Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cervical cancer is one of the four most common cancers that affect women worldwide, along with breast, colorectal, lung, and cervical cancer. It is a major public health concern that mostly affects women. Virtually all cases of cervical cancer are linked to human papillomavirus (HPV) infections. Patients must be screened and immunized to prevent this disease, although developed and developing nations have different rates of cervical cancer incidence. Palliative chemotherapy continues to be the go-to therapy for patients who are not candidates for radiation therapy or curative surgery. To counteract chemotherapy's low effectiveness, other treatment approaches are being developed. The main goals of this review study are to advance knowledge of cervical cancer, promote awareness and educated decision-making, and investigate cutting-edge approaches to the disease's treatment. A literature review was done from databases like Google Scholar, PUBMED-MEDLINE, and Scopus using standard keywords “Cancer,” “Cervical Cancer,” “Human papillomavirus,” “Chemotherapy,” and “Treatment Therapies” from 2010-2023. The Government of India intends to initiate a three-phase vaccination drive against Human Papillomavirus (HPV) for girls aged 9-14, aiming to mitigate the risk of cervical cancer. The vaccine also offers protection against the HPV strains that cause cancer of the anus, vagina, and oropharynx. Although cervical cancer is still a tough foe, we are getting closer to a time when it may be prevented and treated, even in the most underprivileged areas, due to continuous advancements and steadfast dedication.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947308352240729162826
2024-08-06
2025-12-06
Loading full text...

Full text loading...

References

  1. CohenP.A. JhingranA. OakninA. DennyL. Cervical cancer.Lancet20193931016716918210.1016/S0140‑6736(18)32470‑X 30638582
    [Google Scholar]
  2. EunT.J. PerkinsR.B. Screening for cervical cancer.Med. Clin. North Am.202010461063107810.1016/j.mcna.2020.08.006 33099451
    [Google Scholar]
  3. BedellS.L. GoldsteinL.S. GoldsteinA.R. GoldsteinA.T. Cervical cancer screening: past, present, and future.Sex. Med. Rev.202081283710.1016/j.sxmr.2019.09.005 31791846
    [Google Scholar]
  4. ShresthaA.D. NeupaneD. VedstedP. KallestrupP. Cervical cancer prevalence, incidence and mortality in low and middle income countries: a systematic review.APJCP2018192319324 29479954
    [Google Scholar]
  5. WangX. HuangX. ZhangY. Involvement of human papillomaviruses in cervical cancer.Front. Microbiol.2018911410.3389/fmicb.2018.02896
    [Google Scholar]
  6. ZhangS. XuH. ZhangL. QiaoY. Cervical cancer: Epidemiology, risk factors and screening.Chin. J. Cancer Res.202032672072810.21147/j.issn.1000‑9604.2020.06.05 33446995
    [Google Scholar]
  7. Van GerwenO.T. MuznyC.A. MarrazzoJ.M. Sexually transmitted infections and female reproductive health.Nat. Microbiol.2022781116112610.1038/s41564‑022‑01177‑x 35918418
    [Google Scholar]
  8. LiontosM. KyriazoglouA. DimitriadisI. DimopoulosM.A. BamiasA. Systemic therapy in cervical cancer: 30 years in review.Crit. Rev. Oncol. Hematol.201913791710.1016/j.critrevonc.2019.02.009 31014518
    [Google Scholar]
  9. PimpleS. MishraG. Cancer cervix: Epidemiology and disease burden.Cytojournal2022192110.25259/CMAS_03_02_2021 35510109
