Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

The development of novel colloidal formulations that can regulate the pharmacological and biological properties of medications has been made possible by the developments of nanotechnology. Biodegradable nanoparticles were exploited as drug delivery methods because of their high bioavailability, improved encapsulation, controlled release, and less toxic characteristics. Over the past few decades, a variety of synthetic polymers have been investigated for application in nanomedicine, particularly in drug delivery systems. Drug delivery polymers need to be environmentally friendly, biodegradable, and biocompatible. As they have the ability to provide targeted delivery to a specified site, polymeric nanoparticles have the potential to increase the effectiveness of cancer therapies significantly. It is possible to modify the physical and chemical characteristics of polymers to provide delivery across the many biological barriers needed to reach different cell subsets. The use of biodegradable polymers as nanocarriers is particularly appealing since these materials can be developed to show triggered functionality at certain locations or activated by an external source in addition to degrading under physiological circumstances. Biodegradable polymers can be developed as easy drug-delivery systems that specifically target the tumour microenvironment. This is because these nanomedicines can directly target cancer cells, as well as blood vessels that supply the nutrition and oxygen required for tumour growth and immune cells that support anti-cancer immunotherapy. With the advancements in nanotechnology-based drug delivery systems for pharmaceutical applications, it is exciting to examine and highlight the significance of polymeric nanocarrier systems for drug delivery in chemotherapy.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947307485240730105541
2025-08-09
2025-12-06
Loading full text...

Full text loading...

References

  1. TiwariG. TiwariR. BannerjeeS.K. BhatiL. PandeyS. PandeyP. SriwastawaB. Drug delivery systems: An updated review.Int. J. Pharm. Investig.20122121110.4103/2230‑973X.9692023071954
    [Google Scholar]
  2. AsadipourE. AsgariM. MousaviP. Piri-GharaghieT. GhajariG. MirzaieA. Nano-biotechnology and challenges of drug delivery system in cancer treatment pathway: review article.Chem. Biodivers.2023206: e202201072.10.1002/cbdv.20220107236857487
    [Google Scholar]
  3. SeynhaeveA.L.B. AminM. HaemmerichD. van RhoonG.C. ten HagenT.L.M. Hyperthermia and smart drug delivery systems for solid tumor therapy.Adv. Drug Deliv. Rev.2020163-16412514410.1016/j.addr.2020.02.00432092379
    [Google Scholar]
  4. KraftJ.C. FreelingJ.P. WangZ. HoR.J.Y. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems.J. Pharm. Sci.20141031295210.1002/jps.2377324338748
    [Google Scholar]
  5. AllenT.M. CullisP.R. Drug delivery systems: entering the mainstream.Science200430356651818182210.1126/science.109583315031496
    [Google Scholar]
  6. CaragliaM. De RosaG. SalzanoG. SantiniD. LambertiM. SperlonganoP. LombardiA. AbbruzzeseA. AddeoR. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier.Curr. Cancer Drug Targets201212318619610.2174/15680091279927742122268384
    [Google Scholar]
  7. EdisZ. WangJ. WaqasM.K. IjazM. IjazM. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives.Int. J. Nanomedicine2021161313133010.2147/IJN.S28944333628022
    [Google Scholar]
  8. LopezF.L. ErnestT.B. TuleuC. GulM.O. Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms.Expert Opin. Drug Deliv.201512111727174010.1517/17425247.2015.106021826165848
    [Google Scholar]
