Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Insulin-like Growth Factors (IGFs) significantly impact mammalian physiology, including growth, development, ageing, and disease progression. The IGF system is composed of various growth factor receptors, including IGF-1R and IGF-2R. Serum IGF-1 levels and IGF-1R activation, along with downstream signaling components, are increasingly recognized as key factors in the expansion of prostate (PCa) and cervical cancer. The study on IGF-1/IGF-1R activity and regulation is crucial in PCa research and cervical cancer studies. This signaling pathway significantly influences various cancer cell processes, such as survival, migration, and resistance to treatment. The inhibitors targeting IGF-1/IGF-1R have been developed to prevent the progression of cancer. The use of nanotechnology, including trap decoys, magnetic iron oxide nanoparticles, and protein nanotubes, has significantly improved the treatment of cervical cancer. These agents have shown promise in preclinical models for cervical cancer research, but their efficacy in PCa patients requires clinical trial validation. Combining androgen deprivation therapy or chemotherapy with IGF-1R antagonists, using consistent predictive markers and evolving novel agents, may improve the results. This review highlights the importance of IGF-1 signaling in PCa and cervical cancer development and underscores its significance in potential cancer therapy strategies. The study has also explored prospective approaches to the next generation of IGF axis-targeting drugs.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947302362240807105327
2024-08-19
2025-12-05
Loading full text...

Full text loading...

References

  1. SoniU.K. JennyL. HegdeR.S. IGF-1R targeting in cancer – does sub-cellular localization matter?J. Exp. Clin. Cancer Res.202342127310.1186/s13046‑023‑02850‑7 37858153
    [Google Scholar]
  2. JiangJ. HuangY. ZengZ. ZhaoC. Harnessing engineered immune cells and bacteria as drug carriers for cancer immunotherapy.ACS Nano202317284388410.1021/acsnano.2c07607 36598956
    [Google Scholar]
  3. KumarM. Targeting cancer cell signaling using precision oncology towards a holistic approach to cancer therapeutics. arXiv2023
    [Google Scholar]
  4. LeRoithD. HollyJ.M.P. ForbesB.E. Insulin-like growth factors: Ligands, binding proteins, and receptors.Mol. Metab.20215210124510.1016/j.molmet.2021.101245 33962049
    [Google Scholar]
  5. GalalM.A. AlouchS.S. AlsultanB.S. Insulin receptor isoforms and insulin growth factor-like receptors: Implications in cell signaling, carcinogenesis, and chemoresistance.Int. J. Mol. Sci.202324191500610.3390/ijms241915006 37834454
    [Google Scholar]
  6. BlundellT.L. BedarkarS. HumbelR.E. Tertiary structures, receptor binding, and antigenicity of insulinlike growth factors.Fed. Proc.198342925922597 6189745
    [Google Scholar]
  7. KangE. Molecular mechanisms of long bone growth and chondrocyte regulation: A narrative review.Precision Fut Med20237312313010.23838/pfm.2023.00100
    [Google Scholar]
  8. D’ErcoleA.J. ApplewhiteG.T. UnderwoodL.E. Evidence that somatomedin is synthesized by multiple tissues in the fetus.Dev. Biol.198075231532810.1016/0012‑1606(80)90166‑9 7372001
    [Google Scholar]
  9. GusmaoD.O. de SousaM.E. TavaresM.R. DonatoJ.Jr Increased GH secretion and body growth in mice carrying ablation of IGF-1 receptor in GH-releasing hormone cells.Endocrinology202216311bqac15110.1210/endocr/bqac151 36099517
    [Google Scholar]
