Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Since the beginning of the 21st century, there have been significant advancements in the field of cancer treatment, resulting in markedly improved outcomes for patients. This review provides an updated view of some recently developed and FDA-approved small molecules that have been used to treat various types of cancer on different indications and targets. Some popular search engines, such as Pubmed, Google Scholar, ., were considered for the literature review, and drugs approved by the FDA from 2019 to 2023 were considered for study in this review. This review focuses on the mechanism of actions and targets which these FDA-approved small molecules could demonstrate their clinical efficacy. Moreover, this review would pave the way for the scientific community to look into the chemical structures of these small molecules to discover more small synthetic compounds after modification based on structural activity that might be useful in treating various types of cancer. However, much attention is being paid to how new therapies and tools will change how cancer is treated in the coming years. This review indicated the increased rate of approvals by the FDA for oncology treatment during 2019-2023. This surge is primarily driven by the approval of targeted therapies and the introduction of novel therapeutic approaches.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947301362240330090709
2024-04-09
2025-09-04
Loading full text...

Full text loading...

References

  1. LandauD. Why advances in immunotherapy mean the golden age of oncology.Oncology Times20194113243210.1097/01.COT.0000574936.15457.93
    [Google Scholar]
  2. SmithC.E.P. PrasadV. Assessment of new molecular entities approved for cancer treatment in 2020.JAMA Netw. Open202145e211255810.1001/jamanetworkopen.2021.1255834047795
    [Google Scholar]
  3. DavisJ.R. BenjaminD.J. JonasB.A. New and emerging therapies for acute myeloid leukaemia.J. Investig. Med.20186681088109510.1136/jim‑2018‑00080730127098
    [Google Scholar]
  4. SuzmanD.L. AgrawalS. NingY.M. MaherV.E. FernandesL.L. KaruriS. TangS. SridharaR. SchroederJ. GoldbergK.B. IbrahimA. McKeeA.E. PazdurR. BeaverJ.A. FDA approval summary: Atezolizumab or pembrolizumab for the treatment of patients with advanced urothelial carcinoma ineligible for cisplatin-containing chemotherapy.Oncologist201924456356910.1634/theoncologist.2018‑008430541754
    [Google Scholar]
  5. SarpatwariA. DiBelloJ. ZakarianM. NajafzadehM. KesselheimA.S. Competition and price among brand-name drugs in the same class: A systematic review of the evidence.PLoS Med.2019167e100287210.1371/journal.pmed.100287231361747
    [Google Scholar]
  6. JuricD. RodonJ. TaberneroJ. JankuF. BurrisH.A. SchellensJ.H.M. MiddletonM.R. BerlinJ. SchulerM. Gil-MartinM. RugoH.S. Seggewiss-BernhardtR. HuangA. BootleD. DemanseD. BlumensteinL. CoughlinC. QuadtC. BaselgaJ. Phosphatidylinositol 3-kinase α-selective inhibition with alpelisib (BYL719) in PIK3CA-altered solid tumors: Results from the first-in-human study.J. Clin. Oncol.201836131291129910.1200/JCO.2017.72.710729401002
    [Google Scholar]
  7. PereiraB. ChinS.F. RuedaO.M. VollanH.K.M. ProvenzanoE. BardwellH.A. PughM. JonesL. RussellR. SammutS.J. TsuiD.W.Y. LiuB. DawsonS.J. AbrahamJ. NorthenH. PedenJ.F. MukherjeeA. TurashviliG. GreenA.R. McKinneyS. OloumiA. ShahS. RosenfeldN. MurphyL. BentleyD.R. EllisI.O. PurushothamA. PinderS.E. Børresen-DaleA.L. EarlH.M. PharoahP.D. RossM.T. AparicioS. CaldasC. Erratum: The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes.Nat. Commun.2016711190810.1038/ncomms1147927264733
    [Google Scholar]
  8. MarkhamA. Alpelisib: First global approval.Drugs201979111249125310.1007/s40265‑019‑01161‑631256368
    [Google Scholar]
