Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer is a complex disease that leads to millions of deaths worldwide. Despite new and improved therapeutic approaches, achieving a complete cure for the disease and protection from its treatment side effects remains elusive. This challenge has prompted the exploration of alternative approaches to drug discovery from natural sources, making it a top priority. Insects, as well as their by-products, constitute a rich reservoir of amino acids, peptides, proteins, alkaloids, fatty acids, ., which possess various biological activities such as antibacterial, antiviral, anti-inflammatory, antioxidant, and anticancer properties. The omnipresence of insects in nature and their long history in folk medicine makes them suitable candidates for exploring towards anticancer drug discovery. Among the four major orders of Class Insecta-Coleoptera, Diptera, Hymenoptera, and Lepidoptera-there are members that have demonstrated potential anti-tumor activities. This article provides an overview of anticancer bio-actives isolated from various insect species belonging to the major orders of Class Insecta. These bio-actives have been analysed and at specific levels. The diverse range of bio-actives isolated from each insect species signifies the immense potential for discovering novel therapeutics to combat cancer. At the very least, these compounds can be used in combination therapies. In the current review, an attempt was made to highlight the importance of insect-derived compounds towards anticancer drug discoveries based on the existing data gathered through literature.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947311327240802115914
2024-08-15
2025-12-05
Loading full text...

Full text loading...

References

  1. SeabrooksL. HuL. Insects: An underrepresented resource for the discovery of biologically active natural products.Acta Pharm. Sin. B20177440942610.1016/j.apsb.2017.05.00128752026
    [Google Scholar]
  2. DosseyA.T. Insects and their chemical weaponry: New potential for drug discovery.Nat. Prod. Rep.201027121737175710.1039/c005319h20957283
    [Google Scholar]
  3. TsuneoN. Yong-HuaM.A. KenjiI. Insect derived crude drugs in the chinese song dynasty.J. Ethnopharmacol.1988242-324728510.1016/0378‑8741(88)90157‑23075674
    [Google Scholar]
  4. DuttaP. SahuR.K. DeyT. LahkarM.D. MannaP. KalitaJ. Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer.Chem. Biol. Interact.201931310882410.1016/j.cbi.2019.10882431542397
    [Google Scholar]
  5. Costa-NetoE.M. Entomotherapy, or the medicinal use of insects.J. Ethnobiol.20052519311410.2993/0278‑0771(2005)25[93:EOTMUO]2.0.CO;2
    [Google Scholar]
  6. PettitG.R. Progress in the discovery of biosynthetic anticancer drugs.J. Nat. Prod.199659881282110.1021/np96043868792630
    [Google Scholar]
  7. HarpazI. Early entomology in the Middle East. History of Entomology. SmithR.F. Palo AltoAnnual Reviews Inc.1973243278
    [Google Scholar]
  8. RatcliffeN. AzambujaP. MelloC.B. Recent advances in developing insect natural products as potential modern day medicines.Evid. Based Complement. Alternat. Med.2014201412110.1155/2014/90495824883072
    [Google Scholar]
  9. AielloD. BarberaM. BongiornoD. CammarataM. CensiV. IndelicatoS. MazzottiF. NapoliA. PiazzeseD. SaianoF. Edible insects an alternative nutritional source of bioactive compounds: A review.Molecules202328269910.3390/molecules2802069936677756
    [Google Scholar]
  10. SinhaB. ChoudhuryY. Revisiting edible insects as sources of therapeutics and drug delivery systems for cancer therapy.Front. Pharmacol.202415134528110.3389/fphar.2024.134528138370484
    [Google Scholar]
  11. HoskinD.W. RamamoorthyA. Studies on anticancer activities of antimicrobial peptides.Biochim. Biophys. Acta Biomembr.20081778235737510.1016/j.bbamem.2007.11.00818078805
    [Google Scholar]
  12. UtsugiT. SchroitA.J. ConnorJ. BucanaC.D. FidlerI.J. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes.Cancer Res.19915111306230662032247
    [Google Scholar]
  13. KooC.Y. SenY.P. BayB.H. YipG. Targeting heparan sulfate proteoglycans in breast cancer treatment.Recent Patents Anticancer Drug Discov.20083315115810.2174/15748920878624227818991783
    [Google Scholar]
  14. BafnaS. KaurS. BatraS.K. Membrane-bound mucins: The mechanistic basis for alterations in the growth and survival of cancer cells.Oncogene201029202893290410.1038/onc.2010.8720348949
    [Google Scholar]
  15. van BeekW.P. SmetsL.A. EmmelotP. Increased sialic acid density in surface glycoprotein of transformed and malignant cells--a general phenomenon?Cancer Res.19733311291329224355985
    [Google Scholar]