  10. MaG. TanC. ShanY. An insulin growth factor-I/II-neutralizing monoclonal antibody in combination with epidermal growth factor receptor inhibitors potently inhibits tumor cell growth.J. Cancer20221361830183610.7150/jca.69064 35399718
    [Google Scholar]
  11. RosenfeldR.G. HwaV. WilsonE. PlymateS.R. OhY. The insulin-like growth factor-binding protein superfamily.Growth Horm. IGF Res.20001010Suppl. AS16S1710.1016/S1096‑6374(00)90007‑8 10984276
    [Google Scholar]
  12. WatersJ.A. UrbanoI. RobinsonM. HouseC.D. Insulin-like growth factor binding protein 5: Diverse roles in cancer.Front. Oncol.202212105245710.3389/fonc.2022.1052457 36465383
    [Google Scholar]
  13. GurevichE. SegevY. LandauD. Growth hormone and IGF-1 actions in kidney development and function.Cells20211012337110.3390/cells10123371 34943879
    [Google Scholar]
  14. LiangC. SongW. GuJ. Significance of FUT8 in pancreatic cancer and others.Glycosignals in Cancer.Berlin, HeidelbergSpringer Link202310.1007/978‑981‑19‑7732‑9_6
    [Google Scholar]
  15. SuzawaM. BlandM.L. Insulin signaling in development.Development202315020dev20159910.1242/dev.201599 37847145
    [Google Scholar]
  16. SiddleK. Signalling by insulin and IGF receptors: Supporting acts and new players.J. Mol. Endocrinol.2011471R1R1010.1530/JME‑11‑0022 21498522
    [Google Scholar]
  17. NagaoH. CaiW. Wewer AlbrechtsenN.J. Distinct signaling by insulin and IGF-1 receptors and their extra- and intracellular domains.Proc. Natl. Acad. Sci. USA202111817e201947411810.1073/pnas.2019474118 33879610
    [Google Scholar]
  18. ChenX. YuQ. PanH. LiP. WangX. FuS. Overexpression of IGFBP5 enhances radiosensitivity through PI3K-AKT pathway in prostate cancer.Cancer Manag. Res.2020125409541810.2147/CMAR.S257701 32753958
    [Google Scholar]
  19. CaoD. LeiY. YeZ. Blockade of IGF/IGF-1R signaling axis with soluble IGF-1R mutants suppresses the cell proliferation and tumor growth of human osteosarcoma.Am. J. Cancer Res.2020101032483266 33163268
    [Google Scholar]
  20. RosenzweigS.A. The continuing evolution of insulin-like growth factor signaling.F1000 Res.2020920510.12688/f1000research.22198.1 32226608
    [Google Scholar]
  21. ChandraA. PiusC. NabeelM. Ovarian cancer: Current status and strategies for improving therapeutic outcomes.Cancer Med.20198167018703110.1002/cam4.2560 31560828
    [Google Scholar]
  22. PotalitsynP. The preparation and characterization of IGF2 prohormones.2015Available From:https://dspace.cuni.cz/handle/20.500.11956/177374
    [Google Scholar]
  23. BaxterR.C. Signaling pathways of the insulin-like growth factor binding proteins.Endocr. Rev.202344575377810.1210/endrev/bnad008 36974712
    [Google Scholar]
  24. BachL.A. Endothelial cells and the IGF system.J. Mol. Endocrinol.2015541R1R1310.1530/JME‑14‑0215 25351818
    [Google Scholar]
  25. QiL. LiuF. ZhangF. lncRNA NEAT1 competes against let-7a to contribute to non-small cell lung cancer proliferation and metastasis.Biomed. Pharmacother.20181031507151510.1016/j.biopha.2018.04.053 29864936
    [Google Scholar]
  26. ChirshevE. SuzukiT. WangH. Let-7i reduces aggressive phenotype and induces BRCAness in ovarian cancer cells.Cancers20211318461710.3390/cancers13184617 34572843
    [Google Scholar]
  27. ZhangQ. LiT. WangZ. KuangX. ShaoN. LinY. lncRNA NR2F1‐AS1 promotes breast cancer angiogenesis through activating IGF‐1/IGF‐1R/ERK pathway.J. Cell. Mol. Med.202024148236824710.1111/jcmm.15499 32548873
    [Google Scholar]
  28. ChenC. ShenN. ChenY. LncCCLM inhibits lymphatic metastasis of cervical cancer by promoting STAU1-mediated IGF-1 mRNA degradation.Cancer Lett.202151816917910.1016/j.canlet.2021.07.005 34273467