  9. MichelleJ. L. NanJ. JenniferR. G. DanielE. J. Alterations and molecular targeting of the GSK-3 regulator, PI3K, in head and neck cancer.Biochim Biophys Acta Mol Cell Res.202018679118679
    [Google Scholar]
  10. LeistT.P. WeissertR. Cladribine: Mode of action and implications for treatment of multiple sclerosis.Clin. Neuropharmacol.2011341283510.1097/WNF.0b013e318204cd9021242742
    [Google Scholar]
  11. BeutlerE. Cladribine (2-chlorodeoxyadenosine).Lancet1992340882595295610.1016/0140‑6736(92)92826‑21357355
    [Google Scholar]
  12. SigalD.S. SavenA. Cladribine in indolent non-Hodgkin’s lymphoma.Expert Rev. Anticancer Ther.20088453554510.1586/14737140.8.4.53518402520
    [Google Scholar]
  13. GoodmanG.R. BeutlerE. SavenA. Cladribine in the treatment of hairy-cell leukaemia.Best Pract. Res. Clin. Haematol.200316110111610.1016/S1521‑6926(02)00089‑012670469
    [Google Scholar]
  14. ToyG. AustinW.R. LiaoH.I. ChengD. SinghA. CampbellD.O. IshikawaT.O. LehmannL.W. SatyamurthyN. PhelpsM.E. HerschmanH.R. CzerninJ. WitteO.N. RaduC.G. Requirement for deoxycytidine kinase in T and B lymphocyte development.Proc. Natl. Acad. Sci. USA2010107125551555610.1073/pnas.091390010720080663
    [Google Scholar]
  15. CarsonD.A. WassonD.B. KayeJ. UllmanB. MartinD.W.Jr RobinsR.K. MontgomeryJ.A. Deoxycytidine kinase-mediated toxicity of deoxyadenosine analogs toward malignant human lymphoblasts in vitro and toward murine L1210 leukemia in vivo.Proc. Natl. Acad. Sci. USA198077116865686910.1073/pnas.77.11.68656256765
    [Google Scholar]
  16. SigalD.S. MillerH.J. SchramE.D. SavenA. Beyond hairy cell: The activity of cladribine in other hematologic malignancies.Blood2010116162884289610.1182/blood‑2010‑02‑24614020634380
    [Google Scholar]
  17. BrysonH.M. SorkinE.M. Cladribine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in haematological malignancies.Drugs199346587289410.2165/00003495‑199346050‑000077507037
    [Google Scholar]
  18. ComiG. CookS. GiovannoniG. RieckmannP. SørensenP.S. VermerschP. GalazkaA. NoltingA. HickingC. DangondF. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis.Mult. Scler. Relat. Disord.20192916817410.1016/j.msard.2019.01.03830885375
    [Google Scholar]
  19. FizaziK. ShoreN. TammelaT.L. UlysA. VjatersE. PolyakovS. JievaltasM. LuzM. AlekseevB. KussI. KappelerC. SnapirA. SarapohjaT. SmithM.R. ARAMIS Investigators Darolutamide in nonmetastatic, castration-resistant prostate cancer.N. Engl. J. Med.2019380131235124610.1056/NEJMoa181567130763142
    [Google Scholar]
  20. MoilanenA.M. RiikonenR. OksalaR. RavantiL. AhoE. WohlfahrtG. NykänenP.S. TörmäkangasO.P. PalvimoJ.J. KallioP.J. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies.Sci. Rep.2015511200710.1038/srep1200726137992
    [Google Scholar]
  21. FizaziK. MassardC. BonoP. JonesR. KatajaV. JamesN. GarciaJ.A. ProtheroeA. TammelaT.L. ElliottT. MattilaL. AspegrenJ. VuorelaA. LangmuirP. MustonenM. ARADES study group Activity and safety of ODM-201 in patients with progressive metastatic castration-resistant prostate cancer (ARADES): An open-label phase 1 dose-escalation and randomised phase 2 dose expansion trial.Lancet Oncol.201415997598510.1016/S1470‑2045(14)70240‑224974051
    [Google Scholar]
  22. MarkhamA. DugganS. Darolutamide: First approval.Drugs201979161813181810.1007/s40265‑019‑01212‑y31605368
    [Google Scholar]
  23. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.Bethesda (MD)National Institute of Diabetes and Digestive and Kidney Diseases201231643176
    [Google Scholar]
  24. FDA Center for drug evaluation and researchAvailable from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212725Orig1s000,%20212726Orig1s000MultidisciplineR.pdf