    [Google Scholar]
  10. BurdE.M. Human papillomavirus laboratory testing: the changing paradigm.Clin. Microbiol. Rev.201629229131910.1128/CMR.00013‑15 26912568
    [Google Scholar]
  11. BhatlaN. MeenaJ. KumariS. BanerjeeD. SinghP. NatarajanJ. Cervical cancer prevention efforts in India.Indian Journal of Gynecologic Oncology 2021193415210.1007/s40944‑021‑00526‑8 34095455
    [Google Scholar]
  12. AnastasiE. FilardiT. TartaglioneS. LenziA. AngeloniA. MoranoS. Linking type 2 diabetes and gynecological cancer: an introductory overview.Clinical Chemistry and Laboratory Medicine (CCLM)20185691413142510.1515/cclm‑2017‑0982 29427549
    [Google Scholar]
  13. ArbynM. WeiderpassE. BruniL. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis.Lancet Glob. Health202082e191e20310.1016/S2214‑109X(19)30482‑6 31812369
    [Google Scholar]
  14. Wencel-WawrzeńczykA. LewitowiczP. LewandowskaA. SaługaA. Sexual behavior and the awareness level of common risk factors for the development of cervical, anogenital and oropharyngeal cancer among women subjected to HR HPV DNA-testing.Int. J. Environ. Res. Public Health202219159580959810.3390/ijerph19159580 35954938
    [Google Scholar]
  15. HuZ. MaD. The precision prevention and therapy of HPV ‐related cervical cancer: new concepts and clinical implications.Cancer Med.20187105217523610.1002/cam4.1501 30589505
    [Google Scholar]
  16. KunkuleR. PakaleR. JadhavS. Review on Cervical Cancer.Epidemiology20206118 31714325
    [Google Scholar]
  17. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  18. OkunadeK.S. Human papillomavirus and cervical cancer.J. Obstet. Gynaecol.202040560260810.1080/01443615.2019.1634030 31500479
    [Google Scholar]
  19. ArbynM. SimonM. PeetersE. 2020 list of human papillomavirus assays suitable for primary cervical cancer screening.Clin. Microbiol. Infect.20212781083109510.1016/j.cmi.2021.04.031 33975008
    [Google Scholar]
  20. ChenS. TaoM. ZhaoL. ZhangX. The association between diabetes/hyperglycemia and the prognosis of cervical cancer patients.Medicine (Baltimore)20179640e7981e799810.1097/MD.0000000000007981 28984757
    [Google Scholar]
  21. WangY. YanP. FuT. The association between gestational diabetes mellitus and cancer in women: A systematic review and meta-analysis of observational studies.Diabetes Metab.202046646147110.1016/j.diabet.2020.02.003 32097717
    [Google Scholar]
  22. zur HausenH. Papillomaviruses and cancer: from basic studies to clinical application.Nat. Rev. Cancer20022534235010.1038/nrc798 12044010
    [Google Scholar]
  23. RamachandranD. DörkT. Genomic risk factors for cervical cancer.Cancers (Basel) 20211320513710.3390/cancers13205137 34680286
    [Google Scholar]
  24. GuptaS.M. Mania-PramanikJ. RETRACTED ARTICLE: Molecular mechanisms in progression of HPV-associated cervical carcinogenesis.J. Biomed. Sci.2019261285210.1186/s12929‑019‑0520‑2 31014351
    [Google Scholar]
  25. BurmeisterC.A. KhanS.F. SchäferG. Cervical cancer therapies: Current challenges and future perspectives.Tumour Virus Res.20221320023810.1016/j.tvr.2022.200238 35460940
    [Google Scholar]
  26. WaggonerS.E. Cervical cancer.Lancet200336193762217222510.1016/S0140‑6736(03)13778‑6 12842378
    [Google Scholar]
  27. HPV and Cancer. Available from:https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/hpv-and-cancer#:~:text=Sexually%20transmitted%20HPV%20types%20fall,for%20most%20HPV%2Drelated%20cancers(accessed on 7-7-2024)