    [Google Scholar]
  29. LecerfC. Le BourhisX. AdriaenssensE. The long non-coding RNA H19: An active player with multiple facets to sustain the hallmarks of cancer.Cell. Mol. Life Sci.201976234673468710.1007/s00018‑019‑03240‑z 31338555
    [Google Scholar]
  30. LeightonP.A. IngramR.S. EggenschwilerJ. EfstratiadisA. TilghmanS.M. Disruption of imprinting caused by deletion of the H19 gene region in mice.Nature19953756526343910.1038/375034a0 7536897
    [Google Scholar]
  31. GaoZ.H. SuppolaS. LiuJ. HeikkiläP. JänneJ. VoutilainenR. Association of H19 promoter methylation with the expression of H19 and IGF-II genes in adrenocortical tumors.J. Clin. Endocrinol. Metab.20028731170117610.1210/jcem.87.3.8331 11889182
    [Google Scholar]
  32. StattinP. BylundA. RinaldiS. Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: A prospective study.J. Natl. Cancer Inst.200092231910191710.1093/jnci/92.23.1910 11106682
    [Google Scholar]
  33. WissmillerK. BilekovaS. FrankoA. Inceptor correlates with markers of prostate cancer progression and modulates insulin/IGF1 signaling and cancer cell migration.Mol. Metab.20237110170610.1016/j.molmet.2023.101706 36931467
    [Google Scholar]
  34. WernerH. LeRoithD. Hallmarks of cancer: The insulin-like growth factors perspective.Front. Oncol.202212105558910.3389/fonc.2022.1055589 36479090
    [Google Scholar]
  35. DeyS.K. SenapatiS. Insulin and insulin-like growth factor-1 associated cancers.Obesity and Cancer2021254810.1007/978‑981‑16‑1846‑8_3
    [Google Scholar]
  36. HongJ. ZhangG. DongF. RechlerM.M. Insulin-like growth factor (IGF)-binding protein-3 mutants that do not bind IGF-I or IGF-II stimulate apoptosis in human prostate cancer cells.J. Biol. Chem.200227712104891049710.1074/jbc.M109604200 11784719
    [Google Scholar]
  37. GrossmannM.E. HuangH. TindallD.J. Androgen receptor signaling in androgen-refractory prostate cancer.J. Natl. Cancer Inst.200193221687169710.1093/jnci/93.22.1687 11717329
    [Google Scholar]
  38. MoralesR.M. Insulinlike growth factor axis: A potential nanotherapy target for resistant cervical cancer tumors.Oncol. Lett.202325312
    [Google Scholar]
  39. JiY. WangC. Magnetic iron oxide nanoparticle-loaded hydrogels for photothermal therapy of cancer cells.Front. Bioeng. Biotechnol.202311113052310.3389/fbioe.2023.1130523 37008029
    [Google Scholar]
  40. WangP. MakV.C.Y. CheungL.W.T. Drugging IGF-1R in cancer: New insights and emerging opportunities.Genes Dis.202310119921110.1016/j.gendis.2022.03.002 37013053
    [Google Scholar]
  41. Vicente-RuizS. ArmiñánA. MasoK. Poly-l-glutamic acid modification modulates the bio-nano interface of a therapeutic anti-IGF-1R antibody in prostate cancer.Biomaterials202330112228010.1016/j.biomaterials.2023.122280 37598440
    [Google Scholar]
  42. LuG.H. ShangW.T. DengH. Targeting carbon nanotubes based on IGF-1R for photothermal therapy of orthotopic pancreatic cancer guided by optical imaging.Biomaterials2019195132210.1016/j.biomaterials.2018.12.025 30599289
    [Google Scholar]
  43. SinghS.K. LillardJ.W.Jr SinghR. Reversal of drug resistance by planetary ball milled (PBM) nanoparticle loaded with resveratrol and docetaxel in prostate cancer.Cancer Lett.2018427496210.1016/j.canlet.2018.04.017 29678549
    [Google Scholar]
  44. XuX. LiuA. BaiY. Co-delivery of resveratrol and p53 gene via peptide cationic liposomal nanocarrier for the synergistic treatment of cervical cancer and breast cancer cells.J. Drug Deliv. Sci. Technol.20195174675310.1016/j.jddst.2018.05.008
