Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Theranostics is an innovative field that utilizes nanotechnology and nanoparticles for a wide range of medical, diagnostic, and imaging applications. Therapeutic payloads, such as chemotherapeutic drugs, nucleic acids, and medicinal proteins or peptides, can be enclosed within nanoparticles or bonded to their surface for controlled release and extended circulation time. Nanoparticles can be used to enhance drug accumulation at the tumor site by traversing biological barriers such as the blood-brain barrier, using active or passive targeting techniques. Theranostic systems based on nanotechnology offer various therapeutic approaches, including photodynamic treatment (PDT), photothermal therapy (PTT), and gene therapy, which have become available in recent decades. Researchers are exploring nanomaterials with unique surface chemistry and form to combine cancer diagnosis with treatment methods, allowing for rapid diagnosis, precise imaging, therapy with an adequate dose, and real-time supervision of therapeutic efficacy. This review discusses various cancer theranostic applications, characterization techniques, synthesis steps, and types of nanoparticles, including the imaging and diagnostic applications of nanoparticles in cancer.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947316490240804195642
2024-08-13
2025-12-06
Loading full text...

Full text loading...

References

  1. Gomes MarinJ.F. NunesR.F. CoutinhoA.M. Theranostics in nuclear medicine: Emerging and re-emerging integrated imaging and therapies in the era of precision oncology.Radiographics20204061715174010.1148/rg.2020200021 33001789
    [Google Scholar]
  2. YinW. PanF. ZhuJ. Nanotechnology and nanomedicine: A promising avenue for lung cancer diagnosis and therapy.Engineering20217111577158510.1016/j.eng.2020.04.017
    [Google Scholar]
  3. TanY.Y. YapP.K. Xin LimG.L. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics.Chem. Biol. Interact.202032910922110.1016/j.cbi.2020.109221 32768398
    [Google Scholar]
  4. GhitmanJ. BiruE.I. StanR. IovuH. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine.Mater. Des.202019310880510.1016/j.matdes.2020.108805
    [Google Scholar]
  5. ZhuT. HsuJ.C. GuoJ. ChenW. CaiW. WangK. Radionuclide-based theranostics - a promising strategy for lung cancer.Eur. J. Nucl. Med. Mol. Imaging20235082353237410.1007/s00259‑023‑06174‑8
    [Google Scholar]
  6. DebelaD.T. MuzazuS.G.Y. HeraroK.D. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021910.1177/20503121211034366 34408877
    [Google Scholar]
  7. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.202210413671401
    [Google Scholar]
  8. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules25092193 32397080
    [Google Scholar]
  9. Ferreira-FariaI. YousefiaslS. Macário-SoaresA. Stem cell membrane-coated abiotic nanomaterials for biomedical applications.J. Control. Release202235117419710.1016/j.jconrel.2022.09.012 36103910
    [Google Scholar]
  10. SanninoD. Types and classification of nanomaterials. Nanotechnology.Berlin, HeidelbergSpringer Link202110.1007/978‑981‑15‑9437‑3_2
    [Google Scholar]
  11. PaluszkiewiczP. MartuszewskiA. ZarębaN. WalaK. BanasikM. KepinskaM. The application of nanoparticles in diagnosis and treatment of kidney diseases.Int. J. Mol. Sci.202123113110.3390/ijms23010131 35008556
    [Google Scholar]
  12. OmarA.S. Nanoformulation safety versus toxicity; what do the recent studies tell us?Int J Pharmaceut Res Allied Sci2022114607110.51847/sPFPlDPSVl
    [Google Scholar]
  13. QuagliariniE. PozziD. CardarelliF. CaraccioloG. The influence of protein corona on Graphene Oxide: Implications for biomedical theranostics.J. Nanobiotechnology202321126710.1186/s12951‑023‑02030‑x 37568181
    [Google Scholar]
  14. ZhouS. ZhongQ. WangY. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases.Coord. Chem. Rev.202245221430910.1016/j.ccr.2021.214309
    [Google Scholar]
  15. KashyapB.K. SinghV.V. SolankiM.K. KumarA. RuokolainenJ. KesariK.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities.ACS Omega2023816142901432010.1021/acsomega.2c07840 37125102
    [Google Scholar]
  16. ChenZ. KankalaR.K. LongL. XieS. ChenA. ZouL. Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation.Coord. Chem. Rev.202348121505110.1016/j.ccr.2023.215051
    [Google Scholar]
  17. KarthikeyanL. VivekR. Synergistic anti-cancer effects of NIR-light responsive nanotherapeutics for chemo-photothermal therapy and photothermal immunotherapy: A combined therapeutic approach.Adv. Cancer Biol. Metastasis2022410004410.1016/j.adcanc.2022.100044