  9. MusthabaS.M. BabootaS. AhmedS. AhujaA. AliJ. Status of novel drug delivery technology for phytotherapeutics.Expert Opin. Drug Deliv.20096662563710.1517/1742524090298015419505192
    [Google Scholar]
  10. HuaS. MarksE. SchneiderJ.J. KeelyS. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue.Nanomedicine20151151117113210.1016/j.nano.2015.02.01825784453
    [Google Scholar]
  11. SinghH. SharmaG. Recent development of novel drug delivery of herbal drugs.RPS Pharm. Pharmacol. Rep.202324rqad02810.1093/rpsppr/rqad028
    [Google Scholar]
  12. TewabeA. AbateA. TamrieM. SeyfuA. Abdela SirajE. Targeted drug delivery - from magic bullet to nanomedicine: principles, challenges, and future perspectives.J. Multidiscip. Healthc.2021141711172410.2147/JMDH.S31396834267523
    [Google Scholar]
  13. SowjanyaM. DebnathS. LavanyaP. ThejovathiR. BabuM.N. Polymers used in the designing of controlled drug delivery system.Research Journal of Pharmacy and Technology201710390391210.5958/0974‑360X.2017.00168.8
    [Google Scholar]
  14. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.2014666622510.1016/j.addr.2013.11.00924270007
    [Google Scholar]
  15. BazakR. HouriM. AchyS.E. HusseinW. RefaatT. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature.Mol. Clin. Oncol.20142690490810.3892/mco.2014.35625279172
    [Google Scholar]
  16. MaruyamaK. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects.Adv. Drug Deliv. Rev.201163316116910.1016/j.addr.2010.09.00320869415
    [Google Scholar]
  17. SahooS.K. LabhasetwarV. Nanotech approaches to drug delivery and imaging.Drug Discov. Today20038241112112010.1016/S1359‑6446(03)02903‑914678737
    [Google Scholar]
  18. BhaskarS. TianF. StoegerT. KreylingW. de la FuenteJ.M. GrazúV. BormP. EstradaG. NtziachristosV. RazanskyD. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging.Part. Fibre Toxicol.201071310.1186/1743‑8977‑7‑3
    [Google Scholar]
  19. PetersenP.E. Oral cancer prevention and control – The approach of the World Health Organization.Oral Oncol.2009454-545446010.1016/j.oraloncology.2008.05.02318804412
    [Google Scholar]
  20. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.00131854162
    [Google Scholar]
  21. ShibuyaK. MathersC.D. Boschi-PintoC. LopezA.D. MurrayC.J.L. Global and regional estimates of cancer mortality and incidence by site: II. results for the global burden of disease 2000.BMC Cancer2002213710.1186/1471‑2407‑2‑3712502432
    [Google Scholar]
  22. ArnoldM. SierraM.S. LaversanneM. SoerjomataramI. JemalA. BrayF. Global patterns and trends in colorectal cancer incidence and mortality.Gut201766468369110.1136/gutjnl‑2015‑31091226818619
    [Google Scholar]
  23. AlbergA.J. BrockM.V. FordJ.G. SametJ.M. SpivackS.D. Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines.Chest20131435e1S-e29S10.1378/chest.12‑2345
    [Google Scholar]
  24. HousmanG. BylerS. HeerbothS. LapinskaK. LongacreM. SnyderN. SarkarS. Drug resistance in cancer: an overview.Cancers (Basel)2014631769179210.3390/cancers603176925198391
    [Google Scholar]
  25. MeachamC.E. MorrisonS.J. Tumour heterogeneity and cancer cell plasticity.Nature2013501746732833710.1038/nature1262424048065
    [Google Scholar]
  26. YooK.Y. ShinH.R. Cancer epidemiology and prevention.Korean J. Epidemiol.20032511511850580
    [Google Scholar]
  27. SetoM. HonmaK. NakagawaM. Diversity of genome profiles in malignant lymphoma.Cancer Sci.2010101357357810.1111/j.1349‑7006.2009.01452.x20070305
    [Google Scholar]
  28. GhobrialI.M. WitzigT.E. AdjeiA.A. Targeting apoptosis pathways in cancer therapy.CA Cancer J. Clin.200555317819410.3322/canjclin.55.3.17815890640
    [Google Scholar]
  29. RajaramanR. GuernseyD.L. RajaramanM.M. RajaramanS.R. Stem cells, senescence, neosis and self-renewal in cancer.Cancer Cell Int.2006612510.1186/1475‑2867‑6‑2517092342