  25. ArdiniE. MenichincheriM. BanfiP. BosottiR. De PontiC. PulciR. BallinariD. CiomeiM. TexidoG. DegrassiA. AvanziN. AmboldiN. SaccardoM.B. CaseroD. OrsiniP. BandieraT. MologniL. AndersonD. WeiG. HarrisJ. VernierJ.M. LiG. FelderE. DonatiD. IsacchiA. PesentiE. MagnaghiP. GalvaniA. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications.Mol. Cancer Ther.201615462863910.1158/1535‑7163.MCT‑15‑075826939704
    [Google Scholar]
  26. DrilonA. SienaS. OuS.I. PatelM. AhnM.J. LeeJ. BauerT.M. FaragoA.F. WhelerJ.J. LiuS.V. DoebeleR. GiannettaL. CereaG. MarrapeseG. SchirruM. AmatuA. BencardinoK. PalmeriL. Sartore-BianchiA. VanzulliA. CrestaS. DamianS. DucaM. ArdiniE. LiG. ChristiansenJ. KowalskiK. JohnsonA.D. PatelR. LuoD. Chow-ManevalE. HornbyZ. MultaniP.S. ShawA.T. De BraudF.G. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1).Cancer Discov.20177440040910.1158/2159‑8290.CD‑16‑123728183697
    [Google Scholar]
  27. Al-SalamaZ.T. KeamS.J. Entrectinib: First global approval.Drugs201979131477148310.1007/s40265‑019‑01177‑y31372957
    [Google Scholar]
  28. DoebeleR.C. DrilonA. Paz-AresL. SienaS. ShawA.T. FaragoA.F. BlakelyC.M. SetoT. ChoB.C. TosiD. BesseB. ChawlaS.P. BazhenovaL. KraussJ.C. ChaeY.K. BarveM. Garrido-LagunaI. LiuS.V. ConklingP. JohnT. FakihM. SigalD. LoongH.H. BuchschacherG.L.Jr GarridoP. NievaJ. SteuerC. OverbeckT.R. BowlesD.W. FoxE. RiehlT. Chow-ManevalE. SimmonsB. CuiN. JohnsonA. EngS. WilsonT.R. DemetriG.D. trial investigators Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials.Lancet Oncol.202021227128210.1016/S1470‑2045(19)30691‑631838007
    [Google Scholar]
  29. DrilonA. SienaS. DziadziuszkoR. BarlesiF. KrebsM.G. ShawA.T. de BraudF. RolfoC. AhnM.J. WolfJ. SetoT. ChoB.C. PatelM.R. ChiuC.H. JohnT. GotoK. KarapetisC.S. ArkenauH.T. KimS.W. OheY. LiY.C. ChaeY.K. ChungC.H. OttersonG.A. MurakamiH. LinC.C. TanD.S.W. PrenenH. RiehlT. Chow-ManevalE. SimmonsB. CuiN. JohnsonA. EngS. WilsonT.R. DoebeleR.C. trial investigators Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1-2 trials.Lancet Oncol.202021226127010.1016/S1470‑2045(19)30690‑431838015
    [Google Scholar]
  30. Sartore-BianchiA. PizzutiloE.G. MarrapeseG. TosiF. CereaG. SienaS. Entrectinib for the treatment of metastatic NSCLC: Safety and efficacy.Expert Rev. Anticancer Ther.202020533334110.1080/14737140.2020.174743932223357
    [Google Scholar]
  31. Therapeutics. Astex announces new drug discovery collaboration with University of Newcastle upon Tyne and Cancer Research Technology Limited Cambridge, UK2006
    [Google Scholar]
  32. PereraT.P.S. JovchevaE. MevellecL. VialardJ. De LangeD. VerhulstT. PaulussenC. Van De VenK. KingP. FreyneE. ReesD.C. SquiresM. SaxtyG. PageM. MurrayC.W. GilissenR. WardG. ThompsonN.T. NewellD.R. ChengN. XieL. YangJ. PlateroS.J. KarkeraJ.D. MoyC. AngibaudP. LaquerreS. LorenziM.V. Discovery and pharmacological characterization of JNJ-42756493 (Erdafitinib), a functionally selective small-molecule FGFR family inhibitor.Mol. Cancer Ther.20171661010102010.1158/1535‑7163.MCT‑16‑058928341788
    [Google Scholar]
  33. WescheJ. HaglundK. HaugstenE.M. Fibroblast growth factors and their receptors in cancer.Biochem. J.2011437219921310.1042/BJ2010160321711248
    [Google Scholar]
  34. LiF. HuynhH. LiX. RuddyD.A. WangY. OngR. ChowP. QiuS. TamA. RakiecD.P. SchlegelR. MonahanJ.E. HuangA. FGFR-mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors.Cancer Discov.20155443845110.1158/2159‑8290.CD‑14‑076325673643
    [Google Scholar]
  35. CuiW. AouidateA. WangS. YuQ. LiY. YuanS. Discovering anti-cancer drugs via computational methods.Front. Pharmacol.20201173310.3389/fphar.2020.0073332508653
    [Google Scholar]