    [Google Scholar]
  18. ZhengK. XieJ. Engineering ultrasmall metal nanoclusters as promising theranostic agents.Trends Chem.20202766567910.1016/j.trechm.2020.04.011
    [Google Scholar]
  19. Villela ZumayaA.L. MinchevaR. RaquezJ.M. HassounaF. Nanocluster-based drug delivery and theranostic systems: Towards cancer therapy.Polymers2022146118810.3390/polym14061188 35335518
    [Google Scholar]
  20. XueY. GaoY. MengF. LuoL. Recent progress of nanotechnology-based theranostic systems in cancer treatments.Cancer Biol. Med.202118233635110.20892/j.issn.2095‑3941.2020.0510 33861527
    [Google Scholar]
  21. LozaK. HeggenM. EppleM. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals.Adv. Funct. Mater.20203021190926010.1002/adfm.201909260
    [Google Scholar]
  22. AstrucD. Introduction: Nanoparticles in catalysis.Washington, D.C.ACS Publications2020461463
    [Google Scholar]
  23. RasmussenM.K. PedersenJ.N. MarieR. Size and surface charge characterization of nanoparticles with a salt gradient.Nat. Commun.2020111233710.1038/s41467‑020‑15889‑3 32393750
    [Google Scholar]
  24. VaughanH.J. GreenJ.J. TzengS.Y. Cancer‐targeting nanoparticles for combinatorial nucleic acid delivery.Adv. Mater.20203213190108110.1002/adma.201901081 31222852
    [Google Scholar]
  25. CaoC. ChenF. GarveyC.J. StenzelM.H. Drug-directed morphology changes in polymerization-induced Self-assembly (PISA) influence the biological behavior of nanoparticles.ACS Appl. Mater. Interfaces20201227302213023310.1021/acsami.0c09054 32515935
    [Google Scholar]
  26. SharmaK. ChauhanC. Role of magnetic nanoparticle (MNPs) in cancer treatment: A review.Mater. Today Proc.2021812919925
    [Google Scholar]
  27. NaghdiM. GhovvatiM. RabieeN. Magnetic nanocomposites for biomedical applications.Adv. Colloid Interface Sci.202230810277110.1016/j.cis.2022.102771 36113311
    [Google Scholar]
  28. Schneider-FutschikE.K. Reyes-OrtegaF. Advantages and disadvantages of using magnetic nanoparticles for the treatment of complicated ocular disorders.Pharmaceutics2021138115710.3390/pharmaceutics13081157 34452117
    [Google Scholar]
  29. Montiel SchneiderM.G. MartínM.J. OtarolaJ. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives.Pharmaceutics202214120410.3390/pharmaceutics14010204 35057099
    [Google Scholar]
  30. RastogiA. YadavK. MishraA. Early diagnosis of lung cancer using magnetic nanoparticles-integrated systems.Nanotechnol. Rev.202211154457410.1515/ntrev‑2022‑0032
    [Google Scholar]
  31. NaudC. ThébaultC. CarrièreM. Cancer treatment by magneto-mechanical effect of particles, a review.Nanoscale Adv.2020293632365510.1039/D0NA00187B 36132753
    [Google Scholar]
  32. KoM.J. HongH. ChoiH. KangH. KimD.H. Multifunctional magnetic nanoparticles for dynamic imaging and therapy.Adv. NanoBiomed Res.2022211220005310.1002/anbr.202200053
    [Google Scholar]
  33. ElimamH. El-SayK.M. CybulskyA.V. KhalilH. Regulation of autophagy progress via lysosomal depletion by fluvastatin nanoparticle treatment in breast cancer cells.ACS Omega2020525154761548610.1021/acsomega.0c01618 32637822
    [Google Scholar]
  34. MusielakM. PotocznyJ. Boś-LiedkeA. KozakM. The combination of liposomes and metallic nanoparticles as multifunctional nanostructures in the therapy and medical imaging—a review.Int. J. Mol. Sci.20212212622910.3390/ijms22126229 34207682
    [Google Scholar]
  35. DingS. ChenL. LiaoJ. Harnessing Hafnium‐based nanomaterials for cancer diagnosis and therapy.Small20231932230034110.1002/smll.202300341 37029564
    [Google Scholar]
  36. PeiZ. LeiH. ChengL. Bioactive inorganic nanomaterials for cancer theranostics.Chem. Soc. Rev.20235262031208110.1039/D2CS00352J 36633202
    [Google Scholar]
  37. RahmanM.M. IslamM.R. AkashS. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance.Biomed. Pharmacother.202215311330510.1016/j.biopha.2022.113305 35717779
    [Google Scholar]
  38. YaqoobA.A. AhmadH. ParveenT. Recent advances in metal decorated nanomaterials and their various biological applications: A review.Front Chem.2020834110.3389/fchem.2020.00341 32509720
    [Google Scholar]
  39. MishraP. LeeJ. KumarD. Engineered nanoenzymes with multifunctional properties for next‐generation biological and environmental applications.Adv. Funct. Mater.2022328210865010.1002/adfm.202108650
    [Google Scholar]
  40. BadıllıU. MollarasouliF. BakirhanN.K. OzkanY. OzkanS.A. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery.Trends Analyt. Chem.202013111601310.1016/j.trac.2020.116013
    [Google Scholar]