  28. SpaansV.M. TrietschM.D. PetersA.A.W. Precise classification of cervical carcinomas combined with somatic mutation profiling contributes to predicting disease outcome.PLoS One2015107e013367010.1371/journal.pone.0133670 26197069
    [Google Scholar]
  29. TommasinoM. The biology of beta human papillomaviruses.Virus Res.201723112813810.1016/j.virusres.2016.11.013 27856220
    [Google Scholar]
  30. CastanonA. LandyR. SasieniP.D. Is cervical screening preventing adenocarcinoma and adenosquamous carcinoma of the cervix?Int. J. Cancer201613951040104510.1002/ijc.30152 27096255
    [Google Scholar]
  31. RevathideviS. MuruganA.K. NakaokaH. InoueI. MunirajanA.K. APOBEC: A molecular driver in cervical cancer pathogenesis.Cancer Lett.202149610411610.1016/j.canlet.2020.10.004 33038491
    [Google Scholar]
  32. OlusolaP. BanerjeeH.N. PhilleyJ.V. DasguptaS. Human papilloma virus-associated cervical cancer and health disparities.Cells20198662264310.3390/cells8060622 31234354
    [Google Scholar]
  33. BalasubramaniamS.D. BalakrishnanV. OonC.E. KaurG. Key molecular events in cervical cancer development.Medicina (Kaunas)201955738440310.3390/medicina55070384 31319555
    [Google Scholar]
  34. de SanjoseS. QuintW.G.V. AlemanyL. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study.Lancet Oncol.201011111048105610.1016/S1470‑2045(10)70230‑8 20952254
    [Google Scholar]
  35. What Is Cervical Cancer? Available from:https://www.cancer.gov/types/cervical#:~:text=The%20squamocolumnar%20junction%20(accessed on 7-7-2024)
  36. HosainzadeganM. EftekhariA. KhalilovR. Are microbial infections and some antibiotics causes cancer.Adv Biol Earth Sci2020515861
    [Google Scholar]
  37. ChrysostomouA.C. StylianouD.C. ConstantinidouA. KostrikisL.G. Cervical cancer screening programs in Europe: the transition towards HPV vaccination and population-based HPV testing.Viruses2018101272975610.3390/v10120729 30572620
    [Google Scholar]
  38. DeyM. FetckoK. GondimD.D. BonninJ.M. Cervical cancer metastasis to the brain: A case report and review of literature.Surg. Neurol. Int.20178118110.4103/sni.sni_111_17 28868193
    [Google Scholar]
  39. MwakaA.D. OrachC.G. WereE.M. LyratzopoulosG. WabingaH. RolandM. Awareness of cervical cancer risk factors and symptoms: cross‐sectional community survey in post‐conflict northern Uganda.Health Expect.201619485486710.1111/hex.12382 26205470
    [Google Scholar]
  40. CanfellK SavilleM SmithM Self-collected vaginal samples (National Cervical Screening Program: guidelines for the management of screen detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding). Retrieved 2022; (Nov):514
    [Google Scholar]
  41. LiH. WuX. ChengX. Advances in diagnosis and treatment of metastatic cervical cancer.J. Gynecol. Oncol.2016274e4310.3802/jgo.2016.27.e43 27171673
    [Google Scholar]
  42. SmallW.Jr BaconM.A. BajajA. Cervical cancer: A global health crisis.Cancer2017123132404241210.1002/cncr.30667 28464289
    [Google Scholar]
  43. SadaghianiM.S. RoweS.P. SheikhbahaeiS. Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: a systematic review.Ann. Transl. Med.20219982310.21037/atm‑20‑6162 34268436
    [Google Scholar]