    [Google Scholar]
  30. KhanS.U. FatimaK. MalikF. KalkavanH. WaniA. Cancer metastasis: Molecular mechanisms and clinical perspectives.Pharmacol. Ther.202325010852210.1016/j.pharmthera.2023.10852237661054
    [Google Scholar]
  31. KanwalR. GuptaS. Epigenetic modifications in cancer.Clin. Genet.201281430331110.1111/j.1399‑0004.2011.01809.x22082348
    [Google Scholar]
  32. ChuangJ.C. JonesP.A. Epigenetics and MicroRNAs.Pediatr. Res.2007615 Part 224R29R10.1203/pdr.0b013e318045768417413852
    [Google Scholar]
  33. HolmK. StaafJ. LaussM. AineM. LindgrenD. BendahlP.O. Vallon-ChristerssonJ. BarkardottirR.B. HöglundM. BorgÅ. JönssonG. RingnérM. An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells.Breast Cancer Res.20161812710.1186/s13058‑016‑0685‑526923702
    [Google Scholar]
  34. EhrlichM. DNA methylation in cancer: too much, but also too little.Oncogene200221355400541310.1038/sj.onc.120565112154403
    [Google Scholar]
  35. HanahanD. WeinbergR.A. Hallmarks of cancer: the next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  36. KontomanolisE.N. KoutrasA. SyllaiosA. SchizasD. MastorakiA. GarmpisN. DiakosavvasM. AngelouK. TsatsarisG. PagkalosA. NtounisT. FasoulakisZ. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review.Anticancer Res.202040116009601510.21873/anticanres.1462233109539
    [Google Scholar]
  37. SaeedS. Ud DinS.R. KhanS.U. GulR. KianiF.A. WahabA. ZhongM. Nanoparticle: a promising player in nanomedicine and its theranostic applications for the treatment of cardiovascular diseases.Curr. Probl. Cardiol.202348510159910.1016/j.cpcardiol.2023.10159936681209
    [Google Scholar]
  38. OltraN.S. NairP. DischerD.E. From stealthy polymersomes and filomicelles to “self” Peptide-nanoparticles for cancer therapy.Annu. Rev. Chem. Biomol. Eng.20145128129910.1146/annurev‑chembioeng‑060713‑04044724910917
    [Google Scholar]
  39. DuncanR. VicentM.J. Polymer therapeutics-prospects for 21st century: The end of the beginning.Adv. Drug Deliv. Rev.2013651607010.1016/j.addr.2012.08.01222981753
    [Google Scholar]
  40. LiuN. ChenQ. ZhangQ. WangJ. SiR. ZhangJ. PanX. The Application of Prodrug-based Drug Delivery Strategy in Anticancer Drugs.Curr. Top. Med. Chem.202121242184220410.2174/156802662166621090916310834503405
    [Google Scholar]
  41. TurosE. ShimJ.Y. WangY. GreenhalghK. ReddyG.S.K. DickeyS. LimD.V. Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents.Bioorg. Med. Chem. Lett.2007171535610.1016/j.bmcl.2006.09.09817049850
    [Google Scholar]
  42. ShastriV. Non-degradable biocompatible polymers in medicine: past, present and future.Curr. Pharm. Biotechnol.20034533133710.2174/138920103348969414529423
    [Google Scholar]
  43. ZhangG. NiuA. PengS. JiangM. TuY. LiM. WuC. Formation of novel polymeric nanoparticles.Acc. Chem. Res.200134324925610.1021/ar000011x11263883
    [Google Scholar]
  44. SakamotoK. LochheadR.Y. MaibachH.I. YamashitaY. Cosmetic Science and Technology: Theoretical Principles and Applications.Amsterdam, NetherlandsElsevier2017149369
    [Google Scholar]
  45. PriyaV.S.V. RoyH.K. jyothiN. PrasanthiN.L. Polymers in drug delivery technology, types of polymers and applications.Scholars Academic Journal of Pharmacy20165730530810.21276/sajp.2016.5.7.7
    [Google Scholar]
  46. RaizadaA. BandariA. KumarB. Polymers in drug delivery: a review.Int. J. Pharm. Res. Dev.201028920
    [Google Scholar]
  47. ChandelP. RajkumariK.A. Polymers–A BT. Delivery System.Int. Res. J. Pharm201344283410.7897/2230‑8407.04405
    [Google Scholar]
  48. OnoueS. YamadaS. ChanK. Nanodrugs: pharmacokinetics and safety.Int. J. Nanomedicine201491025103710.2147/IJN.S3837824591825