  36. WeissJ. SosM.L. SeidelD. PeiferM. ZanderT. HeuckmannJ.M. UllrichR.T. MenonR. MaierS. SoltermannA. MochH. WagenerP. FischerF. HeynckS. KokerM. SchöttleJ. LeendersF. GablerF. DabowI. QueringsS. HeukampL.C. Balke-WantH. AnsénS. RauhD. BaessmannI. AltmüllerJ. WainerZ. ConronM. WrightG. RussellP. SolomonB. BrambillaE. BrambillaC. LorimierP. SollbergS. BrustugunO.T. Engel-RiedelW. LudwigC. PetersenI. SängerJ. ClementJ. GroenH. TimensW. SietsmaH. ThunnissenE. SmitE. HeidemanD. CappuzzoF. LigorioC. DamianiS. HallekM. BeroukhimR. PaoW. KleblB. BaumannM. BuettnerR. ErnestusK. StoelbenE. WolfJ. NürnbergP. PernerS. ThomasR.K. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer.Sci. Transl. Med.201026262ra9310.1126/scitranslmed.300145121160078
    [Google Scholar]
  37. TurnerN. LambrosM.B. HorlingsH.M. PearsonA. SharpeR. NatrajanR. GeyerF.C. van KouwenhoveM. KreikeB. MackayA. AshworthA. van de VijverM.J. Reis-FilhoJ.S. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets.Oncogene201029142013202310.1038/onc.2009.48920101236
    [Google Scholar]
  38. LiQ. BagrodiaA. ChaE.K. ColemanJ.A. Prognostic genetic signatures in upper tract urothelial carcinoma.Curr. Urol. Rep.20161721210.1007/s11934‑015‑0566‑y26757906
    [Google Scholar]
  39. BlairH.A. Fedratinib: First approval.Drugs201979151719172510.1007/s40265‑019‑01205‑x31571162
    [Google Scholar]
  40. TefferiA. Primary myelofibrosis: 2017 update on diagnosis, risk-stratification, and management.Am. J. Hematol.201691121262127110.1002/ajh.2459227870387
    [Google Scholar]
  41. TefferiA. ThieleJ. OraziA. KvasnickaH.M. BarbuiT. HansonC.A. BarosiG. VerstovsekS. BirgegardG. MesaR. ReillyJ.T. GisslingerH. VannucchiA.M. CervantesF. FinazziG. HoffmanR. GillilandD.G. BloomfieldC.D. VardimanJ.W. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: Recommendations from an ad hoc international expert panel.Blood200711041092109710.1182/blood‑2007‑04‑08350117488875
    [Google Scholar]
  42. IurloA CattaneoD. Treatment of myelofibrosis: Old and new strategies.Clin Med Insights Blood Disord. 201710.1177/1179545X17695233
    [Google Scholar]
  43. VainchenkerW. KralovicsR. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms.Blood2017129666767910.1182/blood‑2016‑10‑69594028028029
    [Google Scholar]
  44. ShammoJ.M. SteinB.L. Mutations in MPNs: Prognostic implications, window to biology, and impact on treatment decisions.Hematology20162016155256010.1182/asheducation‑2016.1.55227913528
    [Google Scholar]
  45. GrinfeldJ. NangaliaJ. BaxterE.J. WedgeD.C. AngelopoulosN. CantrillR. GodfreyA.L. PapaemmanuilE. GundemG. MacLeanC. CookJ. O’NeilL. O’MearaS. TeagueJ.W. ButlerA.P. MassieC.E. WilliamsN. NiceF.L. AndersenC.L. HasselbalchH.C. GuglielmelliP. McMullinM.F. VannucchiA.M. HarrisonC.N. GerstungM. GreenA.R. CampbellP.J. Classification and personalized prognosis in myeloproliferative neoplasms.N. Engl. J. Med.2018379151416143010.1056/NEJMoa171661430304655
    [Google Scholar]
  46. ArakiM. KomatsuN. The role of calreticulin mutations in myeloproliferative neoplasms.Int. J. Hematol.2020111220020510.1007/s12185‑019‑02800‑031848992
    [Google Scholar]
  47. ZhangC ChenJ FengC ShaoX LiuQ Zhang Q ChenY. Nearinfrared light-triggered drug release for chemo-photothermal therapy of EGFR-TKI-resistant non-small cell lung cancer via polymeric nanocarriers.ACS App Mat Inter20201246513095131910.1021/acsami.0c1633433146757
    [Google Scholar]
  48. GuglielmelliP. LashoT.L. RotunnoG. MudireddyM. MannarelliC. NicolosiM. PacilliA. PardananiA. RumiE. RostiV. HansonC.A. MannelliF. KetterlingR.P. GangatN. RambaldiA. PassamontiF. BarosiG. BarbuiT. CazzolaM. VannucchiA.M. TefferiA. MIPSS70: Mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis.J. Clin. Oncol.201836431031810.1200/JCO.2017.76.488629226763
    [Google Scholar]
  49. YogarajahM. TefferiA. Leukemic transformation in myeloproliferative neoplasms: A literature review on risk, characteristics, and outcome.Mayo Clin. Proc.20179271118112810.1016/j.mayocp.2017.05.01028688466
    [Google Scholar]