  41. DümbgenK.C. PascazioR. van BeekB. HensZ. InfanteI. Classical force field parameters for InP and InAs quantum dots with various surface passivations.J. Phys. Chem. A2023127153427343610.1021/acs.jpca.2c08428 37040362
    [Google Scholar]
  42. HuangX. TongX. WangZ. Rational design of colloidal core/shell quantum dots for optoelectronic applications.J Elect Sci Technol202018210001810.1016/j.jnlest.2020.100018
    [Google Scholar]
  43. WuX. LiuH. LiuJ. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.Nat. Biotechnol.2003211414610.1038/nbt764 12459735
    [Google Scholar]
  44. ÅkermanM.E. ChanW.C.W. LaakkonenP. BhatiaS.N. RuoslahtiE. Nanocrystal targeting in vivo.Proc. Natl. Acad. Sci.20029920126171262110.1073/pnas.152463399 12235356
    [Google Scholar]
  45. Abdel-SalamM. OmranB. WhiteheadK. BaekK.H. Superior properties and biomedical applications of microorganism-derived fluorescent quantum dots.Molecules20202519448610.3390/molecules25194486 33007905
    [Google Scholar]
  46. WangL. XuD. GaoJ. ChenX. DuoY. ZhangH. Semiconducting quantum dots: Modification and applications in biomedical science.Sci. China Mater.20206391631165010.1007/s40843‑020‑1330‑7
    [Google Scholar]
  47. MoosavyM.H. de la GuardiaM. MokhtarzadehA. KhatibiS.A. HosseinzadehN. HajipourN. Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil.Sci. Rep.2023131723010.1038/s41598‑023‑33632‑y 37142621
    [Google Scholar]
  48. RafeeqH. HussainA. AmbreenA. Functionalized nanoparticles and their environmental remediation potential: A review.J. Nanostructure Chem.20221261007103110.1007/s40097‑021‑00468‑9
    [Google Scholar]
  49. Sakthi DeviR. GirigoswamiA. SiddharthM. GirigoswamiK. Applications of gold and silver nanoparticles in theranostics.Appl. Biochem. Biotechnol.202219494187421910.1007/s12010‑022‑03963‑z 35551613
    [Google Scholar]
  50. DheyabM.A. AzizA.A. Moradi KhaniabadiP. Monodisperse gold nanoparticles: A review on synthesis and their application in modern medicine.Int. J. Mol. Sci.20222313740010.3390/ijms23137400 35806405
    [Google Scholar]
  51. PalK. ZaheerT. KalarikkalN. ThomasS. de SouzaF.G. SiA. Gold nanoparticles against respiratory diseases: Oncogenic and viral pathogens review.Ther. Deliv.202011852153410.4155/tde‑2020‑0071 32757745
    [Google Scholar]
  52. WenC. WangL. LiuL. ShenX.C. ChenH. Surface‐enhanced raman probes based on gold nanomaterials for in vivo diagnosis and imaging.Chem. Asian J.2022177e20220001410.1002/asia.202200014 35178878
    [Google Scholar]
  53. ZareI. YarakiM.T. SperanzaG. Gold nanostructures: Synthesis, properties, and neurological applications.Chem. Soc. Rev.20225172601268010.1039/D1CS01111A 35234776
    [Google Scholar]
  54. Aguilar-FerrerD. VasileiadisT. IatsunskyiI. Understanding the photothermal and photocatalytic mechanism of polydopamine coated gold nanorods.Adv. Funct. Mater.20233343230420810.1002/adfm.202304208
    [Google Scholar]
  55. EttlT. GrubeM. SchulzD. BauerR.J. Checkpoint inhibitors in cancer therapy: Clinical benefits for head and neck cancers.Cancers20221420498510.3390/cancers14204985 36291769
    [Google Scholar]
  56. ManjubaashiniN. Daniel ThangaduraiT. Unaided-eye detection of diverse metal ions by AuNPs-based nanocomposites: A review.Microchem. J.202319010862810.1016/j.microc.2023.108628
    [Google Scholar]
  57. LeeD. KwonS. JangS. ParkE. LeeY. KooH. Overcoming the obstacles of current photodynamic therapy in tumors using nanoparticles.Bioact. Mater.20228203410.1016/j.bioactmat.2021.06.019 34541384
    [Google Scholar]
  58. YangW. LiangH. MaS. WangD. HuangJ. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment.Sustain Mater Technol201922e0010910.1016/j.susmat.2019.e00109
    [Google Scholar]
  59. JindalM. NagpalM. SinghM. AggarwalG. DhingraG.A. Gold nanoparticles boon in cancer theranostics.Curr. Pharm. Des.202026405134515110.2174/1381612826666200701151403 32611300
    [Google Scholar]
  60. LuoD. WangX. BurdaC. BasilionJ.P. Recent development of gold nanoparticles as contrast agents for cancer diagnosis.Cancers2021138182510.3390/cancers13081825 33920453
    [Google Scholar]
  61. LiH. JiaY. PengH. LiJ. Recent developments in dopamine-based materials for cancer diagnosis and therapy.Adv. Colloid Interface Sci.201825212010.1016/j.cis.2018.01.001 29395035
    [Google Scholar]
  62. ZhangP. HuC. RanW. MengJ. YinQ. LiY. Recent progress in light-triggered nanotheranostics for cancer treatment.Theranostics20166794896810.7150/thno.15217 27217830
    [Google Scholar]
  63. OverchukM. ZhengG. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics.Biomaterials201815621723710.1016/j.biomaterials.2017.10.024 29207323