    [Google Scholar]
  49. RahdatA. KazemiS. AskariF. Pluronic as nano-carier for drug delivery systems.J. Nanomed. Res.201834174179
    [Google Scholar]
  50. SchmaljohannD. Thermo- and pH-responsive polymers in drug delivery.Adv. Drug Deliv. Rev.200658151655167010.1016/j.addr.2006.09.02017125884
    [Google Scholar]
  51. LiechtyW.B. KryscioD.R. SlaughterB.V. PeppasN.A. Polymers for drug delivery systems.Annu. Rev. Chem. Biomol. Eng.20101114917310.1146/annurev‑chembioeng‑073009‑10084722432577
    [Google Scholar]
  52. SunS.B. LiuP. ShaoF.M. MiaoQ.L. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer.Int. J. Clin. Exp. Med.2015810196701968126770631
    [Google Scholar]
  53. WeiK. PengX. ZouF. Folate-decorated PEG–PLGA nanoparticles with silica shells for capecitabine controlled and targeted delivery.Int. J. Pharm.20144641-222523310.1016/j.ijpharm.2013.12.04724463073
    [Google Scholar]
  54. PandeyS. Vijayendra SwamyS.M. Ubaid UllaU.M. GuptaA. PatelH. YadavJ.S. Cell line and augument cellular uptake study of statistically optimized sustained release capecitabine loaded Eudragit S100/PLGA (poly (lacticco-glycolic acid)) nanoparticles for colon targeting.Curr. Drug Deliv.201714688789927538461
    [Google Scholar]
  55. JenaG.K. PatraC.N. DixitP.K. Cytotoxicity and pharmacokinetic studies of PLGA based capecitabine loaded nanoparticles.Indian Journal of Pharmaceutical Education and Research202054234935610.5530/ijper.54.2.40
    [Google Scholar]
  56. JanN. MadniA. RahimM.A. KhanN.U. JamshaidT. KhanA. JabarA. KhanS. ShahH. In vitro anti-leukemic assessment and sustained release behaviour of cytarabine loaded biodegradable polymer based nanoparticles.Life Sci.202126711897110.1016/j.lfs.2020.11897133385406
    [Google Scholar]
  57. YadavK.S. SawantK.K. Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles.AAPS PharmSciTech20101131456146510.1208/s12249‑010‑9519‑420842542
    [Google Scholar]
  58. MattosA.C. AltmeyerC. TominagaT.T. KhalilN.M. MainardesR.M. Polymeric nanoparticles for oral delivery of 5-fluorouracil: Formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study.Eur. J. Pharm. Sci.201684839110.1016/j.ejps.2016.01.01226775869
    [Google Scholar]
  59. ÖcalH. Arıca-YeginB. Vuralİ. GoracinovaK. ÇalışS. 5-Fluorouracil-loaded PLA/PLGA PEG–PPG–PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies.Drug Dev. Ind. Pharm.201440456056710.3109/03639045.2013.77558123596973
    [Google Scholar]
  60. BadranM.M. MadyM.M. GhannamM.M. ShakeelF. Preparation and characterization of polymeric nanoparticles surface modified with chitosan for target treatment of colorectal cancer.Int. J. Biol. Macromol.20179564364910.1016/j.ijbiomac.2016.11.09827908720
    [Google Scholar]
  61. BhattacharyaS. AnjumM.M. PatelK.K. Gemcitabine cationic polymeric nanoparticles against ovarian cancer: formulation, characterization, and targeted drug delivery.Drug Deliv.20222911060107410.1080/10717544.2022.205864535363113
    [Google Scholar]
  62. KumarG.P. SanganalJ.S. PhaniA.R. ManoharaC. TripathiS.M. RaghavendraH.L. JanardhanaP.B. AmareshaS. SwamyK.B. PrasadR.G.S.V. Anti-cancerous efficacy and pharmacokinetics of 6-mercaptopurine loaded chitosan nanoparticles.Pharmacol. Res.2015100475710.1016/j.phrs.2015.07.02526232590
    [Google Scholar]
  63. ZouY. MeiD. YuanJ. HanJ. XuJ. SunN. HeH. YangC. ZhaoL. Preparation, characterization, pharmacokinetic, and therapeutic potential of novel 6-mercaptopurine-loaded oral nanomedicines for acute lymphoblastic leukemia.Int. J. Nanomedicine2021161127114110.2147/IJN.S29046633603372
    [Google Scholar]
  64. JangJ.H. JeongS.H. LeeY.B. Preparation and in vitro/in vivo characterization of polymeric nanoparticles containing methotrexate to improve lymphatic delivery.Int. J. Mol. Sci.20192013331210.3390/ijms2013331231284483