  16. HilchieA.L. HoskinD.W. The application of cationic antimicrobial peptides in cancer treatment: Laboratory investigations and clinical potential.Emerging Cancer Therapy: Microbial Approaches and Biotechnological ToolsJohn Wiley & Sons, Inc201030932210.1002/9780470626528.ch1
    [Google Scholar]
  17. HilchieA.L. SharonA.J. HaneyE.F. HoskinD.W. BallyM.B. FrancoO.L. CorcoranJ.A. HancockR.E.W. Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma.Biochim. Biophys. Acta Biomembr.20161858123195320410.1016/j.bbamem.2016.09.02127693190
    [Google Scholar]
  18. ChenX. ZhangL. WuY. WangL. MaC. XiX. Bininda-EmondsO.R.P. ShawC. ChenT. ZhouM. Evaluation of the bioactivity of a mastoparan peptide from wasp venom and of its analogues designed through targeted engineering.Int. J. Biol. Sci.201814659960710.7150/ijbs.2341929904274
    [Google Scholar]
  19. WangK. ZhangB. ZhangW. YanJ. LiJ. WangR. Antitumor effects, cell selectivity and structure–activity relationship of a novel antimicrobial peptide polybia-MPI.Peptides200829696396810.1016/j.peptides.2008.01.01518328599
    [Google Scholar]
  20. WuR. LiD. TangQ. WangW. XieG. DouP. A novel peptide from vespa ducalis induces apoptosis in osteosarcoma cells by activating the p38 MAPK and JNK signaling pathways.Biol. Pharm. Bull.201841445846410.1248/bpb.b17‑0044929607921
    [Google Scholar]
  21. ZedanA. SakranM. BahattabO. HawsawiY. Al-AmerO. OyouniA. Nasr EldeenS. El-MagdM. Oriental hornet (Vespa orientalis) larval extracts induce antiproliferative, antioxidant, anti-inflammatory, and anti-migratory effects on MCF7 cells.Molecules20212611330310.3390/molecules2611330334072744
    [Google Scholar]
  22. TorresM.D.T. AndradeG.P. SatoR.H. PedronC.N. ManieriT.M. CerchiaroG. RibeiroA.O. de la Fuente-NunezC. OliveiraV.X.Jr Natural and redesigned wasp venom peptides with selective antitumoral activity.Beilstein J. Org. Chem.2018141693170310.3762/bjoc.14.14430013694
    [Google Scholar]
  23. SforcinJ.M. BankovaV. KuropatnickiA.K. Medical benefits of honeybee products.Evid. Based Complement. Alternat. Med.201720171210.1155/2017/270210628572826
    [Google Scholar]
  24. RussoM. SpagnuoloC. VolpeS. MupoA. TedescoI. RussoG-L. Quercetin induced apoptosis in association with death receptors and fludarabine in cells isolated from chronic lymphocytic leukaemia patients.Br. J. Cancer2010103564264810.1038/sj.bjc.660579420648016
    [Google Scholar]
  25. EshaghiM.M. PourmadadiM. RahdarA. Díez-PascualA.M. Improving quercetin anticancer activity through a novel polyvinylpyrrolidone/polyvinyl alcohol/TiO2 nanocomposite.J. Drug Deliv. Sci. Technol.20238110430410.1016/j.jddst.2023.104304
    [Google Scholar]
  26. CoombsM.R.P. HarrisonM.E. HoskinD.W. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells.Cancer Lett.2016380242443310.1016/j.canlet.2016.06.02327378243
    [Google Scholar]
  27. BudhrajaA. GaoN. ZhangZ. SonY.O. ChengS. WangX. DingS. HitronA. ChenG. LuoJ. ShiX. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo. Mol. Cancer Ther.201211113214210.1158/1535‑7163.MCT‑11‑034322084167
    [Google Scholar]
  28. Fernandez-CabezudoM.J. El-KharragR. TorabF. BashirG. GeorgeJ.A. El-TajiH. al-RamadiB.K. Intravenous administration of manuka honey inhibits tumor growth and improves host survival when used in combination with chemotherapy in a melanoma mouse model.PLoS One201382e5599310.1371/journal.pone.005599323409104
    [Google Scholar]
  29. MartinottiS. PellavioG. PatroneM. LaforenzaU. RanzatoE. Manuka honey induces apoptosis of epithelial cancer cells through aquaporin-3 and calcium signaling.Life2020101125610.3390/life1011025633120979
    [Google Scholar]
  30. RadyI. SiddiquiI.A. RadyM. MukhtarH. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy.Cancer Lett.2017402163110.1016/j.canlet.2017.05.01028536009
    [Google Scholar]
  31. YuR. WangM. WangM. HanL. Melittin suppresses growth and induces apoptosis of non-small-cell lung cancer cells via down-regulation of TGF-β-mediated ERK signal pathway.Braz. J. Med. Biol. Res.2021542e901710.1590/1414‑431x2020901733331417
    [Google Scholar]
  32. DabbaghMF AkbarzadehI MarzbankiaE FaridM KhalediL ReihaniAM JavidfarM Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect.Cancer Nano20212021121410.1186/s12645‑021‑00085‑9
    [Google Scholar]
  33. FilipičB. GradišnikL. RiharK. ŠoošE. PereyraA. PotokarJ. The influence of royal jelly and human interferon-alpha (HuIFN-αN3) on proliferation, glutathione level and lipid peroxidation in human colorectal adenocarcinoma cells in vitro / Vpliv matičnega mlečka in humanega interferona-alfa (HuIFN-αN3) na proliferacijo, nivo glutationa in na preoksidacijo lipidov v humanih kolorektalnih adenokarcinomskih celicah in vitro.Arh. Hig. Rada Toksikol.201566426927410.1515/aiht‑2015‑66‑263226751858
    [Google Scholar]