  44. NezhatC. RomanR.A. RambhatlaA. NezhatF. Reproductive and oncologic outcomes after fertility-sparing surgery for early stage cervical cancer: a systematic review.Fertil. Steril.2020113468570310.1016/j.fertnstert.2020.02.003 32228873
    [Google Scholar]
  45. TanejaN. ChawlaB. AwasthiA.A. ShrivastavK.D. JaggiV.K. JanardhananR. Knowledge, attitude, and practice on cervical cancer and screening among women in India: a review.Cancer Contr.202128314610.1177/10732748211010799
    [Google Scholar]
  46. CondratC.E. FilipL. GhergheM. CretoiuD. SuciuN. Maternal HPV infection: Effects on pregnancy outcome.Viruses202113122455246810.3390/v13122455 34960724
    [Google Scholar]
  47. OlejniczakL. Zasowska-NowakA. The management of vaginal bleeding in advanced cervical cancer.Palliat. Med.2023153939910.5114/pm.2023.132018
    [Google Scholar]
  48. KokkaF. BryantA. OlaitanA. BrockbankE. PowellM. OramD. Hysterectomy with radiotherapy or chemotherapy or both for women with locally advanced cervical cancer.Cochrane Database Syst. Rev.202288CD010260 35994243
    [Google Scholar]
  49. MoY. MaJ. ZhangH. Prophylactic and therapeutic HPV vaccines: current scenario and perspectives.Front. Cell. Infect. Microbiol.20221211212810.3389/fcimb.2022.909223
    [Google Scholar]
  50. ElejeG.U. EkeA.C. IgberaseG.O. IgwegbeA.O. ElejeL.I. Palliative interventions for controlling vaginal bleeding in advanced cervical cancer.Cochrane Libr.201520155CD01100010.1002/14651858.CD011000.pub2 25932968
    [Google Scholar]
  51. SundströmK. ElfströmK.M. Advances in cervical cancer prevention: efficacy, effectiveness, elimination?PLoS Med.2020171445462
    [Google Scholar]
  52. ReruchaC.M. CaroR.J. WheelerV.L. Cervical cancer screening.Am. Fam. Physician2018977441448 29671553
    [Google Scholar]
  53. GopuP. AntonyF. CyriacS. KarakasisK. OzaA.M. Updates on systemic therapy for cervical cancer.Indian J. Med. Res.2021154229330210.4103/ijmr.IJMR_4454_20
    [Google Scholar]
  54. WangR. PanW. JinL. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge.Cancer Lett.20204718810210.1016/j.canlet.2019.11.039 31812696
    [Google Scholar]
  55. CorbeauA. KuipersS.C. de BoerS.M. Correlations between bone marrow radiation dose and hematologic toxicity in locally advanced cervical cancer patients receiving chemoradiation with cisplatin: a systematic review.Radiother. Oncol.202116412813710.1016/j.radonc.2021.09.009 34560187
    [Google Scholar]
  56. SmithE.S. MoonA.S. O’HanlonR. Radical trachelectomy for the treatment of early-stage cervical cancer: a systematic review.Obstet. Gynecol.2020136353354210.1097/AOG.0000000000003952 32769648
    [Google Scholar]
  57. Saei Ghare NazM. KarimanN. EbadiA. OzgoliG. GhasemiV. Rashidi FakariF. Educational interventions for cervical cancer screening behavior of women: a systematic review. Asian Pacific journal of cancer prevention.APJCP2018194875884 29693331
    [Google Scholar]
  58. FowlerJ.R. MaaniE.V. DuntonC.J. GasalbertiD.P. JackB.W. Cervical Cancer.StatPearls Publishing2024
    [Google Scholar]
  59. DoganN.U. DoganS. FaveroG. KöhlerC. DursunP. The basics of sentinel lymph node biopsy: anatomical and pathophysiological considerations and clinical aspects.J. Oncol.20192019110411210.1155/2019/3415630
    [Google Scholar]
  60. SponholtzS.E. MogensenO. HildebrandtM.G. Sentinel lymph node mapping in early-stage cervical cancer – A national prospective multicenter study (SENTIREC trial).Gynecol. Oncol.2021162354655410.1016/j.ygyno.2021.06.018 34226018