  50. CrumpM. NeelapuS.S. FarooqU. Van Den NesteE. KuruvillaJ. WestinJ. LinkB.K. HayA. CerhanJ.R. ZhuL. BoussettaS. FengL. MaurerM.J. NavaleL. WiezorekJ. GoW.Y. GisselbrechtC. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study.Blood2017130161800180810.1182/blood‑2017‑03‑76962028774879
    [Google Scholar]
  51. Van Den NesteE. SchmitzN. MounierN. GillD. LinchD. TrnenyM. BouadballahR. RadfordJ. BargetziM. RibragV. DührsenU. MaD. BriereJ. ThieblemontC. BachyE. MoskowitzC.H. GlassB. GisselbrechtC. Outcomes of diffuse large B-cell lymphoma patients relapsing after autologous stem cell transplantation: An analysis of patients included in the CORAL study.Bone Marrow Transplant.201752221622110.1038/bmt.2016.21327643872
    [Google Scholar]
  52. BouchkoujN. KasamonY.L. de ClaroR.A. GeorgeB. LinX. LeeS. BlumenthalG.M. BryanW. McKeeA.E. PazdurR. FDA approval summary: Axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma.Clin. Cancer Res.20192561702170810.1158/1078‑0432.CCR‑18‑274330413526
    [Google Scholar]
  53. NeelapuS.S. LockeF.L. BartlettN.L. LekakisL.J. MiklosD.B. JacobsonC.A. BraunschweigI. OluwoleO.O. SiddiqiT. LinY. TimmermanJ.M. StiffP.J. FriedbergJ.W. FlinnI.W. GoyA. HillB.T. SmithM.R. DeolA. FarooqU. McSweeneyP. MunozJ. AviviI. CastroJ.E. WestinJ.R. ChavezJ.C. GhobadiA. KomanduriK.V. LevyR. JacobsenE.D. WitzigT.E. ReaganP. BotA. RossiJ. NavaleL. JiangY. AycockJ. EliasM. ChangD. WiezorekJ. GoW.Y. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma.N. Engl. J. Med.2017377262531254410.1056/NEJMoa170744729226797
    [Google Scholar]
  54. JohnsonP.C. AbramsonJ.S. Patient selection for chimeric antigen receptor (CAR) T-cell therapy for aggressive B-cell non-Hodgkin lymphomas.Leuk. Lymphoma202061112561256710.1080/10428194.2020.178656332611216
    [Google Scholar]
  55. SehnL.H. HertzbergM. OpatS. HerreraA.F. AssoulineS. FlowersC.R. KimT.M. McMillanA. OzcanM. SafarV. SallesG. KuG. HirataJ. ChangY.M. MusickL. MatasarM.J. Polatuzumab vedotin plus bendamustine and rituximab in relapsed/refractory DLBCL: survival update and new extension cohort data.Blood Adv.20226253354310.1182/bloodadvances.202100579434749395
    [Google Scholar]
  56. ChariA. VoglD.T. GavriatopoulouM. NookaA.K. YeeA.J. HuffC.A. MoreauP. DingliD. ColeC. LonialS. DimopoulosM. StewartA.K. RichterJ. VijR. TuchmanS. RaabM.S. WeiselK.C. DelforgeM. CornellR.F. KaminetzkyD. HoffmanJ.E. CostaL.J. ParkerT.L. LevyM. SchrederM. MeulemanN. FrenzelL. MohtyM. ChoquetS. SchillerG. ComenzoR.L. EngelhardtM. IllmerT. VlummensP. DoyenC. FaconT. KarlinL. PerrotA. PodarK. KauffmanM.G. ShachamS. LiL. TangS. PicklesimerC. Saint-MartinJ.R. CrochiereM. ChangH. ParekhS. LandesmanY. ShahJ. RichardsonP.G. JagannathS. Oral selinexor-dexamethasone for triple-class refractory multiple myeloma.N. Engl. J. Med.2019381872773810.1056/NEJMoa190345531433920
    [Google Scholar]
  57. Abdul RazakA.R. Mau-SoerensenM. GabrailN.Y. GerecitanoJ.F. ShieldsA.F. UngerT.J. Saint-MartinJ.R. CarlsonR. LandesmanY. McCauleyD. RashalT. LassenU. KimR. StaynerL.A. MirzaM.R. KauffmanM. ShachamS. MahipalA. First-in-class, first-in-human phase I study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors.J. Clin. Oncol.201634344142415010.1200/JCO.2015.65.394926926685
    [Google Scholar]
  58. ChesonB.D. FisherR.I. BarringtonS.F. CavalliF. SchwartzL.H. ZuccaE. ListerT.A. Alliance, Australasian Leukaemia and Lymphoma Group Eastern Cooperative Oncology Group European Mantle Cell Lymphoma Consortium Italian Lymphoma Foundation European Organisation for Research Treatment of Cancer/Dutch Hemato-Oncology Group Grupo Español de Médula Ósea German High-Grade Lymphoma Study Group German Hodgkin’s Study Group Japanese Lymphorra Study Group Lymphoma Study Association NCIC Clinical Trials Group Nordic Lymphoma Study Group Southwest Oncology Group United Kingdom National Cancer Research Institute Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification.J. Clin. Oncol.201432273059306810.1200/JCO.2013.54.880025113753