    [Google Scholar]
  45. TsaiC.W. ChangW.S. XuY. Prognostic significance of circulating insulin growth-like factor 1 and insulin growth-like factor binding protein 3 in renal cell carcinoma patients.Am. J. Cancer Res.2022122852860 35261807
    [Google Scholar]
  46. LuH. YuX. XuZ. Prognostic value of IGFBP6 in breast cancer: Focus on glucometabolic.2023Available From: https://ouci.dntb.gov.ua/en/works/4VwnNWkl/
    [Google Scholar]
  47. ChenY.M. QiS. PerrinoS. HashimotoM. BrodtP. Targeting the IGF-axis for cancer therapy: Development and validation of an IGF-trap as a potential drug.Cells202095109810.3390/cells9051098 32365498
    [Google Scholar]
  48. VaniotisG. MoffettS. SuleaT. Enhanced anti-metastatic bioactivity of an IGF-TRAP re-engineered to improve physicochemical properties.Sci. Rep.2018811736110.1038/s41598‑018‑35407‑2 30478273
    [Google Scholar]
  49. SadickM.D. IntintoliA. QuarmbyV. McCoyA. Canova-DavisE. LingV. Kinase receptor activation (KIRA): A rapid and accurate alternative to end-point bioassays.J. Pharm. Biomed. Anal.199919688389110.1016/S0731‑7085(98)00144‑7 10698554
    [Google Scholar]
  50. PagetS. The distribution of secondary growths in cancer of the breast. 1889.Cancer Metastasis Rev.19898298101 2673568
    [Google Scholar]
  51. RitchieC.K. AndrewsL.R. ThomasK.G. TindallD.J. FitzpatrickL.A. The effects of growth factors associated with osteoblasts on prostate carcinoma proliferation and chemotaxis: Implications for the development of metastatic disease.Endocrinology199713831145115010.1210/endo.138.3.4974 9048621
    [Google Scholar]
  52. MutaguchiK. YasumotoH. MitaK. Restoration of insulin-like growth factor binding protein-related protein 1 has a tumor-suppressive activity through induction of apoptosis in human prostate cancer.Cancer Res.2003632277177723 14633696
    [Google Scholar]
  53. SchillaciR. SalatinoM. CassataroJ. Immunization with murine breast cancer cells treated with antisense oligodeoxynucleotides to type I insulin-like growth factor receptor induced an antitumoral effect mediated by a CD8+ response involving Fas/Fas ligand cytotoxic pathway.J. Immunol.200617663426343710.4049/jimmunol.176.6.3426 16517711
    [Google Scholar]
  54. TolcherA.W. SarantopoulosJ. PatnaikA. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1.J. Clin. Oncol.200927345800580710.1200/JCO.2009.23.6745 19786654
    [Google Scholar]
  55. CellaD. ButtZ. KindlerH.L. Validity of the FACT Hepatobiliary (FACT-Hep) questionnaire for assessing disease-related symptoms and health-related quality of life in patients with metastatic pancreatic cancer.Qual. Life Res.20132251105111210.1007/s11136‑012‑0217‑4 22678353
    [Google Scholar]
  56. AliF. ChorsiyaA. AnjumV. AliA. Teprotumumab (Tepezza): From the discovery and development of medicines to USFDA approval for active thyroid eye disease (TED) treatment.Int. Ophthalmol.20214141549156110.1007/s10792‑021‑01706‑3 33481154
    [Google Scholar]
  57. CardenCP KimES JonesRL Phase I study of intermittent dosing of OSI-906, a dual tyrosine kinase inhibitor of insulin-like growth factor-1 receptor (IGF- 1R) and insulin receptor (IR) in patients with advanced solid tumors. J Clin Oncol10.1200/jco.2010.28.15_suppl.253020102815_suppl(Suppl.)2530
    [Google Scholar]
  58. MondlaneE.R. Abreu-MendesP. MartinsD. CruzR. MendesF. The role of immunotherapy in advanced renal cell carcinoma.Int. Braz J Urol20214761228124210.1590/s1677‑5538.ibju.2020.0681 33650838
