.rcl.2021.03.00334053602
    [Google Scholar]
  3. MountzJ. AhmedR. OborskiM. LiebermanF. HwangM. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods.Cancer Manag. Res.201414914910.2147/CMAR.S54726
    [Google Scholar]
  4. WuS. ChenX. PanJ. DongW. DiaoX. ZhangR. ZhangY. ZhangY. QianG. ChenH. LinH. XuS. ChenZ. ZhouX. MeiH. WuC. LvQ. YuanB. ChenZ. LiaoW. YangX. ChenH. HuangJ. LinT. An artificial intelligence system for the detection of bladder cancer via cystoscopy: a multicenter diagnostic study.J. Natl. Cancer Inst.2022114222022710.1093/jnci/djab17934473310
    [Google Scholar]
  5. IkedaA. NosatoH. KochiY. KojimaT. KawaiK. SakanashiH. MurakawaM. NishiyamaH. Support system of cystoscopic diagnosis for bladder cancer based on artificial intelligence.J. Endourol.202034335235810.1089/end.2019.050931808367
    [Google Scholar]
  6. HannaN. SaltzmanD. MukaiD. ChenZ. SasseS. MillikenJ. GuoS. JungW. ColtH. BrennerM. Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura.J. Thorac. Cardiovasc. Surg.2005129361562210.1016/j.jtcvs.2004.10.02215746746
    [Google Scholar]
  7. HosnyA. ParmarC. QuackenbushJ. SchwartzL.H. AertsH.J.W.L. Artificial intelligence in radiology.Nat. Rev. Cancer201818850051010.1038/s41568‑018‑0016‑529777175
    [Google Scholar]
  8. MalviyaR. VermaS. Targeted therapy using deep learning tools: state of art approach.Curr. Drug Targets202223121133113510.2174/138945012366622051311043235570524
    [Google Scholar]
  9. ZhouS.K. GreenspanH. DavatzikosC. DuncanJ.S. Van GinnekenB. MadabhushiA. PrinceJ.L. RueckertD. SummersR.M. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.Proc. IEEE2021109582083810.1109/JPROC.2021.305439037786449
    [Google Scholar]
  10. ShehataM. AbouelkheirR.T. GayhartM. Van BogaertE. Abou El-GharM. DwyerA.C. OusephR. YousafJ. GhazalM. ContractorS. El-BazA. Role of ai and radiomic markers in early diagnosis of renal cancer and clinical outcome prediction: a brief review.Cancers (Basel)20231510283510.3390/cancers1510283537345172
    [Google Scholar]
  11. BiW.L. HosnyA. SchabathM.B. GigerM.L. BirkbakN.J. MehrtashA. AllisonT. ArnaoutO. AbboshC. DunnI.F. MakR.H. TamimiR.M. TempanyC.M. SwantonC. HoffmannU. SchwartzL.H. GilliesR.J. HuangR.Y. AertsH.J.W.L. Artificial intelligence in cancer imaging: Clinical challenges and applications.CA Cancer J. Clin.201969212715710.3322/caac.2155230720861
    [Google Scholar]
  12. SarvamangalaD.R. KulkarniR.V. Convolutional neural networks in medical image understanding: a survey.Evol. Intell.202215112210.1007/s12065‑020‑00540‑333425040
    [Google Scholar]
  13. AgarwalR. DiazO. LladóX. YapM.H. MartíR. Automatic mass detection in mammograms using deep convolutional neural networks.J. Med. Imaging (Bellingham)201963110.1117/1.JMI.6.3.03140935834317
    [Google Scholar]
  14. ArmatoS.G.III GigerM.L. MacMahonH. Automated detection of lung nodules in CT scans: Preliminary results.Med. Phys.20012881552156110.1118/1.138727211548926
    [Google Scholar]
  15. ChangR.F. HouY.L. HuangC.S. ChenJ.H. ChangJ.M. MoonW.K. Automatic detection of microcalcifications in breast ultrasound.Med. Phys.2013401010290110.1118/1.482109824089929
    [Google Scholar]
  16. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  17. PereiraS. PintoA. AlvesV. SilvaC.A. Brain tumor segmentation using convolutional neural networks in mri images.IEEE Trans. Med. Imaging20163551240125110.1109/TMI.2016.253846526960222
    [Google Scholar]
  18. FanM. LiY. ZhengS. PengW. TangW. LiL. Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network.Methods201916610311110.1016/j.ymeth.2019.02.01030771490
    [Google Scholar]