    [Google Scholar]
  59. ChenC. SiegelD. GutierrezM. JacobyM. HofmeisterC.C. GabrailN. BazR. Mau-SorensenM. BerdejaJ.G. SavonaM. SavoieL. TrudelS. AreethamsirikulN. UngerT.J. RashalT. HankeT. KauffmanM. ShachamS. ReeceD. Safety and efficacy of selinexor in relapsed or refractory multiple myeloma and Waldenstrom macroglobulinemia.Blood2018131885586310.1182/blood‑2017‑08‑79788629203585
    [Google Scholar]
  60. KuruvillaJ. SavonaM. BazR. Mau-SorensenP. M. GabrailN. GarzonR. StoneR. WangM. SavoieL. MartinP. FlinnI. JacobyM. UngerT. J. Saint-MartinJ. R. RashalT. FriedlanderS. CarlsonR. KauffmanM. ShachamS. GutierrezM. Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma.Blood2017129243175318310.1182/blood‑2016‑11‑750174
    [Google Scholar]
  61. SyedY.Y. Selinexor: First Global approval.Drugs201979131485149410.1007/s40265‑019‑01188‑931429063
    [Google Scholar]
  62. SyedY.Y. Zanubrutinib: First approval.Drugs2020801919710.1007/s40265‑019‑01252‑431933167
    [Google Scholar]
  63. ZouY.X. ZhuH.Y. LiX.T. XiaY. MiaoK.R. ZhaoS.S. WuY.J. WangL. XuW. LiJ.Y. The impacts of zanubrutinib on immune cells in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma.Hematol. Oncol.201937439240010.1002/hon.266731420873
    [Google Scholar]
  64. GuoY. LiuY. HuN. YuD. ZhouC. ShiG. ZhangB. WeiM. LiuJ. LuoL. TangZ. SongH. GuoY. LiuX. SuD. ZhangS. SongX. ZhouX. HongY. ChenS. ChengZ. YoungS. WeiQ. WangH. WangQ. LvL. WangF. XuH. SunH. XingH. LiN. ZhangW. WangZ. LiuG. SunZ. ZhouD. LiW. LiuL. WangL. WangZ. Discovery of Zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of bruton’s tyrosine kinase.J. Med. Chem.201962177923794010.1021/acs.jmedchem.9b0068731381333
    [Google Scholar]
  65. TarantelliC. ZhangL. CurtiE. GaudioE. SprianoF. PriebeV. CascioneL. ArribasA.J. ZuccaE. RossiD. StathisA. BertoniF. The Bruton tyrosine kinase inhibitor zanubrutinib (BGB-3111) demonstrated synergies with other anti-lymphoma targeted agents.Haematologica20191047e307e30910.3324/haematol.2018.21475930679329
    [Google Scholar]
  66. TamC.S. TrotmanJ. OpatS. BurgerJ.A. CullG. GottliebD. HarrupR. JohnstonP.B. MarltonP. MunozJ. SeymourJ.F. SimpsonD. TedeschiA. ElstromR. YuY. TangZ. HanL. HuangJ. NovotnyW. WangL. RobertsA.W. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL.Blood20191341185185910.1182/blood.201900116031340982
    [Google Scholar]
  67. SchieberM. GordonL.I. KarmaliR. Current overview and treatment of mantle cell lymphoma.F1000 Res.20187113610.12688/f1000research.14122.130109020
    [Google Scholar]
  68. Pal SinghS. DammeijerF. HendriksR.W. Correction to: Role of Bruton’s tyrosine kinase in B cells and malignancies.Mol. Cancer20191817910.1186/s12943‑019‑1009‑z30943993
    [Google Scholar]
  69. Juárez-SalcedoL.M. DesaiV. DaliaS. Venetoclax: Evidence to date and clinical potential.Drugs Context2019821257410.7573/dic.21257431645879
    [Google Scholar]
  70. GuerraV.A. DiNardoC. KonoplevaM. Venetoclax-based therapies for acute myeloid leukemia.Best Pract. Res. Clin. Haematol.201932214515310.1016/j.beha.2019.05.00831203996
    [Google Scholar]
  71. SouersA.J. LeversonJ.D. BoghaertE.R. AcklerS.L. CatronN.D. ChenJ. DaytonB.D. DingH. EnschedeS.H. FairbrotherW.J. HuangD.C.S. HymowitzS.G. JinS. KhawS.L. KovarP.J. LamL.T. LeeJ. MaeckerH.L. MarshK.C. MasonK.D. MittenM.J. NimmerP.M. OleksijewA. ParkC.H. ParkC.M. PhillipsD.C. RobertsA.W. SampathD. SeymourJ.F. SmithM.L. SullivanG.M. TahirS.K. TseC. WendtM.D. XiaoY. XueJ.C. ZhangH. HumerickhouseR.A. RosenbergS.H. ElmoreS.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets.Nat. Med.201319220220810.1038/nm.304823291630
    [Google Scholar]