  34. OršolićN. TerzićS. ŠverL. BašićI. Honey‐bee products in prevention and/or therapy of murine transplantable tumours.J. Sci. Food Agric.200585336337010.1002/jsfa.2041
    [Google Scholar]
  35. MiyataY. ArakiK. OhbaK. MastuoT. NakamuraY. YunoT. MukaiY. OtsuboA. MitsunariK. MochizukiY. SakaiH. Oral intake of royal jelly improves anti‑cancer effects and suppresses adverse events of molecular targeted therapy by regulating TNF‑α and TGF‑β in renal cell carcinoma: A preliminary study based on a randomized double‑blind clinical trial.Mol. Clin. Oncol.20201342910.3892/mco.2020.209932765876
    [Google Scholar]
  36. ChenC.N. WuC.L. LinJ.K. Propolin C from propolis induces apoptosis through activating caspases, Bid and cytochrome c release in human melanoma cells.Biochem. Pharmacol.2004671536610.1016/j.bcp.2003.07.02014667928
    [Google Scholar]
  37. PaiJT LeeYC ChenSY LeuYL WengMS Propolin C inhibited migration and invasion via suppression of EGFR-mediated epithelial-to-mesenchymal transition in human lung cancer cells.Evid-based Complement Altern Med: eCAM20182018720254810.1155/2018/7202548
    [Google Scholar]
  38. LuoJ. SohJ.W. XingW.Q. MaoY. MatsunoT. WeinsteinI.B. PM-3, a benzo-gamma-pyran derivative isolated from propolis, inhibits growth of MCF-7 human breast cancer cells.Anticancer Res.2001213B1665167111497245
    [Google Scholar]
  39. NugitrangsonP. PuthongS. IemprideeT. PimtongW. PornpakakulS. ChanchaoC. In vitro and in vivo characterization of the anticancer activity of Thai stingless bee ( Tetragonula laeviceps ) cerumen.Exp. Biol. Med. (Maywood)2016241216617610.1177/153537021560010226290139
    [Google Scholar]
  40. TranV.A. Thi VoT-T. NguyenM.N.T. Duy DatN. DoanV.D. NguyenT.Q. VuQ.H. LeV.T. TongT.D. Novel α-Mangostin derivatives from mangosteen (Garcinia mangostana L.) peel extract with antioxidant and anticancer potential.J. Chem.2021202111210.1155/2021/9985604
    [Google Scholar]
  41. LiP. TianW. MaX. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells.Mol. Cancer201413113810.1186/1476‑4598‑13‑13824894151
    [Google Scholar]
  42. BouchardP. GrebennikovV.V. SmithA.B.T. DouglasH. Biodiversity of coleoptera.Insect biodiversity: science and society. FoottitR.G. AdlerP.H. West SussexBlackwell Publishing Ltd.200926530110.1002/9781444308211.ch11
    [Google Scholar]
  43. DengL.P. DongJ. CaiH. WangW. Cantharidin as an antitumor agent: A retrospective review.Curr. Med. Chem.201320215916610.2174/09298671380480671123210849
    [Google Scholar]
  44. PanY. ZhengQ. NiW. WeiZ. YuS. JiaQ. WangM. WangA. ChenW. LuY. Breaking glucose transporter 1/pyruvate kinase m2 glycolytic loop is required for cantharidin inhibition of metastasis in highly metastatic breast cancer.Front. Pharmacol.20191059010.3389/fphar.2019.0059031178738
    [Google Scholar]
  45. PanM.S. CaoJ. FanY.Z. Insight into norcantharidin, a small-molecule synthetic compound with potential multi-target anticancer activities.Chin. Med.20201515510.1186/s13020‑020‑00338‑632514288
    [Google Scholar]
  46. LeeJ.Y. ChungT.W. ChoiH.J. LeeC.H. EunJ.S. HanY.T. ChoiJ.Y. KimS.Y. HanC.W. JeongH.S. HaK.T. A novel cantharidin analog N-Benzylcantharidinamide reduces the expression of MMP-9 and invasive potentials of Hep3B via inhibiting cytosolic translocation of HuR.Biochem. Biophys. Res. Commun.2014447237137710.1016/j.bbrc.2014.04.03524735540
    [Google Scholar]
  47. XieG. CuiZ. PengK. ZhouX. XiaQ. XuD. Aidi injection, a traditional chinese medicine injection, could be used as an adjuvant drug to improve quality of life of cancer patients receiving chemotherapy: A propensity score matching analysis.Integr. Cancer Ther.201918.10.1177/153473541881079930482065
    [Google Scholar]
  48. AhnM.Y. KimB.J. KimH.J. JinJ.M. YoonH.J. HwangJ.S. ParkK.K. Anti-cancer effect of dung beetle glycosaminoglycans on melanoma.BMC Cancer2019191910.1186/s12885‑018‑5202‑z30611221
    [Google Scholar]
  49. LeeR.H. OhJ.D. HwangJ.S. LeeH.K. ShinD. Antitumorigenic effect of insect-derived peptide poecilocorisin-1 in human skin cancer cells through regulation of Sp1 transcription factor.Sci. Rep.20211111844510.1038/s41598‑021‑97581‑034531430
    [Google Scholar]
  50. AlvesR.R.N. AlvesH.N. The faunal drugstore: Animal-based remedies used in traditional medicines in Latin America.J. Ethnobiol. Ethnomed.201171910.1186/1746‑4269‑7‑921385357
    [Google Scholar]
  51. HeZ. PengF. SongL. WangX. HuM. ZhaoY. LiuG. Advances in chemical constituents and pharmacological effects of Periplaneta americana. Chin J Chin Mater Med20073223262330
    [Google Scholar]
  52. LuoS.L. HuangX.J. WangY. JiangR.W. WangL. BaiL.L. PengQ.L. SongC.L. ZhangD.M. YeW.C. Isocoumarins from American cockroach (Periplaneta americana) and their cytotoxic activities.Fitoterapia20149511512010.1016/j.fitote.2014.03.00424631766