  19. LustbergT. van SoestJ. GoodingM. PeressuttiD. AljabarP. van der StoepJ. van ElmptW. DekkerA. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer.Radiother. Oncol.2018126231231710.1016/j.radonc.2017.11.01229208513
    [Google Scholar]
  20. TahmassebiA. WengertG.J. HelbichT.H. Bago-HorvathZ. AlaeiS. BartschR. DubskyP. BaltzerP. ClauserP. KapetasP. MorrisE.A. Meyer-BaeseA. PinkerK. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients.Invest. Radiol.201954211011710.1097/RLI.000000000000051830358693
    [Google Scholar]
  21. UedaD. YamamotoA. TakashimaT. OnodaN. NodaS. KashiwagiS. MorisakiT. HonjoT. ShimazakiA. MikiY. Training, validation, and test of deep learning models for classification of receptor expressions in breast cancers from mammograms.jco precis. oncol.20215554355110.1200/PO.20.0017634994603
    [Google Scholar]
  22. HuangS. YangJ. FongS. ZhaoQ. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges.Cancer Lett.2020471617110.1016/j.canlet.2019.12.00731830558
    [Google Scholar]
  23. KimJ. CampbellA.S. de ÁvilaB.E.F. WangJ. Wearable biosensors for healthcare monitoring.Nat. Biotechnol.201937438940610.1038/s41587‑019‑0045‑y30804534
    [Google Scholar]
  24. FrangiA.F. TaylorZ.A. GooyaA. Precision imaging: more descriptive, predictive and integrative imaging.Med. Image Anal.201633273210.1016/j.media.2016.06.02427373145
    [Google Scholar]
  25. CuiM. ZhangD.Y. Artificial intelligence and computational pathology.Lab Invest.2021101441242210.1038/s41374‑020‑00514‑0
    [Google Scholar]
  26. Sharifi-NoghabiH. ZolotarevaO. CollinsC.C. EsterM. MOLI: multi-omics late integration with deep neural networks for drug response prediction.Bioinformatics20193514i501i50910.1093/bioinformatics/btz31831510700
    [Google Scholar]
  27. QuaziS. Artificial intelligence and machine learning in precision and genomic medicine.Med. Oncol.202239812010.1007/s12032‑022‑01711‑135704152
    [Google Scholar]
  28. VamathevanJ. ClarkD. CzodrowskiP. DunhamI. FerranE. LeeG. LiB. MadabhushiA. ShahP. SpitzerM. ZhaoS. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑530976107
    [Google Scholar]
  29. DlaminiZ. FranciesF.Z. HullR. MarimaR. Artificial intelligence (AI) and big data in cancer and precision oncology.Comput. Struct. Biotechnol. J.2020182300231110.1016/j.csbj.2020.08.01932994889
    [Google Scholar]
  30. RichterA.N. KhoshgoftaarT.M. A review of statistical and machine learning methods for modeling cancer risk using structured clinical data.Artif. Intell. Med.20189011410.1016/j.artmed.2018.06.00230017512
    [Google Scholar]
  31. LinW.C. ChenJ.S. ChiangM.F. HribarM.R. Applications of artificial intelligence to electronic health record data in ophthalmology.Transl. Vis. Sci. Technol.2020921310.1167/tvst.9.2.1332704419
    [Google Scholar]
  32. TangriN. InkerL.A. HiebertB. WongJ. NaimarkD. KentD. LeveyA.S. A dynamic predictive model for progression of ckd.am. j. kidney dis.201769451452010.1053/j.ajkd.2016.07.03027693260
    [Google Scholar]
  33. ChiC.L. Nick StreetW. RobinsonJ.G. CrawfordM.A. Individualized patient-centered lifestyle recommendations: An expert system for communicating patient specific cardiovascular risk information and prioritizing lifestyle options.J. Biomed. Inform.20124561164117410.1016/j.jbi.2012.07.01122903051
    [Google Scholar]
  34. KayserK. AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis.Folia Histochem Cytobiol.20094733556110.2478/v10042‑009‑0087‑y.20164018
    [Google Scholar]
  35. HossainT. ShishirF.S. AshrafM. Al NasimM.A. Muhammad ShahF. Brain Tumor Detection Using Convolutional Neural Network.2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh201916
    [Google Scholar]