    [Google Scholar]
  64. CurryT. KopelmanR. ShiloM. PopovtzerR. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy.Contrast Media Mol. Imaging201491536110.1002/cmmi.1563 24470294
    [Google Scholar]
  65. GonçalvesG. VilaM. PortolésM.T. Vallet-RegiM. GracioJ. MarquesP.A.A.P. Nano-graphene oxide: A potential multifunctional platform for cancer therapy.Adv. Healthc. Mater.2013281072109010.1002/adhm.201300023 23526812
    [Google Scholar]
  66. YallapuM.M. KhanS. MaherD.M. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer.Biomaterials201435308635864810.1016/j.biomaterials.2014.06.040 25028336
    [Google Scholar]
  67. SusaM. IyerA.K. RyuK. Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma.BMC Cancer20099139910.1186/1471‑2407‑9‑399 19917123
    [Google Scholar]
  68. BhojaniM.S. Van DortM. RehemtullaA. RossB.D. Targeted imaging and therapy of brain cancer using theranostic nanoparticles.Mol. Pharm.2010761921192910.1021/mp100298r 20964352
    [Google Scholar]
  69. AnaniT. RahmatiS. SultanaN. DavidA.E. MRI-traceable theranostic nanoparticles for targeted cancer treatment.Theranostics202111257960110.7150/thno.48811 33391494
    [Google Scholar]
  70. SetiaA. MehataA.K. Vikas, Malik AK, Viswanadh MK, Muthu MS. Theranostic magnetic nanoparticles: Synthesis, properties, toxicity, and emerging trends for biomedical applications.J. Drug Deliv. Sci. Technol.20238110429510.1016/j.jddst.2023.104295
    [Google Scholar]
  71. GarvasisJ. PrasadA.R. ShamsheeraK.O. Nidheesh RoyT.A. JosephA. A facile one-pot synthesis of phyto-conjugate superparamagnetic magnetite nanoparticles for the rapid removal of hexavalent chromium from water bodies.Mater. Res. Bull.202316011213010.1016/j.materresbull.2022.112130
    [Google Scholar]
  72. JeonM. HalbertM.V. StephenZ.R. ZhangM. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives.Adv. Mater.20213323190653910.1002/adma.201906539 32495404
    [Google Scholar]
  73. AnsariK. AhmadR. TanweerM.S. AzamI. Magnetic iron oxide nanoparticles as a tool for the advancement of biomedical and environmental application: A review.Biomedical Materials & Devices.ChamSpringer2023119
    [Google Scholar]
  74. LiuZ. QiuW. PengX. Perovskite light‐emitting diodes with EQE exceeding 28% through a synergetic dual‐additive strategy for defect passivation and nanostructure regulation.Adv. Mater.20213343210326810.1002/adma.202103268 34545631
    [Google Scholar]
  75. AjinkyaN. YuX. KaithalP. LuoH. SomaniP. RamakrishnaS. Magnetic iron oxide nanoparticle (IONP) synthesis to applications: Present and future.Materials20201320464410.3390/ma13204644 33080937
    [Google Scholar]
  76. GharibkandiN.A. ŻukM. MuftulerF.Z.B. WawrowiczK. Żelechowska-MatysiakK. BilewiczA. 198Au-coated superparamagnetic iron oxide nanoparticles for dual magnetic hyperthermia and radionuclide therapy of hepatocellular carcinoma.Int. J. Mol. Sci.2023246528210.3390/ijms24065282 36982357
    [Google Scholar]
  77. RohouB. Nanoparticle thin films for energy harvesting through magnetic hyperthermia2022
    [Google Scholar]
  78. FatimaT. MushtaqA. Efficacy and challenges of carbon-based nanomaterials in water treatment: A review.Int. J. Chem. Biochem. Sci.202323232248
    [Google Scholar]
  79. IbrahimA. KlopocinskaA. HorvatK. Abdel HamidZ. Graphene-based nanocomposites: Synthesis, mechanical properties, and characterizations.Polymers20211317286910.3390/polym13172869 34502909
    [Google Scholar]
  80. OnyanchaR.B. UkhureborK.E. AigbeU.O. OsiboteO.A. KusumaH.S. DarmokoesoemoH. A methodical review on carbon-based nanomaterials in energy-related applications.Adsorpt. Sci. Technol.20222022443828610.1155/2022/4438286
    [Google Scholar]
  81. TangL. XiaoQ. MeiY. Insights on functionalized carbon nanotubes for cancer theranostics.J. Nanobiotechnology202119142310.1186/s12951‑021‑01174‑y 34915901
    [Google Scholar]
  82. KhizarS. AlrushaidN. Alam KhanF. Nanocarriers based novel and effective drug delivery system.Int. J. Pharm.202363212257010.1016/j.ijpharm.2022.122570 36587775
    [Google Scholar]
  83. NikzamirM. AkbarzadehA. PanahiY. An overview on nanoparticles used in biomedicine and their cytotoxicity.J. Drug Deliv. Sci. Technol.20216110231610.1016/j.jddst.2020.102316
    [Google Scholar]
  84. Lérida-VisoA. Estepa-FernándezA. García-FernándezA. Martí-CentellesV. Martínez-MáñezR. Biosafety of mesoporous silica nanoparticles; towards clinical translation.Adv. Drug Deliv. Rev.202320111504910.1016/j.addr.2023.115049 37573951
    [Google Scholar]