    [Google Scholar]
  61. WijeratneY. HapuachchigeC. Surgical Outcomes in Early-Stage Cervical Cancer Following Radical Hysterectomy in a Resource-Limited Setting: The Experience of the National Cancer Institute (Apeksha Hospital, Maharagama), Sri Lanka.Cureus20231510e4774410.7759/cureus.47744 38022125
    [Google Scholar]
  62. Available from https://www.ncbi.nlm.nih.gov/books/NBK563269/ (accessed on 7-7-2024)
  63. SrivastavaA. DattaN.R. Brachytherapy in cancer cervix: Time to move ahead from point A?World J. Clin. Oncol.20145476477410.5306/wjco.v5.i4.764 25302176
    [Google Scholar]
  64. ChitapanaruxI. TharavichitkulE. NobnopW. WanwilairatS. VongtamaR. TraisathitP. A comparative planning study of step-and-shoot IMRT versus helical tomotherapy for whole-pelvis irradiation in cervical cancer.J. Radiat. Res. (Tokyo)201556353954510.1093/jrr/rrv004 25720771
    [Google Scholar]
  65. Wendel NaumannR. LeathC.A.III Advances in immunotherapy for cervical cancer.Curr. Opin. Oncol.202032548148710.1097/CCO.0000000000000663 32740092
    [Google Scholar]
  66. DuanF. ChenJ. YaoH. Enhanced therapeutic efficacy of Listeria-based cancer vaccine with codon-optimized HPV16 E7.Hum. Vaccin. Immunother.20211761568157710.1080/21645515.2020.1839291 33449866
    [Google Scholar]
  67. LeD.T. DubenskyT.W. BrockstedtD.G. Clinical development of listeria monocytogenes-based immunotherapies.Semin. Oncol.201239331132210.1053/j.seminoncol.2012.02.008
    [Google Scholar]
  68. SantinA.D. DengW. FrumovitzM. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002).Gynecol. Oncol.2020157116116610.1016/j.ygyno.2019.12.034 31924334
    [Google Scholar]
  69. ShiehK.R. HuangA. XuY. Response to immune checkpoint inhibitor treatment in advanced cervical cancer and biomarker study.Front. in Med8213210.3389/fmed.2021.669587
    [Google Scholar]
  70. ChenY.H. WangP.H. ChenP.N. YangS.F. HsiaoY.H. Molecular and cellular mechanisms of metformin in cervical cancer.Cancers20211311254510.3390/cancers13112545
    [Google Scholar]
  71. ParveenS. MasoodS. KumarS. BanerjeeM. Phytonanomedicine: A therapeutic approach for cervical cancer.OpenNano20231310017810.1016/j.onano.2023.100178
    [Google Scholar]
  72. ChakrabortyS.P. Medicinal plants and cervical cancer therapy: An overview.J. Pharmacogn. Phytochem.20198336333641
    [Google Scholar]
  73. AmrahovN.R. MammadovaR.B. AllahverdiyevaS.N. Effect of indole-3-butyric acid on the antioxidant enzymes, no and chlorophyll content of agdash-3 and ap-317 genotypes of upland cotton (Gossypium Hirsutum L.).Adv Biol Earth Sci202382213228
    [Google Scholar]
  74. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.1614102134
    [Google Scholar]
  75. Kedhari SundaramM. RainaR. AfrozeN. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells.Biosci. Rep.201939845146210.1042/BSR20190720
    [Google Scholar]
  76. Redza-DutordoirM. Averill-BatesD.A. Activation of apoptosis signalling pathways by reactive oxygen species.Biochim. Biophys. Acta Mol. Cell Res.20161863122977299210.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
  77. RaufA. ImranM. KhanI.A. Anticancer potential of quercetin: A comprehensive review.Phytother. Res.201832112109213010.1002/ptr.6155 30039547
    [Google Scholar]
  78. ImranM. SalehiB. Sharifi-RadJ. Kaempferol: A key emphasis to its anticancer potential.Molecules2019241212113410.3390/molecules24122277