  36. BeraK. BramanN. GuptaA. VelchetiV. MadabhushiA. Predicting cancer outcomes with radiomics and artificial intelligence in radiology.Nat. Rev. Clin. Oncol.202219213214610.1038/s41571‑021‑00560‑734663898
    [Google Scholar]
  37. NiaziM.K.K. ParwaniA.V. GurcanM.N. Digital pathology and artificial intelligence.Lancet Oncol.2019205e253e26110.1016/S1470‑2045(19)30154‑831044723
    [Google Scholar]
  38. SavovaG.K. DanciuI. AlamudunF. MillerT. LinC. BittermanD.S. TourassiG. WarnerJ.L. Use of natural language processing to extract clinical cancer phenotypes from electronic medical records.Cancer Res.201979215463547010.1158/0008‑5472.CAN‑19‑057931395609
    [Google Scholar]
  39. BaclicO. TunisM. YoungK. DoanC. SwerdfegerH. SchonfeldJ. Challenges and opportunities for public health made possible by advances in natural language processing.Can. Commun. Dis. Rep.202046616116810.14745/ccdr.v46i06a0232673380
    [Google Scholar]
  40. AlowaisS.A. AlghamdiS.S. AlsuhebanyN. AlqahtaniT. AlshayaA.I. AlmoharebS.N. AldairemA. AlrashedM. Bin SalehK. BadreldinH.A. Al YamiM.S. Al HarbiS. AlbekairyA.M. Revolutionizing healthcare: the role of artificial intelligence in clinical practice.BMC Med. Educ.202323168910.1186/s12909‑023‑04698‑z37740191
    [Google Scholar]
  41. KrallingerM. ValenciaA. HirschmanL. Linking genes to literature: text mining, information extraction, and retrieval applications for biology.Genome Biol.20089S810.1186/gb‑2008‑9‑s2‑s818834499
    [Google Scholar]
  42. MohsenF. AliH. El HajjN. ShahZ. Artificial intelligence-based methods for fusion of electronic health records and imaging data.Sci. Rep.20221211798110.1038/s41598‑022‑22514‑436289266
    [Google Scholar]
  43. CaiT. GiannopoulosA.A. YuS. KelilT. RipleyB. KumamaruK.K. RybickiF.J. MitsourasD. Natural language processing technologies in radiology research and clinical applications.Radiographics201636117619110.1148/rg.201615008026761536
    [Google Scholar]
  44. AhujaA.S. The impact of artificial intelligence in medicine on the future role of the physician.PeerJ20197e770210.7717/peerj.770231592346
    [Google Scholar]
  45. JeddiZ. BohrA. Remote patient monitoring using artificial intelligence.Elsevier202020323410.1016/B978‑0‑12‑818438‑7.00009‑5
    [Google Scholar]
  46. RuwaardJ. SchriekenB. SchrijverM. BroeksteegJ. DekkerJ. VermeulenH. LangeA. Standardized web-based cognitive behavioural therapy of mild to moderate depression: a randomized controlled trial with a long-term follow-up.Cogn. Behav. Ther.200938420622110.1080/1650607080240808619221919
    [Google Scholar]
  47. BorhaniS. BorhaniR. Kajdacsy-BallaA. Artificial intelligence: A promising frontier in bladder cancer diagnosis and outcome prediction.Crit. Rev. Oncol. Hematol.202217110360110.1016/j.critrevonc.2022.10360135065220
    [Google Scholar]
  48. YeF. WangL. Castillo-MartinM. McBrideR. GalskyM.D. ZhuJ. BoffettaP. ZhangD.Y. Cordon-CardoC. Biomarkers for bladder cancer management: present and future.Am. J. Clin. Exp. Urol.20142111425374904
    [Google Scholar]
  49. HousseinE.H. EmamM.M. AliA.A. SuganthanP.N. Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review.Expert Syst. Appl.202116711416110.1016/j.eswa.2020.114161
    [Google Scholar]
  50. KhamanehAJ RahimiS AbbasMH RahimiS MehmandoustS RastgooA HeydarianA EskandariV Trends in electrochemical biosensors for the early diagnosis of breast cancer through the detection of relevant biomarkers.Chem. Phys. Impact.2003100425
    [Google Scholar]
  51. LuoL. WangX. LinY. MaX. TanA. ChanR. VardhanabhutiV. ChuW.C.W. ChengK.T. ChenH. Deep learning in breast cancer imaging: A decade of progress and future directions.IEEE Rev. Biomed. Eng.2024PP12010.1109/RBME.2024.335787738265911
    [Google Scholar]