    [Google Scholar]
  53. JiangH.L. LuoX.H. WangX.Z. YangJ.L. YaoX.J. CrewsP. ValerioteF.A. WuQ.X. New isocoumarins and alkaloid from Chinese insect medicine, Eupolyphaga sinensis Walker.Fitoterapia20128371275128010.1016/j.fitote.2012.06.00522735600
    [Google Scholar]
  54. ZhangY. ZhanY. ZhangD. DaiB. MaW. QiJ. LiuR. HeL. Eupolyphaga sinensis Walker displays inhibition on hepatocellular carcinoma through regulating cell growth and metastasis signaling.Sci. Rep.201441551810.1038/srep0551824980220
    [Google Scholar]
  55. MorrisS. GrimaldiD. EngelM.S. Evolution of insects. Xv 755 pp. Cambridge, New York, Melbourne: Cambridge University Press. ISBN 0 521 82149 5.Geol. Mag.20051441035103610.1017/S001675680700372X
    [Google Scholar]
  56. PettitG.R. MengY. HeraldD.L. KnightJ.C. DayJ.F. Antineoplastic agents. 553. The Texas grasshopper Brachystola magna. J. Nat. Prod.20056881256125810.1021/np040236716124772
    [Google Scholar]
  57. SiedlakowskiP. McLachlan-BurgessA. GriffinC. TirumalaiS.S. McNultyJ. PandeyS. Synergy of pancratistatin and tamoxifen on breast cancer cells in inducing apoptosis by targeting mitochondria.Cancer Biol. Ther.20087337638410.4161/cbt.7.3.536418075307
    [Google Scholar]
  58. MaD. PignanelliC. TaradeD. GilbertT. NoelM. MansourF. AdamsS. DowhaykoA. StokesK. VshyvenkoS. CollinsJ. HudlickyT. McNultyJ. PandeyS. Cancer cell mitochondria targeting by pancratistatin analogs is dependent on functional complex II and III.Sci. Rep.2017714295710.1038/srep4295728220885
    [Google Scholar]
  59. YuanY. HeX. LiX. LiuY. TangY. DengH. ShiX. Narciclasine induces autophagy-mediated apoptosis in gastric cancer cells through the Akt/mTOR signaling pathway.BMC Pharmacol. Toxicol.20212217010.1186/s40360‑021‑00537‑334753517
    [Google Scholar]
  60. WangM. LiangL. WangR. JiaS. XuC. WangY. LuoM. LinQ. YangM. ZhouH. LiuD. QingC. Narciclasine, a novel topoisomerase I inhibitor, exhibited potent anti-cancer activity against cancer cells.Nat. Prod. Bioprospect.20231312710.1007/s13659‑023‑00392‑137640882
    [Google Scholar]
  61. PogueM.G. Biodiversity of Lepidoptera.Insect biodiversity: science and societyWest Sussex: Black- well Publishing Ltd200932535210.1002/9781444308211.ch13
    [Google Scholar]
  62. PettitG.R. YeQ. HeraldD.L. HoganF. PettitR.K. Antineoplastic agents. 573. isolation and structure of papilistatin from the papilionid butterfly Byasa polyeuctes termessa. J. Nat. Prod.201073216416610.1021/np900468920085286
    [Google Scholar]
  63. HuiL. LeungK. ChenH.M. The combined effects of antibacterial peptide cecropin A and anti-cancer agents on leukemia cells.Anticancer Res.20022252811281612530001
    [Google Scholar]
  64. LiX. ShenB. ChenQ. ZhangX. YeY. WangF. ZhangX. Antitumor effects of cecropin B-LHRH’ on drug-resistant ovarian and endometrial cancer cells.BMC Cancer201616125110.1186/s12885‑016‑2287‑027021903
    [Google Scholar]
  65. BoltonB. An online catalog of the ants of the world.2015Available from: http://antcat.org
    [Google Scholar]
  66. TouchardA. AiliS. FoxE. EscoubasP. OrivelJ. NicholsonG. DejeanA. The biochemical toxin arsenal from ant venoms.Toxins2016813010.3390/toxins801003026805882
    [Google Scholar]
  67. AgarwalS. SharmaG. VermaK. LathaN. MathurV. Pharmacological potential of ants and their symbionts – A review.Entomol. Exp. Appl.2022170121032104810.1111/eea.13236
    [Google Scholar]
  68. KemprajV. ParkS.J. De FaveriS. TaylorP.W. Overlooked scents: Chemical profile of soma, volatile emissions and trails of the green tree ant, Oecophylla smaragdina. Molecules2020259211210.3390/molecules2509211232365972
    [Google Scholar]
  69. KemprajV ParkSJ CameronDNS 1-Octanol emitted by Oecophylla smaragdina weaver ants repels and deters oviposition in Queensland fruit fly.Sci Rep2022121576810.1038/s41598‑022‑20102‑0
    [Google Scholar]
  70. MoY. ShiQ. QiG. ChenK. Potential anti-tumor effects of Solenopsis invicta venom.Front. Immunol.202314120065910.3389/fimmu.2023.120065937283754
    [Google Scholar]
  71. ArbiserJ.L. KauT. KonarM. NarraK. RamchandranR. SummersS.A. VlahosC.J. YeK. PerryB.N. MatterW. FischlA. CookJ. SilverP.A. BainJ. CohenP. WhitmireD. FurnessS. GovindarajanB. BowenJ.P. Solenopsin, the alkaloidal component of the fire ant (Solenopsis invicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis.Blood2007109256056510.1182/blood‑2006‑06‑02993416990598
    [Google Scholar]
  72. BadrG. GarraudO. DaghestaniM. Al-KhalifaM.S. RichardY. Human breast carcinoma cells are induced to apoptosis by samsum ant venom through an IGF-1-dependant pathway, PI3K/AKT and ERK signaling.Cell. Immunol.20122731101610.1016/j.cellimm.2011.12.00322218396
    [Google Scholar]