    [Google Scholar]
  59. BoyerS.N. WazerD.E. BandV. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway.Cancer Res.1996562046204624 8840974
    [Google Scholar]
  60. PollakM. The insulin and insulin-like growth factor receptor family in neoplasia: An update.Nat. Rev. Cancer201212315916910.1038/nrc3215 22337149
    [Google Scholar]
  61. HaileyJ. MaxwellE. KoukourasK. BishopW.R. PachterJ.A. WangY. Neutralizing anti-insulin-like growth factor receptor 1 antibodies inhibit receptor function and induce receptor degradation in tumor cells.Mol. Cancer Ther.200211413491353 12516969
    [Google Scholar]
  62. GanslerT. FurlanettoR. GramlingT.S. Antibody to type I insulinlike growth factor receptor inhibits growth of Wilms’ tumor in culture and in athymic mice.Am. J. Pathol.19891356961966 2556929
    [Google Scholar]
  63. ScotlandiK. BeniniS. NanniP. Blockage of insulin-like growth factor-I receptor inhibits the growth of Ewing’s sarcoma in athymic mice.Cancer Res.1998581841274131 9751624
    [Google Scholar]
  64. KalebicT. TsokosM. HelmanL.J. In vivo treatment with antibody against IGF-1 receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34cdc2.Cancer Res.1994542155315534 7923191
    [Google Scholar]
  65. SachdevD. LiS.L. HartellJ.S. Fujita-YamaguchiY. MillerJ.S. YeeD. A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I.Cancer Res.2003633627635 12566306
    [Google Scholar]
  66. MaloneyE.K. McLaughlinJ.L. DagdigianN.E. An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation.Cancer Res.2003631650735083 12941837
    [Google Scholar]
  67. SurmaczE. Growth factor receptors as therapeutic targets: Strategies to inhibit the insulin-like growth factor I receptor.Oncogene200322426589659710.1038/sj.onc.1206772 14528284
    [Google Scholar]
  68. GoetschL. GonzalezA. LegerO. A recombinant humanized anti‐insulin‐like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti‐epidermal growth factor receptor therapy against human cancer xenografts.Int. J. Cancer2005113231632810.1002/ijc.20543 15386423
    [Google Scholar]
  69. BurtrumD. ZhuZ. LuD. A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo.Cancer Res.2003632489128921 14695208
    [Google Scholar]
  70. WuJ.D. OdmanA. HigginsL.M. In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors.Clin. Cancer Res.20051183065307410.1158/1078‑0432.CCR‑04‑1586 15837762
    [Google Scholar]
  71. WuK. ZhouL. ZhangK. BurtrumD. LudwigD.L. MooreM.A. A humanized insulin-like growth factor I receptor antibody inhibits multiple myeloma cell growth in vivo through anti-angiogenesis.Cancer Res.2005659Suppl.1189
    [Google Scholar]
  72. CohenB.D. BakerD.A. SoderstromC. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871.Clin. Cancer Res.20051152063207310.1158/1078‑0432.CCR‑04‑1070 15756033
    [Google Scholar]
  73. WangY. HaileyJ. WilliamsD. Inhibition of IGF-1R signaling and tumor cell proliferation by a fully human neutralizing anti-IGF-1R antibody.Cancer Res.2004647Suppl.1232
    [Google Scholar]
  74. VuT. ClaretF.X. Trastuzumab: Updated mechanisms of action and resistance in breast cancer.Front. Oncol.201226210.3389/fonc.2012.00062 22720269
    [Google Scholar]
  75. BaselgaJ. Clinical trials of Herceptin® (trastuzumab).Eur. J. Cancer200137Suppl. 1182410.1016/S0959‑8049(00)00404‑4 11342196
    [Google Scholar]
  76. EarlH.M. HillerL. VallierA.L. 6 versus 12 months of adjuvant trastuzumab for HER2-positive early breast cancer (PERSEPHONE): 4-year disease-free survival results of a randomised phase 3 non-inferiority trial.Lancet2019393101912599261210.1016/S0140‑6736(19)30650‑6 31178152