  52. Jarahi KhamenehA. MilaniD. BabaeiN. HannaniN. HeydarianA. SahbafarH. Effects of vitamins E and D on mechanical properties of breast cancerous cells.Curr. Cancer Ther. Rev.202420441742310.2174/0115733947265982230929154843
    [Google Scholar]
  53. WuG.G. ZhouL.Q. XuJ.W. WangJ.Y. WeiQ. DengY.B. CuiX.W. DietrichC.F. Artificial intelligence in breast ultrasound.World J. Radiol.2019112192610.4329/wjr.v11.i2.1930858931
    [Google Scholar]
  54. LiangF. WangS. ZhangK. LiuT.J. LiJ.N. Development of artificial intelligence technology in diagnosis, treatment, and prognosis of colorectal cancer.World J. Gastrointest. Oncol.202214112415210.4251/wjgo.v14.i1.12435116107
    [Google Scholar]
  55. WangY. HeX. NieH. ZhouJ. CaoP. OuC. Application of artificial intelligence to the diagnosis and therapy of colorectal cancer.Am. J. Cancer Res.2020101135753598[Internet].33294256
    [Google Scholar]
  56. ErdemogluE. SerelT.A. KaracanE. KöksalO.K. Turanİ. ÖztürkV. Artificial intelligence for prediction of endometrial intraepithelial neoplasia and endometrial cancer risks in pre- and postmenopausal women.AJOG Global Reports202332100154
    [Google Scholar]
  57. TutunS. JohnsonM.E. AhmedA. AlbizriA. IrgilS. YesilkayaI. UcarE.N. SengunT. HarfoucheA. An AI-based decision support system for predicting mental health disorders.inf. syst. front.20232531261127610.1007/s10796‑022‑10282‑535669335
    [Google Scholar]
  58. NikpanahM. XuZ. JinD. FarhadiF. SabouryB. BallM.W. GautamR. MerinoM.J. WoodB.J. TurkbeyB. JonesE.C. LinehanW.M. MalayeriA.A. A deep-learning based artificial intelligence (AI) approach for differentiation of clear cell renal cell carcinoma from oncocytoma on multi-phasic MRI.Clin. Imaging20217729129810.1016/j.clinimag.2021.06.01634171743
    [Google Scholar]
  59. Suarez-IbarrolaR. HeinS. ReisG. GratzkeC. MiernikA. Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer.World J. Urol.202038102329234710.1007/s00345‑019‑03000‑531691082
    [Google Scholar]
  60. RasmussenR. SanfordT. ParwaniA.V. PedrosaI. Artificial intelligence in kidney cancer.Am. Soc. Clin. Oncol. Educ. Book20224211135580292
    [Google Scholar]
  61. HadjiyskiN. Kidney cancer staging: Deep learning neural network based approachIn2020 International Conference on e-Health and Bioengineering (EHB) 2020 Oct 29 , pp. 1-4.
    [Google Scholar]
  62. GenoveseG. KählerA.K. HandsakerR.E. LindbergJ. RoseS.A. BakhoumS.F. ChambertK. MickE. NealeB.M. FromerM. PurcellS.M. SvantessonO. LandénM. HöglundM. LehmannS. GabrielS.B. MoranJ.L. LanderE.S. SullivanP.F. SklarP. GrönbergH. HultmanC.M. McCarrollS.A. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.N. Engl. J. Med.2014371262477248710.1056/NEJMoa140940525426838
    [Google Scholar]
  63. BairS.M. BrandstadterJ.D. AyersE.C. StadtmauerE.A. Hematopoietic stem cell transplantation for blood cancers in the era of precision medicine and immunotherapy.Cancer202012691837185510.1002/cncr.3265932073653
    [Google Scholar]
  64. GhaderzadehM. AsadiF. HosseiniA. BashashD. AbolghasemiH. RoshanpourA. Machine Learning in Detection and Classification of Leukemia Using Smear Blood Images: A Systematic Review.Sci. Program.202110.1155/2021/9933481
    [Google Scholar]
  65. RadakovichN. CorteseM. NazhaA. Acute myeloid leukemia and artificial intelligence, algorithms and new scores.Best Pract. Res. Clin. Haematol.202033310119210.1016/j.beha.2020.10119233038981
    [Google Scholar]
  66. BénéM.C. LacombeF. PorwitA. Unsupervised flow cytometry analysis in hematological malignancies: A new paradigm.Int. J. Lab. Hematol.2021431546410.1111/ijlh.1354834288436
    [Google Scholar]