  85. MajerníkM. JendželovskýR. VargováJ. JendželovskáZ. FedoročkoP. Multifunctional nanoplatforms as a novel effective approach in photodynamic therapy and chemotherapy, to overcome multidrug resistance in cancer.Pharmaceutics2022145107510.3390/pharmaceutics14051075 35631660
    [Google Scholar]
  86. SharmaV. ChoudharyS. MankotiaP. Nanoparticles as fingermark sensors.Trends Analyt. Chem.202114311637810.1016/j.trac.2021.116378
    [Google Scholar]
  87. RizziF. CastaldoR. LatronicoT. High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: Insights on the size and porosity control mechanisms.Molecules20212614424710.3390/molecules26144247 34299522
    [Google Scholar]
  88. RomeroD.E. RiguttoM. HensenE.J.M. Influence of the size, order and topology of mesopores in bifunctional Pd-containing acidic SBA-15 and M41S catalysts for n-hexadecane hydrocracking.Fuel Process. Technol.202223210725910.1016/j.fuproc.2022.107259
    [Google Scholar]
  89. Díaz-GarcíaD. Montalbán-HernándezK. Mena-PalomoI. Role of folic acid in the therapeutic action of nanostructured porous silica functionalized with organotin (IV) compounds against different cancer cell lines.Pharmaceutics202012651210.3390/pharmaceutics12060512 32503320
    [Google Scholar]
  90. WuZ.Y. LeeC.C. LinH.M. Hyaluronidase-responsive mesoporous silica nanoparticles with dual-imaging and dual-target function.Cancers (Basel) 201911569710.3390/cancers11050697 31137518
    [Google Scholar]
  91. ChanM.H. LinH.M. Preparation and identification of multifunctional mesoporous silica nanoparticles for in vitro and in vivo dual-mode imaging, theranostics, and targeted tracking.Biomaterials20154614915810.1016/j.biomaterials.2014.12.034 25678124
    [Google Scholar]
  92. HsiaoS.M. PengB.Y. TsengY.S. LiuH.T. ChenC.H. LinH.M. Preparation and characterization of multifunctional mesoporous silica nanoparticles for dual magnetic resonance and fluorescence imaging in targeted cancer therapy.Microporous Mesoporous Mater.201725021022010.1016/j.micromeso.2017.04.050
    [Google Scholar]
  93. PouroutzidouG.K. LiveraniL. TheocharidouA. Synthesis and characterization of mesoporous mg-and sr-doped nanoparticles for moxifloxacin drug delivery in promising tissue engineering applications.Int. J. Mol. Sci.202122257710.3390/ijms22020577 33430065
    [Google Scholar]
  94. ShuP. RuanJ. GaoC. LiH. CheS. Formation of mesoporous Co3O4 replicas of different mesostructures with different pore sizes.Microporous Mesoporous Mater.20091231-331432310.1016/j.micromeso.2009.04.017
    [Google Scholar]
  95. HeK. LiJ. ShenY. YuY. pH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd 2 O 3 @MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement.J. Mater. Chem. B Mater. Biol. Med.20197436840685410.1039/C9TB01654F 31609370
    [Google Scholar]
  96. ShahS.C. KayambaV. PeekR.M.Jr HeimburgerD. Cancer control in low-and middle-income countries: Is it time to consider screening?J. Glob. Oncol.2019551810.1200/JGO.18.00200 30908147
    [Google Scholar]
  97. ShreyashN. SonkerM. BajpaiS. TiwaryS.K. Review of the mechanism of nanocarriers and technological developments in the field of nanoparticles for applications in cancer theragnostics.ACS Appl. Bio Mater.2021432307233410.1021/acsabm.1c00020 35014353
    [Google Scholar]
  98. BelkadiA. Investigation of cytotoxic properties of some heterocyclic derivatives by molecular modeling approaches2022
    [Google Scholar]
  99. FaresJ. FaresM.Y. KhachfeH.H. SalhabH.A. FaresY. Molecular principles of metastasis: A hallmark of cancer revisited.Signal Transduct. Target. Ther.2020512810.1038/s41392‑020‑0134‑x 32296047
    [Google Scholar]
  100. SinghalS.S. GargR. HorneD. SinghalS. AwasthiS. SalgiaR. RLIP: A necessary transporter protein for translating oxidative stress into pro-obesity and pro-carcinogenic signaling.Biochim. Biophys. Acta Rev. Cancer20221877518880310.1016/j.bbcan.2022.188803
    [Google Scholar]
  101. van der ZandenS.Y. QiaoX. NeefjesJ. New insights into the activities and toxicities of the old anticancer drug doxorubicin.FEBS J.2021288216095611110.1111/febs.15583 33022843
    [Google Scholar]
  102. RichardsE.M. LiJ. StevensB.R. PepineC.J. RaizadaM.K. Gut microbiome and neuroinflammation in hypertension.Circ. Res.2022130340141710.1161/CIRCRESAHA.121.319816 35113664
    [Google Scholar]
  103. MajidiniaM. Mirza-Aghazadeh-AttariM. RahimiM. Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons.IUBMB Life202072585587110.1002/iub.2215 31913572
    [Google Scholar]
  104. CaiW. GengC. JiangL. Encapsulation of gemcitabine in RGD-modified nanoliposomes improves breast cancer inhibitory activity.Pharm. Dev. Technol.202025564064810.1080/10837450.2020.1727920 32028816