    [Google Scholar]
  77. GradisharW.J. YardleyD.A. LaymanR. Clinical and translational results of a phase II, randomized trial of an anti–IGF-1R (Cixutumumab) in women with breast cancer that progressed on endocrine therapy.Clin. Cancer Res.201622230130910.1158/1078‑0432.CCR‑15‑0588 26324738
    [Google Scholar]
  78. EkyalongoR.C. YeeD. Revisiting the IGF-1R as a breast cancer target.NPJ Precis. Oncol.2017111410.1038/s41698‑017‑0017‑y 29152592
    [Google Scholar]
  79. GrahamT.R. ZhauH.E. Odero-MarahV.A. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells.Cancer Res.20086872479248810.1158/0008‑5472.CAN‑07‑2559 18381457
    [Google Scholar]
  80. PhilippouA. ArmakolasA. KoutsilierisM. Evidence for the possible biological significance of the igf-1 gene alternative splicing in prostate cancer.Front. Endocrinol.201343110.3389/fendo.2013.00031 23519101
    [Google Scholar]
  81. SiechC. RutzJ. MaxeinerS. Insulin-like growth factor-1 influences prostate cancer cell growth and invasion through an integrin α3, α5, αV, and β1 dependent mechanism.Cancers202214236310.3390/cancers14020363 35053528
    [Google Scholar]
  82. FengZ. LevineA.J. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein.Trends Cell Biol.201020742743410.1016/j.tcb.2010.03.004 20399660
    [Google Scholar]
  83. Habrowska-GórczyńskaD.E. KoziełM.J. KowalskaK. Piastowska-CiesielskaA.W. FOXO3a and its regulators in prostate cancer.Int. J. Mol. Sci.202122221253010.3390/ijms222212530 34830408
    [Google Scholar]
  84. NordstrandA. BergströmS.H. ThysellE. Inhibition of the insulin-like growth factor-1 receptor potentiates acute effects of castration in a rat model for prostate cancer growth in bone.Clin. Exp. Metastasis2017343-426127110.1007/s10585‑017‑9848‑8 28447314
    [Google Scholar]
  85. ÅbergM. EdénD. SiegbahnA. Activation of β1 integrins and caveolin-1 by TF/FVIIa promotes IGF-1R signaling and cell survival.Apoptosis2020257-851953410.1007/s10495‑020‑01611‑7 32458278
    [Google Scholar]
  86. MelincoviciC.S. BoşcaA.B. ŞuşmanS. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis.Rom. J. Morphol. Embryol.2018592455467 30173249
    [Google Scholar]
  87. SrokaI.C. McDanielK. NagleR.B. BowdenG.T. Differential localization of MT1‐MMP in human prostate cancer tissue: Role of IGF‐1R in MT1‐MMP expression.Prostate200868546347610.1002/pros.20718 18196535
    [Google Scholar]
  88. SarkarC. GoswamiS. BasuS. ChakrobortyD. Angiogenesis inhibition in prostate cancer: An update.Cancers2020129238210.3390/cancers12092382 32842503
    [Google Scholar]
  89. Odero-MarahV. HawsawiO. HendersonV. SweeneyJ. Epithelial-Mesenchymal Transition (EMT) and prostate cancer.Adv. Exp. Med. Biol.20181095101110
    [Google Scholar]
  90. MansorR. HollyJ. BarkerR. IGF-1 and hyperglycaemia-induced FOXA1 and IGFBP-2 affect epithelial to mesenchymal transition in prostate epithelial cells.Oncotarget202011262543255910.18632/oncotarget.27650 32655839
    [Google Scholar]
  91. BerishR.B. AliA.N. TelmerP.G. RonaldJ.A. LeongH.S. Translational models of prostate cancer bone metastasis.Nat. Rev. Urol.201815740342110.1038/s41585‑018‑0020‑2 29769644
    [Google Scholar]
  92. ZhouM. GravesD.T. Impact of the host response and osteoblast lineage cells on periodontal disease.Front. Immunol.20221399824410.3389/fimmu.2022.998244 36304447
    [Google Scholar]
  93. VenkatachalamS. MettlerE. FottnerC. MiedererM. KainaB. WeberM.M. The impact of the IGF-1 system of cancer cells on radiation response – An in vitro study.Clin. Transl. Radiat. Oncol.201771810.1016/j.ctro.2017.09.006 29594222