  67. StenzingerA. AlberM. AllgäuerM. JurmeisterP. BockmayrM. BudcziesJ. LennerzJ. EschrichJ. KazdalD. SchirmacherP. WagnerA.H. TackeF. CapperD. MüllerK.R. KlauschenF. Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling.Semin. Cancer Biol.20228412914310.1016/j.semcancer.2021.02.01133631297
    [Google Scholar]
  68. ShenJ. ZhangC.J.P. JiangB. ChenJ. SongJ. LiuZ. HeZ. WongS.Y. FangP.H. MingW.K. Artificial intelligence versus clinicians in disease diagnosis: systematic review.JMIR Med. Inform.201973e1001010.2196/1001031420959
    [Google Scholar]
  69. GalO. AuslanderN. FanY. MeerzamanD. Predicting complete remission of acute myeloid leukemia: machine learning applied to gene expression.Cancer Inform.20191810.1177/117693511983554430911218
    [Google Scholar]
  70. MohapatraS. PatraD. SatpathyS. An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images.Neural Comput. Appl.2014247-81887190410.1007/s00521‑013‑1438‑3
    [Google Scholar]
  71. KeyesT.J. DomiziP. LoY. NolanG.P. DavisK.L. A Cancer Biologist's Primer on Machine Learning Applications in High-Dimensional Cytometry.Cytometry A.202097878279910.1002/cyto.a.24158
    [Google Scholar]
  72. GoyalM. KnackstedtT. YanS. HassanpourS. Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities.Comput. Biol. Med.202012710406510.1016/j.compbiomed.2020.10406533246265
    [Google Scholar]
  73. JonesO.T. MatinR.N. van der SchaarM. Prathivadi BhayankaramK. RanmuthuC.K.I. IslamM.S. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: A systematic review.Lancet Digit Health.202246e466e47610.1016/S2589‑7500(22)00023‑1
    [Google Scholar]
  74. GrulichA.E. VajdicC.M. The epidemiology of non-Hodgkin lymphoma.Pathology200537640941910.1080/0031302050037019216373224
    [Google Scholar]
  75. GedefawL. LiuC.F. IpR.K.L. TseH.F. YeungM.H.Y. YipS.P. HuangC.L. Artificial intelligence-assisted diagnostic cytology and genomic testing for hematologic disorders.Cells20231213175510.3390/cells1213175537443789
    [Google Scholar]
  76. KaissisG. BrarenR. Pancreatic cancer detection and characterization—state of the art cross-sectional imaging and imaging data analysis.Transl. Gastroenterol. Hepatol.20194353510.21037/tgh.2019.05.0431231702
    [Google Scholar]
  77. SebastianA.M. PeterD. Artificial intelligence in cancer research: Trends, challenges and future directions.Life (Basel)20221212199110.3390/life1212199136556356
    [Google Scholar]
  78. YangJ. XuR. WangC. QiuJ. RenB. YouL. Early screening and diagnosis strategies of pancreatic cancer: A comprehensive review.Cancer Commun. (Lond.)202141121257127410.1002/cac2.1220434331845
    [Google Scholar]
  79. ShariatS.F. RoehrbornC.G. Using biopsy to detect prostate cancer.Rev. Urol.200810426228019145270
    [Google Scholar]
  80. MataL.A. RetameroJ.A. GuptaR.T. García FiguerasR. LunaA. Artificial intelligence–assisted prostate cancer diagnosis: radiologic-pathologic correlation.Radiographics20214161676169710.1148/rg.202121002034597215
    [Google Scholar]
  81. ArmatoS.G.II LiF. GigerM.L. MacMahonH. SoneS. DoiK. Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program.Radiology2002225368569210.1148/radiol.225301137612461246
    [Google Scholar]
  82. ZhangG. JiangS. YangZ. GongL. MaX. ZhouZ. BaoC. LiuQ. Automatic nodule detection for lung cancer in CT images: A review.Comput. Biol. Med.201810328730010.1016/j.compbiomed.2018.10.03330415174
    [Google Scholar]
  83. HabchiY. HimeurY. KheddarH. BoukabouA. AtallaS. ChouchaneA. AI in thyroid cancer diagnosis: techniques, trends, and future directions.Systems 202320231110519
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947304178240804182938
Loading
/content/journals/cctr/10.2174/0115733947304178240804182938
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test