    [Google Scholar]
  105. Taléns-ViscontiR. Díez-SalesO. de Julián-OrtizJ.V. NácherA. Nanoliposomes in cancer therapy: Marketed products and current clinical trials.Int. J. Mol. Sci.2022238424910.3390/ijms23084249 35457065
    [Google Scholar]
  106. ElkordyA.A. Haj-AhmadR.R. AwaadA.S. ZakiR.M. An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future.J. Drug Deliv. Sci. Technol.20216310245910.1016/j.jddst.2021.102459
    [Google Scholar]
  107. VashistA. RaymondA.D. ChapagainP. Multi-functional auto-fluorescent nanogels for theranostics.J. Neurovirol.202329325225710.1007/s13365‑023‑01138‑y 37248372
    [Google Scholar]
  108. BoehnkeN. CorreaS. HaoL. Theranostic layer‐by‐layer nanoparticles for simultaneous tumor detection and gene silencing.Angew. Chem. Int. Ed.20205972776278310.1002/anie.201911762 31747099
    [Google Scholar]
  109. KhanS. HasanA. AttarF. Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy.J. Control. Release202133834135710.1016/j.jconrel.2021.08.036 34428480
    [Google Scholar]
  110. BodeiL. HerrmannK. SchöderH. ScottA.M. LewisJ.S. Radiotheranostics in oncology: Current challenges and emerging opportunities.Nat. Rev. Clin. Oncol.202219853455010.1038/s41571‑022‑00652‑y 35725926
    [Google Scholar]
  111. ThoratN.D. TownelyH. BrennanG. Progress in remotely triggered hybrid nanostructures for next-generation brain cancer theranostics.ACS Biomater. Sci. Eng.2019562669268710.1021/acsbiomaterials.8b01173 33405601
    [Google Scholar]
  112. SaidS.S. CampbellS. HoareT. Externally addressable smart drug delivery vehicles: Current technologies and future directions.Chem. Mater.201931144971498910.1021/acs.chemmater.9b01798
    [Google Scholar]
  113. AsharH. RanjanA. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms.Pharmacol. Ther.202324410839310.1016/j.pharmthera.2023.108393 36965581
    [Google Scholar]
  114. KempJ.A. KwonY.J. Cancer nanotechnology: Current status and perspectives.Nano Converg.2021813410.1186/s40580‑021‑00282‑7 34727233
    [Google Scholar]
  115. XuL. SunY. LiY. Disulfiram: A Food and Drug Administration-approved multifunctional role in synergistically drug delivery systems for tumor treatment.Int. J. Pharm.202262612213010.1016/j.ijpharm.2022.122130 36007849
    [Google Scholar]
  116. OtienoE. HuangY. LiN. Utilization of superparamagnetic iron oxide nanoparticles (SPIONs) as a vector for drug delivery.Appl. Nanosci.20231396191621610.1007/s13204‑023‑02853‑y
    [Google Scholar]
  117. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  118. RawlaP SunkaraT BarsoukA Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol202191428910310.5114/pg.2018.81072
    [Google Scholar]
  119. RathboneA.P. JamieK. ToddA. HusbandA. A qualitative study exploring the lived experience of medication use in different disease states: Linking experiences of disease symptoms to medication adherence.J. Clin. Pharm. Ther.202146235236210.1111/jcpt.13288 33151549
    [Google Scholar]
  120. HassaniS. GharehaghajiN. DivbandB. Chitosan-coated iron oxide/graphene quantum dots as a potential multifunctional nanohybrid for bimodal magnetic resonance/fluorescence imaging and 5-fluorouracil delivery.Mater. Today Commun.20223110358910.1016/j.mtcomm.2022.103589
    [Google Scholar]
  121. TrpkovK. HesO. WilliamsonS.R. New developments in existing WHO entities and evolving molecular concepts: The Genitourinary Pathology Society (GUPS) update on renal neoplasia.Mod. Pathol.20213471392142410.1038/s41379‑021‑00779‑w 33664427
    [Google Scholar]
  122. ThompsonH.J. LutsivT. McGinleyJ.N. HussanH. PlaydonM.C. Dietary oncopharmacognosy as a crosswalk between precision oncology and precision nutrition.Nutrients2023159221910.3390/nu15092219 37432381
    [Google Scholar]
  123. TaoS.C. GuoS.C. Role of extracellular vesicles in tumour microenvironment.Cell Commun. Signal.202018116310.1186/s12964‑020‑00643‑5 33081785
    [Google Scholar]
  124. XuY. ZhangP. ZhangK. HuangC. The application of CA72-4 in the diagnosis, prognosis, and treatment of gastric cancer.Biochim. Biophys. Acta Rev. Cancer20211876218863410.1016/j.bbcan.2021.188634 34656687
    [Google Scholar]
  125. GinsburgO. YipC.H. BrooksA. Breast cancer early detection: A phased approach to implementation.Cancer2020126S10Suppl. 102379239310.1002/cncr.32887 32348566
    [Google Scholar]
  126. ChaupardM. de FrutosM. GrefR. Deciphering the structure and chemical composition of drug nanocarriers: From bulk approaches to individual nanoparticle characterization.Part. Part. Syst. Charact.2021389210002210.1002/ppsc.202100022
    [Google Scholar]