    [Google Scholar]
  94. AleksicT. VerrillC. BryantR.J. IGF-1R associates with adverse outcomes after radical radiotherapy for prostate cancer.Br. J. Cancer2017117111600160610.1038/bjc.2017.337 28972962
    [Google Scholar]
  95. LiuG. ZhuM. ZhangM. PanF. Emerging role of IGF-1 in prostate cancer: A promising biomarker and therapeutic target.Cancers2023154128710.3390/cancers15041287 36831629
    [Google Scholar]
  96. LinS.L. LinC.Y. LeeW. TengC.F. ShyuW.C. JengL.B. Mini review: Molecular interpretation of the IGF/IGF-1R Axis in cancer treatment and stem cells-based therapy in regenerative medicine.Int. J. Mol. Sci.202223191178110.3390/ijms231911781 36233084
    [Google Scholar]
  97. SamaniA.A. YakarS. LeRoithD. BrodtP. The role of the IGF system in cancer growth and metastasis: Overview and recent insights.Endocr. Rev.2007281204710.1210/er.2006‑0001 16931767
    [Google Scholar]
  98. YuE.Y. LiH. HiganoC.S. SWOG S0925: A randomized phase II study of androgen deprivation combined with cixutumumab versus androgen deprivation alone in patients with new metastatic hormone-sensitive prostate cancer.J. Clin. Oncol.201533141601160810.1200/JCO.2014.59.4127 25847934
    [Google Scholar]
  99. de BonoJ.S. PiulatsJ.M. PandhaH.S. Phase II randomized study of figitumumab plus docetaxel and docetaxel alone with crossover for metastatic castration-resistant prostate cancer.Clin. Cancer Res.20142071925193410.1158/1078‑0432.CCR‑13‑1869 24536060
    [Google Scholar]
  100. Weyer-CzernilofskyU. HofmannM.H. FriedbichlerK. Antitumor activity of the IGF-1/IGF-2–neutralizing antibody xentuzumab (BI 836845) in combination with enzalutamide in prostate cancer models.Mol. Cancer Ther.20201941059106910.1158/1535‑7163.MCT‑19‑0378 32054790
    [Google Scholar]
  101. ZhuX. ChenX. WangG. Picropodophyllin inhibits the proliferation of human prostate cancer du145 and lncap cells via ROS production and pi3k/akt pathway inhibition.Biol. Pharm. Bull.20224581027103510.1248/bpb.b21‑01006 35908886
    [Google Scholar]
  102. WongR.L. DuongM.T. TangenC.M. Survival outcomes and risk group validation from SWOG S0925: A randomized phase II study of cixutumumab in new metastatic hormone-sensitive prostate cancer.Prostate Cancer Prostatic Dis.202023348649310.1038/s41391‑020‑0210‑x 32055002
    [Google Scholar]
  103. McHughD.J. ChudowJ. DeNunzioM. A phase I trial of IGF-1R inhibitor cixutumumab and mTOR inhibitor temsirolimus in metastatic castration-resistant prostate cancer.Clin. Genitourin. Cancer2020183171178.e210.1016/j.clgc.2019.10.013 32057715
    [Google Scholar]
  104. HussainM. RathkopfD. LiuG. A randomised non-comparative phase II trial of cixutumumab (IMC-A12) or ramucirumab (IMC-1121B) plus mitoxantrone and prednisone in men with metastatic docetaxel-pretreated castration-resistant prostate cancer.Eur. J. Cancer201551131714172410.1016/j.ejca.2015.05.019 26082390
    [Google Scholar]
  105. ChiK.N. GleaveM.E. FazliL. A phase II pharmacodynamic study of preoperative figitumumab in patients with localized prostate cancer.Clin. Cancer Res.201218123407341310.1158/1078‑0432.CCR‑12‑0482 22553344
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947302362240807105327
Loading
/content/journals/cctr/10.2174/0115733947302362240807105327
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cervical cancer; IGFBPs; IGFs; ligand; mechanistic pathway; prostate cancer; receptor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test