    [Google Scholar]
  65. AhmadN. AhmadR. AlamM.A. AhmadF.J. Enhancement of oral bioavailability of doxorubicin through surface modified biodegradable polymeric nanoparticles.Chem. Cent. J.20181216510.1186/s13065‑018‑0434‑129796830
    [Google Scholar]
  66. LiuC.W. LinW.J. Polymeric nanoparticles conjugate a novel heptapeptide as an epidermal growth factor receptor-active targeting ligand for doxorubicin.Int. J. Nanomedicine201274749476722973097
    [Google Scholar]
  67. ShaikhM.V. KalaM. NivsarkarM. Formulation and optimization of doxorubicin loaded polymeric nanoparticles using Box-Behnken design: ex-vivo stability and in-vitro activity.Eur. J. Pharm. Sci.201710026227210.1016/j.ejps.2017.01.02628126560
    [Google Scholar]
  68. TariqM. AlamM.A. SinghA.T. IqbalZ. PandaA.K. TalegaonkarS. Biodegradable polymeric nanoparticles for oral delivery of epirubicin: In vitro, ex vivo, and in vivo investigations.Colloids Surf. B Biointerfaces201512844845610.1016/j.colsurfb.2015.02.04325769281
    [Google Scholar]
  69. MassadehS. AlmohammedI. BarhoushE. OmerM. AldhawiN. AlmalikA. AlaameryM. Development of epirubicin-loaded biocompatible polymer PLA–PEG–PLA nanoparticles: synthesis, characterization, stability, and in vitro anticancerous assessment.Polymers (Basel)2021138121210.3390/polym1308121233918625
    [Google Scholar]
  70. DiasD.J.S. JoanittiG.A. AzevedoR.B. SilvaL.P. LunardiC.N. GomesA.J. Chlorambucil encapsulation into PLGA nanoparticles and cytotoxic effects in breast cancer cell.J. Biophys. Chem.20156111310.4236/jbpc.2015.61001
    [Google Scholar]
  71. ChenB. YangJ.Z. WangL.F. ZhangY.J. LinX.J. Ifosfamide-loaded poly (lactic-co-glycolic acid) PLGA-dextran polymeric nanoparticles to improve the antitumor efficacy in Osteosarcoma.BMC Cancer201515175210.1186/s12885‑015‑1735‑626486165
    [Google Scholar]
  72. MehrotraA. NagarwalR.C. PanditJ.K. Lomustine loaded chitosan nanoparticles: characterization and in-vitro cytotoxicity on human lung cancer cell line L132.Chem. Pharm. Bull. (Tokyo)201159331532010.1248/cpb.59.31521372411
    [Google Scholar]
  73. MehrotraA. PanditJ.K. Preparation and characterization and biodistribution studies of lomustine loaded PLGA nanoparticles by interfacial deposition method.J. Nanomed. Nanotechnol.201566110.4172/2157‑7439.1000328
    [Google Scholar]
  74. RafieiP. HaddadiA. A robust systematic design: Optimization and preparation of polymeric nanoparticles of PLGA for docetaxel intravenous delivery.Mater. Sci. Eng. C201910410995010.1016/j.msec.2019.10995031499976
    [Google Scholar]
  75. RaspantiniG.L. LuizM.T. AbriataJ.P. EloyJ.O. VaidergornM.M. EmeryF.S. MarchettiJ.M. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: Development, physicochemical and biological characterization.Colloids Surf. A Physicochem. Eng. Asp.202162712714410.1016/j.colsurfa.2021.127144
    [Google Scholar]
  76. WangJ. LiuW. TuQ. WangJ. SongN. ZhangY. NieN. WangJ. Folate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery.Biomacromolecules201112122823410.1021/bm101206g21158381
    [Google Scholar]
  77. SongN. LiuW. TuQ. LiuR. ZhangY. WangJ. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery.Colloids Surf. B Biointerfaces201187245446310.1016/j.colsurfb.2011.06.00921719259
    [Google Scholar]
  78. AbriataJ.P. TurattiR.C. LuizM.T. RaspantiniG.L. TofaniL.B. do AmaralR.L.F. SwiechK. MarcatoP.D. MarchettiJ.M. Development, characterization and biological in vitro assays of paclitaxel-loaded PCL polymeric nanoparticles.Mater. Sci. Eng. C20199634735510.1016/j.msec.2018.11.03530606542
    [Google Scholar]