    [Google Scholar]
  79. ImranM. RaufA. ShahZ.A. Chemo‐preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review.Phytother. Res.201933226327510.1002/ptr.6227 30402931
    [Google Scholar]
  80. AkbarM.U. ZiaK.M. MalikM.I. ZahidM. KheraR.A. KhaliqZ. Curcumin-based bionanocomposites.In: Bionanocomposites.Elsevier202010.1016/B978‑0‑12‑816751‑9.00010‑6
    [Google Scholar]
  81. TeymouriM. PirroM. JohnstonT.P. SahebkarA. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features.Biofactors201743333134610.1002/biof.1344 27896883
    [Google Scholar]
  82. IsmailNI OthmanI AbasF, H LajisN NaiduR Mechanism of apoptosis induced by curcumin in colorectal cancer.Int j molecul sci20192010647210.3390/ijms20102454
    [Google Scholar]
  83. AnantharajuP.G. ReddyD.B. PadukudruM.A. ChitturiC.M. VimalambikeM.G. MadhunapantulaS.V. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC).PLoS One20171211126138
    [Google Scholar]
  84. ChenD.Z. QiM. AubornK.J. CarterT.H. Indole-3-carbinol and diindolylmethane induce apoptosis of human cervical cancer cells and in murine HPV16-transgenic preneoplastic cervical epithelium.J. Nutr.2001131123294330210.1093/jn/131.12.3294 11739883
    [Google Scholar]
  85. AggarwalB.B. IchikawaH. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives.Cell Cycle2005491201121510.4161/cc.4.9.1993 16082211
    [Google Scholar]
  86. Stefanowicz-HajdukJ. BartoszewskiR. BartoszewskaS. Pennogenyl saponins from Paris quadrifolia L. induce extrinsic and intrinsic pathway of apoptosis in human cervical cancer HeLa cells.PLoS One2015108143156
    [Google Scholar]
  87. CardosoL.P. de SousaS.O. Gusson-ZanetoniJ.P. Piperine Reduces Neoplastic Progression in Cervical Cancer Cells by Downregulating the Cyclooxygenase 2 Pathway.Pharmaceuticals (Basel)202316110311910.3390/ph16010103 36678600
    [Google Scholar]
  88. SinghT. ChhokarA. ThakurK. Targeting aberrant expression of STAT3 and AP-1 oncogenic transcription factors and HPV oncoproteins in cervical cancer by Berberis aquifolium.Front. Pharmacol.202112143156
    [Google Scholar]
  89. HeM. XiaL. LiJ. Potential mechanisms of plant-derived natural products in the treatment of cervical cancer.Biomolecules202111101539154910.3390/biom11101539 34680171
    [Google Scholar]
  90. AlmatroodiS.A. AlsahliM.A. RahmaniA.H. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways.Molecules202227185889589710.3390/molecules27185889 36144625
    [Google Scholar]
  91. MahataS. BhartiA.C. ShuklaS. TyagiA. HusainS.A. DasB.C. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells.Mol. Cancer20111013910.1186/1476‑4598‑10‑39 21496227
    [Google Scholar]
  92. MitraS. AnandU. JhaN.K. Anticancer applications and pharmacological properties of piperidine and piperine: a comprehensive review on molecular mechanisms and therapeutic perspectives.Front. Pharmacol.2022126579
    [Google Scholar]
  93. ZhouZ.W. LongH.Z. XuS.G. Therapeutic effects of natural products on cervical cancer: based on inflammatory pathways.Front. Pharmacol.20221314816210.3389/fphar.2022.899208
    [Google Scholar]
  94. YanL. HuangH. ZhangY. Involvement of p53-dependent apoptosis signal in antitumor effect of Colchicine on human papilloma virus (HPV)-positive human cervical cancer cells.Biosci. Rep.2020403102113
    [Google Scholar]