  73. Al-TamimiJ. SemlaliA. HassanI. EbaidH. AlhazzaI.M. MehdiS.H. Al-KhalifaM. AlanaziM.S. Samsum ant venom exerts anticancer activity through immunomodulation in vitro and in vivo. Cancer Biother. Radiopharm.2018332657310.1089/cbr.2017.240029634416
    [Google Scholar]
  74. BosqueI. Gonzalez-GomezJ.C. LozaM.I. BreaJ. Natural tetraponerines: A general synthesis and antiproliferative activity.J. Org. Chem.20147993982399110.1021/jo500446f24731136
    [Google Scholar]
  75. RouchaudA. BraekmanJ.C. Synthesis of new analogs of the tetraponerines.Eur. J. Org. Chem.20092009162666267410.1002/ejoc.200900064
    [Google Scholar]
  76. dos Santos CabreraM.P. Arcisio-MirandaM. GorjãoR. LeiteN.B. de SouzaB.M. CuriR. ProcopioJ. Ruggiero NetoJ. PalmaM.S. Influence of the bilayer composition on the binding and membrane disrupting effect of Polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity.Biochemistry201251244898490810.1021/bi201608d22630563
    [Google Scholar]
  77. MansourG.H. El-MagdM.A. MahfouzD.H. AbdelhamidI.A. MohamedM.F. IbrahimN.S. Hady A Abdel WahabA. ElzayatE.M. Bee venom and its active component Melittin synergistically potentiate the anticancer effect of Sorafenib against HepG2 cells.Bioorg. Chem.202111610532910.1016/j.bioorg.2021.10532934544028
    [Google Scholar]
  78. KongG.M. TaoW.H. DiaoY.L. FangP.H. WangJ.J. BoP. QianF. Melittin induces human gastric cancer cell apoptosis via activation of mitochondrial pathway.World J. Gastroenterol.201622113186319510.3748/wjg.v22.i11.318627003995
    [Google Scholar]
  79. JeongY.J. ChoiY. ShinJ.M. ChoH.J. KangJ.H. ParkK.K. ChoeJ.Y. BaeY.S. HanS.M. KimC.H. ChangH.W. ChangY.C. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells.Food Chem. Toxicol.20146821822510.1016/j.fct.2014.03.02224675423
    [Google Scholar]
  80. DuffyC. SorollaA. WangE. GoldenE. WoodwardE. DavernK. HoD. JohnstoneE. PflegerK. RedfernA. IyerK.S. BaerB. BlancafortP. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer.NPJ Precis. Oncol.2020412410.1038/s41698‑020‑00129‑032923684
    [Google Scholar]
  81. HuangJ.Y. PengS.F. ChuehF.S. ChenP.Y. HuangY.P. HuangW.W. ChungJ.G. Melittin suppresses epithelial–mesenchymal transition and metastasis in human gastric cancer AGS cells via regulating Wnt/BMP associated pathway.Biosci. Biotechnol. Biochem.202185112250226210.1093/bbb/zbab15334482401
    [Google Scholar]
  82. CerónJ.M. Contreras-MorenoJ. PuertollanoE. de CienfuegosG.Á. PuertollanoM.A. de PabloM.A. The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells.Peptides20103181494150310.1016/j.peptides.2010.05.00820493222
    [Google Scholar]
  83. WuC. GengX. WanS. HouH. YuF. JiaB. WangL. Cecropin-P17, an analog of Cecropin B, inhibits human hepatocellular carcinoma cell HepG-2 proliferation via regulation of ROS, Caspase, Bax, and Bcl-2.J. Pept. Sci.201521866166810.1002/psc.278626010398
    [Google Scholar]
  84. ZhaiZ. NiX. JinC. RenW. LiJ. DengJ. DengB. YinY. CecropinA. Cecropin A modulates tight junction-related protein expression and enhances the barrier function of porcine intestinal epithelial cells by suppressing the MEK/ERK pathway.Int. J. Mol. Sci.2018197194110.3390/ijms1907194130004434
    [Google Scholar]
  85. MuC. JiaP. YanZ. LiuX. LiX. LiuH. Quercetin induces cell cycle G1 arrest through elevating Cdk inhibitors p21 and p27 in human hepatoma cell line (HepG2).Methods Find. Exp. Clin. Pharmacol.200729317918310.1358/mf.2007.29.3.109209517520098
    [Google Scholar]
  86. SudanS. RupasingheH.P. Quercetin-3-O-glucoside induces human DNA topoisomerase II inhibition, cell cycle arrest and apoptosis in hepatocellular carcinoma cells.Anticancer Res.20143441691169924692698
    [Google Scholar]
  87. ChienS.Y. WuY.C. ChungJ.G. YangJ.S. LuH.F. TsouM.F. WoodW.G. KuoS.J. ChenD.R. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells.Hum. Exp. Toxicol.200928849350310.1177/096032710910700219755441
    [Google Scholar]
  88. SiegelinM.D. ReussD.E. HabelA. RamiA. von DeimlingA. Quercetin promotes degradation of survivin and thereby enhances death-receptor–mediated apoptosis in glioma cells.Neuro-oncol.200911212213110.1215/15228517‑2008‑08518971417
    [Google Scholar]
  89. ParkC.H. ChangJ.Y. HahmE.R. ParkS. KimH.K. YangC.H. Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells.Biochem. Biophys. Res. Commun.2005328122723410.1016/j.bbrc.2004.12.15115670774
    [Google Scholar]
  90. HuangS. Inhibition of PI3K/Akt/mTOR signaling by natural products.Anticancer. Agents Med. Chem.201313796797010.2174/187152061131307000123272914
    [Google Scholar]
  91. ZhuG. LiuX. LiH. YanY. HongX. LinZ. RETRACTED: Kaempferol inhibits proliferation, migration, and invasion of liver cancer HepG2 cells by down-regulation of microRNA-21.Int. J. Immunopathol. Pharmacol.20183210.1177/205873841881434130477356