  127. AdamT. GopinathS.C. Nanosensors: Recent perspectives on attainments and future Kumari S, Islam M, Gupta A. based multiplex biosensors for inexpensive healthcare diagnostics: A comprehensive review.Biomed. Microdevices20232521710.1007/s10544‑023‑00656‑0 37133791
    [Google Scholar]
  128. MansouriV. BeheshtizadehN. GharibshahianM. SabouriL. VarzandehM. RezaeiN. Recent advances in regenerative medicine strategies for cancer treatment.Biomed. Pharmacother.202114111187510.1016/j.biopha.2021.111875 34229250
    [Google Scholar]
  129. WangW. ZhouC. A journey of nanomotors for targeted cancer therapy: Principles, challenges, and a critical review of the state‐of‐the‐art.Adv. Healthc. Mater.2021102200123610.1002/adhm.202001236 33111501
    [Google Scholar]
  130. TabishT.A. DeyP. MoscaS. Smart gold nanostructures for light mediated cancer theranostics: Combining optical diagnostics with photothermal therapy.Adv. Sci.2020715190344110.1002/advs.201903441 32775148
    [Google Scholar]
  131. SamrotA.V. SahithyaC.S. SelvaraniA.J. PurayilS.K. PonnaiahP. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles.Current Res Green Sustain Chem2021410004210.1016/j.crgsc.2020.100042
    [Google Scholar]
  132. BibiI. NazarN. AtaS. Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye.J. Mater. Res. Technol.2019866115612410.1016/j.jmrt.2019.10.006
    [Google Scholar]
  133. LageT. RodriguesR.O. CatarinoS. GalloJ. Bañobre-LópezM. MinasG. Graphene-based magnetic nanoparticles for theranostics: An overview for their potential in clinical application.Nanomaterials (Basel)2021115107310.3390/nano11051073 33921993
    [Google Scholar]
  134. GulS. KhanS.B. RehmanI.U. KhanM.A. KhanM.I. A comprehensive review of magnetic nanomaterials modern day theranostics.Front. Mater.2019617910.3389/fmats.2019.00179
    [Google Scholar]
  135. ShrivastavaS. JainS. KumarD. SoniS.L. SharmaM. A review on theranostics: An approach to targeted diagnosis and therapy.Asian J Pharmaceut Res Develop201972636910.22270/ajprd.v7i2.463
    [Google Scholar]
  136. HapuarachchigeS. ArtemovD. Theranostic pretargeting drug delivery and imaging platforms in cancer precision medicine.Front. Oncol.202010113110.3389/fonc.2020.01131 32793481
    [Google Scholar]
  137. LiS. XuS. LiangX. Nanotechnology: Breaking the current treatment limits of lung cancer.Adv. Healthc. Mater.20211012210007810.1002/adhm.202100078 34019739
    [Google Scholar]
  138. LiC. GuanH. LiZ. WangF. WuJ. ZhangB. Study on different particle sizes of DOX-loaded mixed micelles for cancer therapy.Colloids Surf. B Biointerfaces202019611130310.1016/j.colsurfb.2020.111303 32798988
    [Google Scholar]
  139. SheikhalipourM. GohariG. EsmaielpourB. Melatonin and tio2 nps application-induced changes in growth, photosynthesis, antioxidant enzymes activities and secondary metabolites in stevia (Stevia rebaudiana bertoni) under drought stress conditions.J. Plant Growth Regul.20234232023204010.1007/s00344‑022‑10679‑1
    [Google Scholar]
  140. EgorovaV.S. KolesovaE.P. LopusM. YanN. ParodiA. ZamyatninA.A.Jr Smart delivery systems responsive to cathepsin B activity for cancer treatment.Pharmaceutics2023157184810.3390/pharmaceutics15071848 37514035
    [Google Scholar]
  141. ZhuY. ZhangX. YouQ. JiangZ. Recent applications of CBT-Cys click reaction in biological systems.Bioorg. Med. Chem.20226811688110.1016/j.bmc.2022.116881 35716587
    [Google Scholar]
  142. VoroninD.V. AbalymovA.A. SvenskayaY.I. LomovaM.V. Key Points in remote-controlled drug delivery: From the carrier design to clinical trials.Int. J. Mol. Sci.20212217914910.3390/ijms22179149 34502059
    [Google Scholar]
  143. KarlssonJ. LulyK.M. TzengS.Y. GreenJ.J. Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies.Adv. Drug Deliv. Rev.202117911399910.1016/j.addr.2021.113999 34715258
    [Google Scholar]
  144. PandeyA. SinghK. SubramanianS. KordeA. SinghR. SawantK. Heterogeneous surface architectured pH responsive Metal-Drug Nano-conjugates for mitochondria targeted therapy of Glioblastomas: A multimodal intranasal approach.Chem. Eng. J.202039412441910.1016/j.cej.2020.124419
    [Google Scholar]
  145. SiddiqueS. ChowJ.C.L. Recent advances in functionalized nanoparticles in cancer theranostics.Nanomaterials (Basel) 20221216282610.3390/nano12162826 36014691
    [Google Scholar]
  146. JeniferA.A. MalaikozhundanB. VijayakumarS. AnjugamM. IswaryaA. VaseeharanB. Green synthesis and characterization of silver nanoparticles (AgNPs) using leaf extract of Solanum nigrum and assessment of toxicity in vertebrate and invertebrate aquatic animals.J. Cluster Sci.2020315989100210.1007/s10876‑019‑01704‑7