  79. Al-MusawiS. IbraheemS. Abdul MahdiS. AlbukhatyS. HaiderA.J. KadhimA.A. KadhimK.A. KadhimH.A. Al-KaragolyH. Smart nanoformulation based on polymeric magnetic nanoparticles and vincristine drug: a novel therapy for apoptotic gene expression in tumors.Life (Basel)20211117110.3390/life1101007133478036
    [Google Scholar]
  80. ChenJ. LiS. ShenQ. HeH. ZhangY. Enhanced cellular uptake of folic acid–conjugated PLGA–PEG nanoparticles loaded with vincristine sulfate in human breast cancer.Drug Dev. Ind. Pharm.201137111339134610.3109/03639045.2011.57516221524153
    [Google Scholar]
  81. Pinto ReisC. NeufeldR.J. RibeiroA.J. VeigaF. NanoencapsulationI. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles.Nanomedicine20062182110.1016/j.nano.2005.12.00317292111
    [Google Scholar]
  82. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  83. PrabhuR.H. PatravaleV.B. JoshiM.D. Polymeric nanoparticles for targeted treatment in oncology: current insights.Int. J. Nanomedicine2015101001101825678788
    [Google Scholar]
  84. DanhierF. LecouturierN. VromanB. JérômeC. Marchand-BrynaertJ. FeronO. PréatV. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation.J. Control. Release20091331111710.1016/j.jconrel.2008.09.08618950666
    [Google Scholar]
  85. MaP. MumperR.J. Paclitaxel nano-delivery systems: a comprehensive review.J. Nanomed. Nanotechnol.201342100016410.4172/2157‑7439.100016424163786
    [Google Scholar]
  86. ChuaC.Y.X. HoJ. DemariaS. FerrariM. GrattoniA. Emerging technologies for local cancer treatment.Adv. Ther. (Weinh.)202039200002710.1002/adtp.20200002733072860
    [Google Scholar]
  87. OwensD.III PeppasN. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.Int. J. Pharm.200630719310210.1016/j.ijpharm.2005.10.01016303268
    [Google Scholar]
  88. GustafsonH.H. Holt-CasperD. GraingerD.W. GhandehariH. Nanoparticle uptake: The phagocyte problem.Nano Today201510448751010.1016/j.nantod.2015.06.00626640510
    [Google Scholar]
  89. CouvreurP. VauthierC. Nanotechnology: intelligent design to treat complex disease.Pharm. Res.20062371417145010.1007/s11095‑006‑0284‑816779701
    [Google Scholar]
  90. PackD.W. HoffmanA.S. PunS. StaytonP.S. Design and development of polymers for gene delivery.Nat. Rev. Drug Discov.20054758159310.1038/nrd177516052241
    [Google Scholar]
  91. DavisM.E. ChenZ. ShinD.M. Nanoparticle therapeutics: an emerging treatment modality for cancer.Nat. Rev. Drug Discov.20087977178210.1038/nrd261418758474
    [Google Scholar]
  92. BhavsarM.D. ShenoyB.D. AmijiM.M. Polymeric nanoparticles for delivery in the gastro-intestinal tract.Nanoparticulates as Drug Carriers. TorchilinV.P. London, EnglandImperial College Press200660964810.1142/9781860949074_0026
    [Google Scholar]
  93. OuyangQ. SchmidtM. MorrowE.M. Dynamic measurement of endosome-lysosome fusion in neurons using high-content imaging.Methods Mol. Biol.2023268320121210.1007/978‑1‑0716‑3287‑1_1637300777
    [Google Scholar]
  94. BarefordL. SwaanP. Endocytic mechanisms for targeted drug delivery.Adv. Drug Deliv. Rev.200759874875810.1016/j.addr.2007.06.00817659804
    [Google Scholar]
  95. PatelJ.K. PatelA.P. Passive targeting of nanoparticles to cancer.Surface Modification of Nanoparticles for Targeted Drug Delivery. PathakY.V. SwitzerlandSpringer Cham201912514310.1007/978‑3‑030‑06115‑9_6
    [Google Scholar]
  96. JainK.K. Role of nanobiotechnology in drug delivery.Methods Mol. Biol.20202059557310.1007/978‑1‑4939‑9798‑5_231435915
    [Google Scholar]
  97. LiechtyW.B. PeppasN.A. Expert opinion: Responsive polymer nanoparticles in cancer therapy.Eur. J. Pharm. Biopharm.201280224124610.1016/j.ejpb.2011.08.00421888972
    [Google Scholar]