  95. TanH.L. ChanK.G. PusparajahP. Anti-cancer properties of the naturally occurring aphrodisiacs: icariin and its derivatives.Front. Pharmacol.2016719120310.3389/fphar.2016.00191 27445824
    [Google Scholar]
  96. ChenX. SongL. HouY. LiF. Reactive oxygen species induced by icaritin promote DNA strand breaks and apoptosis in human cervical cancer cells.Oncol. Rep.2019412765778 30431140
    [Google Scholar]
  97. KhanN. SyedD.N. AhmadN. MukhtarH. Fisetin: a dietary antioxidant for health promotion.Antioxid. Redox Signal.201319215116210.1089/ars.2012.4901 23121441
    [Google Scholar]
  98. RahmaniA.H. AlmatroudiA. AllemailemK.S. KhanA.A. AlmatroodiS.A. The potential role of fisetin, a flavonoid in cancer prevention and treatment.Molecules20222724233810.3390/molecules27249009
    [Google Scholar]
  99. ChouR.H. HsiehS.C. YuY.L. HuangM.H. HuangY.C. HsiehY.H. Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway.PLoS One2013884756
    [Google Scholar]
  100. RockC.L. MichaelC.W. ReynoldsR.K. RuffinM.T. Prevention of cervix cancer.Crit. Rev. Oncol. Hematol.200033316918510.1016/S1040‑8428(99)00073‑6 10789491
    [Google Scholar]
  101. ArthurA.E. DuffyS.A. SanchezG.I. Higher micronutrient intake is associated with human papillomavirus-positive head and neck cancer: a case-only analysis.Nutr. Cancer201163573474210.1080/01635581.2011.570894 21667401
    [Google Scholar]
  102. HuangX. NeckenigM. SunJ. Vitamin E succinate exerts anti-tumour effects on human cervical cancer cells via the CD47-SIRPɑ pathway both in vivo and in vitro.J. Cancer202112133877388610.7150/jca.52315 34093795
    [Google Scholar]
  103. LeeG.Y. HanS.N. The role of vitamin E in immunity.Nutrients201810111614162310.3390/nu10111614 30388871
    [Google Scholar]
  104. LeekhaA. GurjarB.S. TyagiA. RizviM.A. VermaA.K. Vitamin C in synergism with cisplatin induces cell death in cervical cancer cells through altered redox cycling and p53 upregulation.J. Cancer Res. Clin. Oncol.2016142122503251410.1007/s00432‑016‑2235‑z 27613187
    [Google Scholar]
  105. MussaA. Mohd IdrisR.A. AhmedN. High-dose vitamin C for cancer therapy.Pharmaceuticals (Basel)202215671110.3390/ph15060711 35745630
    [Google Scholar]
  106. MuhammadN. RuizF. StanleyJ. Monounsaturated and diunsaturated fatty acids sensitize cervical cancer to radiation therapy.Cancer Res.202282244515452710.1158/0008‑5472.CAN‑21‑4369 36214635
    [Google Scholar]
  107. Ramezani FaraniM. AzarianM. Heydari Sheikh HosseinH. Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer.ACS Appl. Bio Mater.2022531305131810.1021/acsabm.1c01311 35201760
    [Google Scholar]
  108. EftekhariA. KryschiC. PamiesD. Natural and synthetic nanovectors for cancer therapy.Nanotheranostics20237323625710.7150/ntno.77564 37064613
    [Google Scholar]
  109. BarabadiH. VahidiH. MahjoubM.A. Emerging antineoplastic gold nanomaterials for cervical cancer therapeutics: a systematic review.J. Cluster Sci.20203161173118410.1007/s10876‑019‑01733‑2
    [Google Scholar]
  110. ShafiqM. AnjumS. HanoC. AnjumI. AbbasiB.H. An overview of the applications of nanomaterials and nanodevices in the food industry.Foods20209214816310.3390/foods9020148 32028580
    [Google Scholar]
  111. HanoC. AbbasiB.H. Plant-based green synthesis of nanoparticles: Production, characterization and applications.Biomolecules2021121314810.3390/biom12010031 35053179
    [Google Scholar]