    [Google Scholar]
  147. ElsayedA. Al-RemawiM. JaberN. Abu-SalahK.M. Advances in buccal and oral delivery of insulin.Int. J. Pharm.202363312262310.1016/j.ijpharm.2023.122623 36681204
    [Google Scholar]
  148. Abdel-MoneimA. RamadanH. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management.Drug Dev. Res.202283230131610.1002/ddr.21903 34859477
    [Google Scholar]
  149. ShettyS.S. HalagaliP. JohnsonA.P. SpandanaK.A. GangadharappaH.V. Oral insulin delivery: Barriers, strategies, and formulation approaches: A comprehensive review.Int. J. Biol. Macromol.2023242Pt 3125114
    [Google Scholar]
  150. LiuY. ZengS. JiW. Emerging theranostic nanomaterials in diabetes and its complications.Adv. Sci. (Weinh.)202293210246610.1002/advs.202102466 34825525
    [Google Scholar]
  151. MoumarisM. BretagneJ.M. AbuafN. Nanomedical devices and cancer theranostics.Open Nanomed Nanotechnol J2020611110.2174/2666150002006010001
    [Google Scholar]
  152. ZhangZ. ConniotJ. AmorimJ. Nucleic acid-based therapy for brain cancer: Challenges and strategies.J. Control. Release2022350809210.1016/j.jconrel.2022.08.014 35970297
    [Google Scholar]
  153. UpadhyayA. Cancer: An unknown territory; rethinking before going ahead.Genes Dis.20218565566110.1016/j.gendis.2020.09.002 34291136
    [Google Scholar]
  154. BehnamB. FazilatyH. GhadyaniM. FadaviP. Taghizadeh-HesaryF. Ciliated, mitochondria-rich postmitotic cells are immune-privileged, and mimic immunosuppressive microenvironment of tumor-initiating stem cells: From molecular anatomy to molecular pathway.Front Biosci-Landmark2023281026110.31083/j.fbl2810261 37919090
    [Google Scholar]
  155. ComptonC. ComptonC. The nature and origins of cancer.Cancer: The Enemy from Within: A Comprehensive Textbook of Cancer’s Causes.Berlin, GermanySpringer2023123
    [Google Scholar]
  156. JohariyaV. JoshiA. MalviyaN. MalviyaS. Introduction to cancer.Medicinal Plants and Cancer Chemoprevention.Boca RatonCRC Press2024
    [Google Scholar]
  157. XuY. XiongJ. SunX. GaoH. Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy.Acta Pharm. Sin. B202212124327434710.1016/j.apsb.2022.11.001 36561994
    [Google Scholar]
  158. DasS. DasM.K. Technological challenges of theranostics in oncology.Multifunctional Theranostic Nanomedicines in Cancer.Cambridge, MassachusettsAcademic Press202130734410.1016/B978‑0‑12‑821712‑2.00014‑1
    [Google Scholar]
  159. HosseiniS.M. MohammadnejadJ. SalamatS. Beiram ZadehZ. TanhaeiM. RamakrishnaS. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: A review.Mater. Today Chem.20232910140010.1016/j.mtchem.2023.101400
    [Google Scholar]
  160. AugustineR. MamunA.A. HasanA. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis.Adv. Colloid Interface Sci.202129410245710.1016/j.cis.2021.102457 34144344
    [Google Scholar]
  161. ZhangY. LiangL. LiH. Smart multi‐functional aggregates reoxygenate tumor microenvironment through a two‐pronged strategy to revitalize cancer immunotherapy.Aggregate2024202454510.1002/agt2.545
    [Google Scholar]
  162. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  163. WangD. SalehN.B. ByroA. Nano-enabled pesticides for sustainable agriculture and global food security.Nat. Nanotechnol.202217434736010.1038/s41565‑022‑01082‑8 35332293
    [Google Scholar]
  164. LangS.T.K. DawsonA. DiamantakisM. More accuracy with less precision.Q. J. R. Meteorol. Soc.20211477414358437010.1002/qj.4181
    [Google Scholar]
  165. KempJ.A. KwonY. Cancer nanotechnology: Current status and perspectives.Nano Converg.202118134
    [Google Scholar]
  166. LiX. ZhangL. HuS. Postmarketing safety of Sacituzumab Govitecan: A pharmacovigilance study based on the FDA adverse event reporting system.Clin. Pharmacol. Ther.2024115225626810.1002/cpt.3098 37994531
    [Google Scholar]
  167. FieringS. IvkovR. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies.Adv. Drug Deliv. Rev.20201636583
    [Google Scholar]
  168. AbdelbakyS.B. IbrahimM.T. SamyH. Cancer immunotherapy from biology to nanomedicine.J. Control. Release202133641043210.1016/j.jconrel.2021.06.025 34171445
    [Google Scholar]
  169. SharmiladeviP. GirigoswamiK. HaribabuV. GirigoswamiA. Nano-enabled theranostics for cancer.Mater. Adv.2021292876289110.1039/D1MA00069A
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947316490240804195642
Loading
/content/journals/cctr/10.2174/0115733947316490240804195642
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; diagnostic; imaging; nanoparticles; nanotechnology; Theranostic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test