  72. CangS. IragavarapuC. SavoojiJ. SongY. LiuD. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development.J. Hematol. Oncol.20158112910.1186/s13045‑015‑0224‑326589495
    [Google Scholar]
  73. SalemA.H. AgarwalS.K. DunbarM. EnschedeS.L.H. HumerickhouseR.A. WongS.L. Pharmacokinetics of venetoclax, a novel BCL-2 inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or non-hodgkin lymphoma.J. Clin. Pharmacol.201757448449210.1002/jcph.82127558232
    [Google Scholar]
  74. AgarwalS.K. HuB. ChienD. WongS.L. SalemA.H. Evaluation of Rifampin’s transporter inhibitory and CYP3A inductive effects on the pharmacokinetics of venetoclax, a BCL-2 inhibitor: Results of a single- and multiple-dose study.J. Clin. Pharmacol.201656111335134310.1002/jcph.73026953185
    [Google Scholar]
  75. AndersonM.A. DengJ. SeymourJ.F. TamC. KimS.Y. FeinJ. YuL. BrownJ.R. WestermanD. SiE.G. MajewskiI.J. SegalD. Heitner EnschedeS.L. HuangD.C.S. DavidsM.S. LetaiA. RobertsA.W. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism.Blood2016127253215322410.1182/blood‑2016‑01‑68879627069256
    [Google Scholar]
  76. RobertsA.W. DavidsM.S. PagelJ.M. KahlB.S. PuvvadaS.D. GerecitanoJ.F. KippsT.J. AndersonM.A. BrownJ.R. GressickL. WongS. DunbarM. ZhuM. DesaiM.B. CerriE. Heitner EnschedeS. HumerickhouseR.A. WierdaW.G. SeymourJ.F. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia.N. Engl. J. Med.2016374431132210.1056/NEJMoa151325726639348
    [Google Scholar]
  77. KingA.C. PetersonT.J. HorvatT.Z. RodriguezM. TangL.A. Venetoclax: A first-in-class oral BCL-2 inhibitor for the management of lymphoid malignancies.Ann. Pharmacother.201751541041610.1177/106002801668580328056525
    [Google Scholar]
  78. WeiA.H. DöhnerH. PocockC. MontesinosP. AfanasyevB. DombretH. RavandiF. SayarH. JangJ.H. PorkkaK. SelleslagD. SandhuI. TurgutM. GiaiV. OfranY. Kizil ÇakarM. Botelho de SousaA. RybkaJ. FrairiaC. BorinL. BeltramiG. ČermákJ. OssenkoppeleG.J. La TorreI. SkikneB. KumarK. DongQ. BeachC.L. RobozG.J. QUAZAR AML-001 Trial Investigators Oral azacitidine maintenance therapy for acute myeloid leukemia in first remission.N. Engl. J. Med.2020383262526253710.1056/NEJMoa200444433369355
    [Google Scholar]
  79. CihákA. Biological effects of 5-azacytidine in eukaryotes.Oncology197430540542210.1159/0002249814142650
    [Google Scholar]
  80. KaminskasE. FarrellA.T. WangY.C. SridharaR. PazdurR. FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension.Oncologist200510317618210.1634/theoncologist.10‑3‑17615793220
    [Google Scholar]
  81. LeoneG. VosoM.T. TeofiliL. LübbertM. Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS.Clin. Immunol.200310918910210.1016/S1521‑6616(03)00207‑914585280
    [Google Scholar]
  82. GhoshalK. BaiS. DNA methyltransferases as targets for cancer therapy.Drugs Today200743639542210.1358/dot.2007.43.6.106266617612710
    [Google Scholar]
  83. SilvermanL.R. DemakosE.P. PetersonB.L. KornblithA.B. HollandJ.C. Odchimar-ReissigR. StoneR.M. NelsonD. PowellB.L. DeCastroC.M. EllertonJ. LarsonR.A. SchifferC.A. HollandJ.F. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: A study of the cancer and leukemia group B.J. Clin. Oncol.200220102429244010.1200/JCO.2002.04.11712011120
    [Google Scholar]
  84. SilvermanL.R. Targeting hypomethylation of DNA to achieve cellular differentiation in myelodysplastic syndromes (MDS).Oncologist20016S5Suppl. 581410.1634/theoncologist.6‑suppl_5‑811700387
    [Google Scholar]
  85. IssaJ.P.J. KantarjianH.M. KirkpatrickP. Azacitidine.Nat. Rev. Drug Discov.20054427527610.1038/nrd169815861567
    [Google Scholar]
  86. O’DwyerK. MaslakP. Azacitidine and the beginnings of therapeutic epigenetic modulation.Expert Opin. Pharmacother.20089111981198610.1517/14656566.9.11.198118627335
    [Google Scholar]
  87. SiddiquiM.A.A. ScottL.J. Azacitidine: In myelodysplastic syndromes.Drugs200565131781178910.2165/00003495‑200565130‑0000416114977