    [Google Scholar]
  92. LiS. YanT. DengR. JiangX. XiongH. WangY. YuQ. WangX. ChenC. ZhuY. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1.OncoTargets Ther.2017104809481910.2147/OTT.S14088629042792
    [Google Scholar]
  93. WongananO. HeY. ShenX. WongkrajangK. SuksamrarnA. ZhangG. WangF. 6-Hydroxy-3- O -methyl-kaempferol 6- O -glucopyranoside potentiates the anti-proliferative effect of interferon α/β by promoting activation of the JAK/STAT signaling by inhibiting SOCS3 in hepatocellular carcinoma cells.Toxicol. Appl. Pharmacol.2017336313910.1016/j.taap.2017.10.00429031523
    [Google Scholar]
  94. KashafiE. MoradzadehM. MohamadkhaniA. ErfanianS. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways.Biomed. Pharmacother.20178957357710.1016/j.biopha.2017.02.06128258039
    [Google Scholar]
  95. JeongJ.C. KimM.S. KimT.H. KimY.K. Kaempferol induces cell death through ERK and Akt-dependent down-regulation of XIAP and survivin in human glioma cells.Neurochem. Res.2009345991100110.1007/s11064‑008‑9868‑518949556
    [Google Scholar]
  96. SongW. YanC. ZhouQ. ZhenL. Galangin potentiates human breast cancer to apoptosis induced by TRAIL through activating AMPK.Biomed. Pharmacother.20178984585610.1016/j.biopha.2017.01.06228282786
    [Google Scholar]
  97. ChenD. LiD. XuX. QiuS. LuoS. QiuE. RongZ. ZhangJ. ZhengD. Galangin inhibits epithelial-mesenchymal transition and angiogenesis by downregulating CD44 in glioma.J. Cancer201910194499450810.7150/jca.3148731528214
    [Google Scholar]
  98. SinghR.P. AgrawalP. YimD. AgarwalC. AgarwalR. Acacetin inhibits cell growth and cell cycle progression, and induces apoptosis in human prostate cancer cells: structure-activity relationship with linarin and linarin acetate.Carcinogenesis200526484585410.1093/carcin/bgi01415637089
    [Google Scholar]
  99. ZhangG. LiZ. DongJ. ZhouW. ZhangZ. QueZ. ZhuX. XuY. CaoN. ZhaoA. Acacetin inhibits invasion, migration and TGF-β1-induced EMT of gastric cancer cells through the PI3K/Akt/Snail pathway.BMC Complementary Medicine and Therapies20222211010.1186/s12906‑021‑03494‑w35000605
    [Google Scholar]
  100. ZhangG. DongJ. LuL. LiuY. HuD. WuY. ZhaoA. XuH. Acacetin exerts antitumor effects on gastric cancer by targeting EGFR.Front. Pharmacol.202314112164310.3389/fphar.2023.112164337266143
    [Google Scholar]
  101. CaoX. LiuB. CaoW. ZhangW. ZhangF. ZhaoH. MengR. ZhangL. NiuR. HaoX. ZhangB. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells.Chin. J. Cancer Res.201325221222210.3978/j.issn.1000‑9604.2013.04.0123592903
    [Google Scholar]
  102. ShuklaS FuP GuptaS Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancerApoptosis : Int J program cell death20141988389410.1007/s10495‑014‑0971‑6
    [Google Scholar]
  103. KimS.H. KangJ.G. KimC.S. IhmS.H. ChoiM.G. YooH.J. LeeS.J. Suppression of AKT potentiates synergistic cytotoxicity of apigenin with TRAIL in anaplastic thyroid carcinoma cells.Anticancer Res.201535126529653726637867
    [Google Scholar]
  104. LiuR. JiP. LiuB. QiaoH. WangX. ZhouL. DengT. BaY. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis.Oncol. Lett.20171321024103010.3892/ol.2016.549528356995
    [Google Scholar]
  105. HongT.B. RahumatullahA. YogarajahT. AhmadM. YinK.B. Potential effects of chrysin on MDA-MB-231 cells.Int. J. Mol. Sci.20101131057106910.3390/ijms1103105720479999
    [Google Scholar]
  106. MaruhashiR. EguchiH. AkizukiR. HamadaS. FurutaT. MatsunagaT. EndoS. IchiharaK. IkariA. Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells.Sci. Rep.2019911375310.1038/s41598‑019‑50276‑z31551535
    [Google Scholar]
  107. TalebiM. TalebiM. FarkhondehT. Simal-GandaraJ. KopustinskieneD.M. BernatonieneJ. SamarghandianS. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin.Cancer Cell Int.202121121410.1186/s12935‑021‑01906‑y33858433
    [Google Scholar]
  108. GuW. YangY. ZhangC. ZhangY. ChenL. ShenJ. LiG. LiZ. LiL. LiY. DongH. Caffeic acid attenuates the angiogenic function of hepatocellular carcinoma cells via reduction in JNK-1-mediated HIF-1α stabilization in hypoxia.RSC Advances2016686827748278210.1039/C6RA07703J
    [Google Scholar]
  109. MinJ. ShenH. XiW. WangQ. YinL. ZhangY. YuY. YangQ. WangZ. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro. Cell. Physiol. Biochem.20184841433144210.1159/00049225330064123
    [Google Scholar]
  110. Saad Al ShehriZ. AlanaziA.D. AlnomasyS.F. Anti-cancer effects of queen bee acid (10-hydroxy-2-decenoic acid) and its cellular mechanisms against human hepatoma cells.Molecules2023284197210.3390/molecules2804197236838959
    [Google Scholar]
  111. YangY.C. ChouW.M. WidowatiD.A. LinI.P. PengC.C. 10-hydroxy-2-decenoic acid of royal jelly exhibits bactericide and anti-inflammatory activity in human colon cancer cells.BMC Complement. Altern. Med.201818120210.1186/s12906‑018‑2267‑929970062