  112. WalP. AzizN. SinghC.P. Current Landscape of Gene Therapy for the Treatment of Cardiovascular Disorders.Curr. Gene Ther.202424535637610.2174/0115665232268840231222035423 38288826
    [Google Scholar]
  113. KousarK. NaseerF. AbduhM.S. KakarS. Green synthesis of hyaluronic acid coated, thiolated chitosan nanoparticles for CD44 targeted delivery and sustained release of Cisplatin in cervical carcinoma.Front. Pharmacol.20231311412310.3389/fphar.2022.1073004
    [Google Scholar]
  114. BehareeN. ShiZ. WuD. WangJ. Diagnosis and treatment of cervical cancer in pregnant women.Cancer Med.20198125425543010.1002/cam4.2435 31385452
    [Google Scholar]
  115. HeZ. XieC. QiX. HuZ. HeY. The effect of preserving pregnancy in cervical cancer diagnosed during pregnancy: a retrospective study.BMC Womens Health202222131432610.1186/s12905‑022‑01885‑w 35879712
    [Google Scholar]
  116. PerroneA.M. BovicelliA. D’AndrilliG. BorgheseG. GiordanoA. De IacoP. Cervical cancer in pregnancy: Analysis of the literature and innovative approaches.J. Cell. Physiol.20192349149751499010.1002/jcp.28340 30790275
    [Google Scholar]
  117. McIntyre-SeltmanK. LesnockJ.L. Cervical cancer screening in pregnancy.Obstet. Gynecol. Clin. North Am.200835464565810.1016/j.ogc.2008.10.003 19061823
    [Google Scholar]
  118. ChenW. ZhengR. BaadeP.D. Cancer statistics in China, 2015.CA Cancer J. Clin.201666211513210.3322/caac.21338 26808342
    [Google Scholar]
  119. YahataT. NumataM. KashimaK. Conservative treatment of stage IA1 adenocarcinoma of the cervix during pregnancy.Gynecol. Oncol.20081091495210.1016/j.ygyno.2008.01.016 18289649
    [Google Scholar]
  120. WeinmannS. NalewayA. SwamyG. Pregnancy outcomes after treatment for cervical cancer precursor lesions: an observational study.PLoS One2017121109119
    [Google Scholar]
  121. BothaM.H. RajaramS. KarunaratneK. Cancer in pregnancy.Int. J. Gynaecol. Obstet.2018143S2Suppl. 213714210.1002/ijgo.12621 30306590
    [Google Scholar]
  122. RobL. SkapaP. RobovaH. Fertility-sparing surgery in patients with cervical cancer. The lancet oncology. 2011 Feb 1;12(2):192-200. Căpîlna ME, Szabo B, Becsi J, Ioanid N, Moldovan B. Radical trachelectomy performed during pregnancy: a review of the literature.Int. J. Gynecol. Cancer2016264
    [Google Scholar]
  123. CăpîlnaM.E. SzaboB. BecsiJ. IoanidN. MoldovanB. Radical trachelectomy performed during pregnancy: a review of the literature.Int. J. Gynecol. Cancer201626475876210.1097/IGC.0000000000000655 26841285
    [Google Scholar]
  124. El-ZeinM. RichardsonL. FrancoE.L. Cervical cancer screening of HPV vaccinated populations: cytology, molecular testing, both or none.J. Clin. Virol.201676415610.1016/j.jcv.2015.11.020
    [Google Scholar]
  125. AkandaR. KawaleP. MoucheraudC. Cervical cancer prevention in Africa: A policy analysis.J. Cancer Policy20223216717810.1016/j.jcpo.2021.100321
    [Google Scholar]
  126. LopezM.S. BakerE.S. MazaM. Cervical cancer prevention and treatment in Latin America.J. Surg. Oncol.2017115561561810.1002/jso.24544 28168717
    [Google Scholar]
  127. RamachandranD. DörkT. Genomic risk factors for cervical cancer.Cancers2021132022123410.3390/cancers13205137
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947308352240729162826
Loading
/content/journals/cctr/10.2174/0115733947308352240729162826
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test