  98. AttiaM.F. AntonN. WallynJ. OmranZ. VandammeT.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.J. Pharm. Pharmacol.20197181185119810.1111/jphp.1309831049986
    [Google Scholar]
  99. AkhterS. AhmadI. AhmadM.Z. RamazaniF. SinghA. RahmanZ. AhmadF.J. StormG. KokR.J. Nanomedicines as cancer therapeutics: current status.Curr. Cancer Drug Targets201313436237810.2174/156800961131304000223517593
    [Google Scholar]
  100. FangJ. NakamuraH. MaedaH. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect.Adv. Drug Deliv. Rev.201163313615110.1016/j.addr.2010.04.00920441782
    [Google Scholar]
  101. PhillipsM.A. GranM.L. PeppasN.A. Targeted nanodelivery of drugs and diagnostics.Nano Today20105214315910.1016/j.nantod.2010.03.00320543895
    [Google Scholar]
  102. KumariP. GhoshB. BiswasS. Nanocarriers for cancer-targeted drug delivery.J. Drug Target.201624317919110.3109/1061186X.2015.105104926061298
    [Google Scholar]
  103. KamalyN. XiaoZ. ValenciaP.M. Radovic-MorenoA.F. FarokhzadO.C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation.Chem. Soc. Rev.20124172971301010.1039/c2cs15344k22388185
    [Google Scholar]
  104. ByrneJ.D. BetancourtT. Brannon-PeppasL. Active targeting schemes for nanoparticle systems in cancer therapeutics.Adv. Drug Deliv. Rev.200860151615162610.1016/j.addr.2008.08.00518840489
    [Google Scholar]
  105. ZaleS.E. TroianoG. AliM.M. HrkachJ. WrightJ. Drug loaded polymeric nanoparticles and methods of making and using same.Patent US8603534B2, 2014.
  106. SinghH. Polymeric nanoparticles and a process of preparation thereof.Patent US11246904B2, 2022.
  107. ZaleS.E. drug loaded polymeric nanoparticles and methods of making and using same.Patent US20160354320A1, 2016.
  108. GuF JonesL.W.J. ShengyanL. Mucoadhesive nanoparticle delivery system.Patent EP2863892B1, 2017.
  109. HorhotaA.T. SongY.H. JoshiU.C. Therapeutic nanoparticles comprising a therapeutic agent and methods of making and using same.Patent US10952972B2, 2021.
  110. ChenY.C. LiuJ.Y. GaoD.Y. Method for treatment of liver cancer and inhibition of metastasis with cxc-chemokine-receptor 4-targeted nanoparticle.Patent US9415011B1, 2016.
  111. PerezJ.M. SantraS. Synthesis of hyper branched amphiphilic polyester and theranostic nanoparticles thereof.Patent US9555008B2, 2017.
  112. WuH.C. ChilungY.H. Cancer specific peptides for targeted drug delivery and molecular imaging.Patent US9387257B2, 2016.
  113. ZaleS.E. TroianoG. AliM.M. HrkachJ. WrightJ. Therapeutic polymeric nanoparticles comprising vinca alkaloids and methods of making and using same.Patent US9351933B2, 2016.
  114. KoshelevaO.K. LaiP. ChenN.G. HsiaoM. ChenC.H. Nanoparticle-assisted ultrasound for cancer therapy.Patent US9138476B2, 2015.
  115. AyoubA. SafadiN. BasheerS. Surface-modified heavy metal nanoparticles, compositions and uses thereof.Patent US9486480B2, 2016.
  116. KellyK. WeisslederR. BardesyN. Plectin-1 targeted agents for detection and treatment of pancreatic ductal adenocarcinoma.Patent US9387265B2, 2016.
  117. KimK.M. KimS.W. KwonI.C. YheeJ.Y. LeeS. Gelatin-based nanoparticle complex for tumor-targeted delivery of sirna and method for preparing the same.Patent US9415060B2, 2016.
  118. BradenA.R.C. VishwanathaJ.K. Formulation of active agent loaded activated PLGA nanoparticles for targeted cancer nano-therapeutics.Patent US9555011B2, 2017.
  119. WuX.Y. ShalviriA. CaiP. Polymeric nanoparticles useful in theranostics.Patent US20150132384A1, 2019.
/content/journals/cctr/10.2174/0115733947307485240730105541
Loading
/content/journals/cctr/10.2174/0115733947307485240730105541
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Biodegradable polymers; cancer; chemotherapy; drug delivery; nanocarriers; nanotechnology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test