    [Google Scholar]
  112. LinX.M. LiuS.B. LuoY.H. XuW.T. ZhangY. ZhangT. XueH. ZuoW.B. LiY.N. LuB.X. JinC.H. 10-HDA induces ROS-mediated apoptosis in A549 human lung cancer cells by regulating the MAPK, STAT3, NF-κB, and TGF-β1 signaling pathways.BioMed Res. Int.2020202011510.1155/2020/304263633376719
    [Google Scholar]
  113. ZhangH. TanY. ZhaoL. WangL. FuN. ZhengS. ShenX. Anticancer activity of dietary xanthone α-mangostin against hepatocellular carcinoma by inhibition of STAT3 signaling via stabilization of SHP1.Cell Death Dis.20201116310.1038/s41419‑020‑2227‑431980595
    [Google Scholar]
  114. ZhuX. LiJ. NingH. YuanZ. ZhongY. WuS. ZengJ.Z. α-mangostin induces apoptosis and inhibits metastasis of breast cancer cells via regulating RXRα-AKT signaling pathway.Front. Pharmacol.20211273965810.3389/fphar.2021.73965834539418
    [Google Scholar]
  115. JoM.K. MoonC.M. KimE.J. KwonJ.H. FeiX. KimS.E. JungS.A. KimM. MunY.C. AhnY.H. SeoS.Y. KimT.I. Suppressive effect of α-mangostin for cancer stem cells in colorectal cancer via the Notch pathway.BMC Cancer202222134110.1186/s12885‑022‑09414‑635351071
    [Google Scholar]
  116. LiH. XiaZ. ChenY. YangF. FengW. CaiH. MeiY. JiangY. XuK. FengD. Cantharidin inhibits the growth of triple-negative breast cancer cells by suppressing autophagy and inducing apoptosis in vitro and in vivo. Cell. Physiol. Biochem.20174351829184010.1159/00048406929050003
    [Google Scholar]
  117. ChunJ. ParkM.K. KoH. LeeK. KimY.S. Bioassay-guided isolation of cantharidin from blister beetles and its anticancer activity through inhibition of epidermal growth factor receptor-mediated STAT3 and Akt pathways.J. Nat. Med.201872493794510.1007/s11418‑018‑1226‑630043217
    [Google Scholar]
  118. NazF. WuY. ZhangN. YangZ. YuC. Anticancer attributes of cantharidin: Involved molecular mechanisms and pathways.Molecules20202514327910.3390/molecules2514327932707651
    [Google Scholar]
  119. ChenF. WangS. WeiY. WuJ. HuangG. ChenJ. ShiJ. XiaJ. Norcantharidin modulates the miR-30a/Metadherin/AKT signaling axis to suppress proliferation and metastasis of stromal tumor cells in giant cell tumor of bone.Biomed. Pharmacother.20181031092110010.1016/j.biopha.2018.04.10029710674
    [Google Scholar]
  120. KekreN. GriffinC. McNultyJ. PandeyS. Pancratistatin causes early activation of caspase-3 and the flipping of phosphatidyl serine followed by rapid apoptosis specifically in human lymphoma cells.Cancer Chemother. Pharmacol.2005561293810.1007/s00280‑004‑0941‑815726366
    [Google Scholar]
  121. GriffinC. KarnikA. McNultyJ. PandeyS. Pancratistatin selectively targets cancer cell mitochondria and reduces growth of human colon tumor xenografts.Mol. Cancer Ther.2011101576810.1158/1535‑7163.MCT‑10‑073521220492
    [Google Scholar]
  122. GopalakrishnanR. MattaH. ChoiS. ChaudharyP.M. Narciclasine, an isocarbostyril alkaloid, has preferential activity against primary effusion lymphoma.Sci. Rep.2020101571210.1038/s41598‑020‑62690‑932235878
    [Google Scholar]
  123. MbavengA.T. BitchagnoG.T.M. KueteV. TaneP. EfferthT. Cytotoxicity of ungeremine towards multi-factorial drug resistant cancer cells and induction of apoptosis, ferroptosis, necroptosis and autophagy.Phytomedicine20196015283210.1016/j.phymed.2019.15283231031043
    [Google Scholar]
  124. Sánchez-MartínezC. LallenaM.J. SanfelicianoS.G. de DiosA. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015–2019).Bioorg. Med. Chem. Lett.2019292012663710.1016/j.bmcl.2019.12663731477350
    [Google Scholar]
  125. Leal-EstebanL.C. FajasL. Cell cycle regulators in cancer cell metabolism.Biochim. Biophys. Acta Mol. Basis Dis.20201866516571510.1016/j.bbadis.2020.16571532035102
    [Google Scholar]
  126. BlachlyJ.S. ByrdJ.C. GreverM. Cyclin-dependent kinase inhibitors for the treatment of chronic lymphocytic leukemia.Semin. Oncol.201643226527310.1053/j.seminoncol.2016.02.00327040705
    [Google Scholar]
  127. SantoL. SiuK.T. RajeN. Targeting cyclin dependent kinases and cell cycle progression in human cancers.Semin. Oncol.201542678880010.1053/j.seminoncol.2015.09.02426615126
    [Google Scholar]
  128. LienE.C. DibbleC.C. TokerA. PI3K signaling in cancer: Beyond AKT.Curr. Opin. Cell Biol.201745627110.1016/j.ceb.2017.02.00728343126
    [Google Scholar]
  129. PolivkaJ.Jr JankuF. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway.Pharmacol. Ther.2014142216417510.1016/j.pharmthera.2013.12.00424333502
    [Google Scholar]
  130. MayerI.A. ArteagaC.L. The PI3K/AKT pathway as a target for cancer treatment.Annu. Rev. Med.2016671112810.1146/annurev‑med‑062913‑05134326473415
    [Google Scholar]
  131. DanielsenS.A. EideP.W. NesbakkenA. GurenT. LeitheE. LotheR.A. Portrait of the PI3K/AKT pathway in colorectal cancer.Biochim. Biophys. Acta Rev. Cancer20151855110412110.1016/j.bbcan.2014.09.00825450577
    [Google Scholar]
  132. LiuB. WuX. LiuB. WangC. LiuY. ZhouQ. XuK. MiR-26a enhances metastasis potential of lung cancer cells via AKT pathway by targeting PTEN.Biochim. Biophys. Acta Mol. Basis Dis.20121822111692170410.1016/j.bbadis.2012.07.01922885155
    [Google Scholar]
  133. CzabotarP.E. LesseneG. StrasserA. AdamsJ.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy.Nat. Rev. Mol. Cell Biol.2014151496310.1038/nrm372224355989
    [Google Scholar]
  134. KciukM. GielecińskaA. BudzinskaA. MojzychM. KontekR. Metastasis and MAPK pathways.Int. J. Mol. Sci.2022237384710.3390/ijms2307384735409206
    [Google Scholar]
  135. PaiS.G. CarneiroB.A. MotaJ.M. CostaR. LeiteC.A. Barroso-SousaR. KaplanJ.B. ChaeY.K. GilesF.J. Wnt/beta-catenin pathway: Modulating anticancer immune response.J. Hematol. Oncol.201710110110.1186/s13045‑017‑0471‑628476164
    [Google Scholar]
  136. MinamiH. KiyotaN. KimbaraS. AndoY. ShimokataT. OhtsuA. FuseN. KubokiY. ShimizuT. YamamotoN. NishioK. KawakamiY. NihiraS. SaseK. NonakaT. TakahashiH. KomoriY. KiyoharaK. Guidelines for clinical evaluation of anti-cancer drugs.Cancer Sci.202111272563257710.1111/cas.1496733990993
    [Google Scholar]
  137. LiangF. WangM.Y. HuangW.B. LiA.J. [Effect of sodium cantharidinate on the angiogenesis of nude mice with human gastric cancer].Zhong Yao Cai201134334334621823448
    [Google Scholar]
  138. ZhanY.P. HuangX.E. CaoJ. LuY.Y. WuX.Y. LiuJ. XuX. XuL. XiangJ. YeL.H. Clinical study on safety and efficacy of Qinin® (cantharidin sodium) injection combined with chemotherapy in treating patients with gastric cancer.Asian Pac. J. Cancer Prev.20121394773477610.7314/APJCP.2012.13.9.477323167418
    [Google Scholar]
  139. WuL. DengC. ZhangH. WengJ. WuY. ZengS. TangT. CaoP. QiuB. ZhangL. DuanH. ZhangB. ZhangD. ZhangT. HuC. Efficacy and safety of docetaxel and sodium cantharidinate combination vs. Either agent alone as second-line treatment for advanced/metastatic nsclc with wild-type or unknown EGFR status: An open-label, randomized controlled, prospective, multi-center phase III trial (Cando-L1).Front. Oncol.20211176903710.3389/fonc.2021.76903734976813
    [Google Scholar]
  140. WangL. HuangX.E. CaoJ. Clinical study on safety of cantharidin sodium and shenmai injection combined with chemotherapy in treating patients with breast cancer postoperatively.Asian Pac. J. Cancer Prev.201415145597560010.7314/APJCP.2014.15.14.559725081671
    [Google Scholar]
  141. DijksteelG.S. UlrichM.M.W. MiddelkoopE. BoekemaB.K.H.L. Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs).Front. Microbiol.20211261697910.3389/fmicb.2021.61697933692766
    [Google Scholar]
  142. MaZ. MondorM. Goycoolea ValenciaF. Hernández-ÁlvarezA.J. Current state of insect proteins: Extraction technologies, bioactive peptides and allergenicity of edible insect proteins.Food Funct.202314188129815610.1039/D3FO02865H37656123
    [Google Scholar]
  143. MozhuiL. KakatiL.N. Meyer-RochowV.B. Entomotherapy: A study of medicinal insects of seven ethnic groups in Nagaland, North-East India.J. Ethnobiol. Ethnomed.20211711710.1186/s13002‑021‑00444‑133752694
    [Google Scholar]
  144. LuJ. WangH. HuangJ. LiG. WangQ. XuW. ChenY. ZhangK. WangJ. Sesquiterpene acids from Shellac and their bioactivities evaluation.Fitoterapia201497647010.1016/j.fitote.2014.05.01424879899
    [Google Scholar]
  145. YanY.M. LiL.J. QinX.C. LuQ. TuZ.C. ChengY.X. Compounds from the insect Blaps japanensis with COX-1 and COX-2 inhibitory activities.Bioorg. Med. Chem. Lett.201525122469247210.1016/j.bmcl.2015.04.08525980909
    [Google Scholar]
  146. LuJ. SunQ. TuZ.C. LvQ. ShuiP.X. ChengY.X. Identification of N-Acetyldopamine dimers from the dung beetle Catharsius molossus and their COX-1 and COX-2 inhibitory activities.Molecules2015209155891559610.3390/molecules20091558926343619
    [Google Scholar]
  147. ShiY.N. TuZ.C. WangX.L. YanY.M. FangP. ZuoZ.L. HouB. YangT.H. ChengY.X. Bioactive compounds from the insect Aspongopus chinensis. Bioorg. Med. Chem. Lett.201424225164516910.1016/j.bmcl.2014.09.08325442305
    [Google Scholar]
  148. ChenR.T. HuaZ. YangJ.L. HanJ.X. ZhangS.Y. LüF.L. XüB. Studies on antitumor actions of cantharidin.Chin. Med. J.198093318318710.1097/00029330‑200702010‑000026766849
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947311327240802115914
Loading
/content/journals/cctr/10.2174/0115733947311327240802115914
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; bio-actives; drug discovery; entomotherapy; Insects; traditional medicine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test