    [Google Scholar]
  88. AbdulhaqH. RossettiJ.M. The role of azacitidine in the treatment of myelodysplastic syndromes.Expert Opin. Investig. Drugs200716121967197510.1517/13543784.16.12.196718042004
    [Google Scholar]
  89. KeatingG.M. Azacitidine: A review of its use in higher-risk myelodysplastic syndromes/acute myeloid leukaemia.Drugs200969172501251810.2165/11202840‑000000000‑0000019911860
    [Google Scholar]
  90. ZhangJ. JohnsonM. BarveM. BazhenovaL. McCarthyM. SchwartzR. Horvath-WalshE. VelasteguiK. QianC. SpiraA. Practical guidance for the management of adverse events in patients with KRASG12C-mutated non-small cell lung cancer receiving adagrasib.Oncologist202328428729610.1093/oncolo/oyad05136892150
    [Google Scholar]
  91. HallinJ. EngstromL.D. HargisL. CalinisanA. ArandaR. BriereD.M. SudhakarN. BowcutV. BaerB.R. BallardJ.A. BurkardM.R. FellJ.B. FischerJ.P. VigersG.P. XueY. GattoS. Fernandez-BanetJ. PavlicekA. VelastaguiK. ChaoR.C. BartonJ. PierobonM. BaldelliE. PatricoinE.F.III CassidyD.P. MarxM.A. RybkinI.I. JohnsonM.L. OuS.I. LitoP. PapadopoulosK.P. JänneP.A. OlsonP. ChristensenJ.G. The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients.Cancer Discov.2020101547110.1158/2159‑8290.CD‑19‑116731658955
    [Google Scholar]
  92. OuS.I. JänneP.A. LealT.A. RybkinI.I. SabariJ.K. BarveM.A. BazhenovaL. JohnsonM.L. VelasteguiK.L. CilliersC. ChristensenJ.G. YanX. ChaoR.C. PapadopoulosK.P. First-in-human phase I/IB dose-finding study of adagrasib (MRTX849) in patients with advanced KRASG12C solid tumors (KRYSTAL-1).J. Clin. Oncol.202240232530253810.1200/JCO.21.0275235167329
    [Google Scholar]
  93. JänneP.A. RielyG.J. GadgeelS.M. HeistR.S. OuS.I. PachecoJ.M. JohnsonM.L. SabariJ.K. LeventakosK. YauE. BazhenovaL. NegraoM.V. PennellN.A. ZhangJ. AnderesK. Der-TorossianH. KheohT. VelasteguiK. YanX. ChristensenJ.G. ChaoR.C. SpiraA.I. Adagrasib in non-small-cell lung cancer harboring a KRASG12C mutation.N. Engl. J. Med.2022387212013110.1056/NEJMoa220461935658005
    [Google Scholar]
  94. RosatiG. AprileG. ColomboA. CordioS. GiampagliaM. CappettaA. PorrettoC.M. De StefanoA. BilanciaD. AvalloneA. Colorectal cancer heterogeneity and the impact on precision medicine and therapy efficacy.Biomedicines2022105103510.3390/biomedicines1005103535625772
    [Google Scholar]
  95. BrazelD. ArterZ. NagasakaM. A long overdue targeted treatment for kras mutations in NSCLC: Spotlight on adagrasib.Lung Cancer202213758010.2147/LCTT.S38366236387582
    [Google Scholar]
  96. TianH. YangZ. HeJ. Adagrasib: A landmark in the KRASG12C-mutated NSCLC.MedComm 202234e19010.1002/mco2.190
    [Google Scholar]
  97. KangC. Olutasidenib: First approval.Drugs202383434134610.1007/s40265‑023‑01844‑136848032
    [Google Scholar]
  98. CaravellaJ.A. LinJ. DieboldR.B. CampbellA.M. EricssonA. GustafsonG. WangZ. CastroJ. ClarkeA. GoturD. JosephineH.R. KatzM. KershawM. YaoL. TomsA.V. BarrK.J. DinsmoreC.J. WalkerD. AshwellS. LuW. Structure-based design and identification of FT-2102 (Olutasidenib), a potent mutant-selective IDH1 inhibitor.J. Med. Chem.20206341612162310.1021/acs.jmedchem.9b0142331971798
    [Google Scholar]
  99. MolenaarR.J. MaciejewskiJ.P. WilminkJ.W. van NoordenC.J.F. Wild-type and mutated IDH1/2 enzymes and therapy responses.Oncogene201837151949196010.1038/s41388‑017‑0077‑z29367755
    [Google Scholar]
  100. LiuX. GongY. Isocitrate dehydrogenase inhibitors in acute myeloid leukemia.Biomark. Res.2019712210.1186/s40364‑019‑0173‑z31660152
    [Google Scholar]
  101. de NigrisF. RuosiC. NapoliC. Clinical efficiency of epigenetic drugs therapy in bone malignancies.Bone202114311560510.1016/j.bone.2020.11560532829036
    [Google Scholar]
  102. LambY.N. Pacritinib: First approval.Drugs202282783183810.1007/s40265‑022‑01718‑y35567653
    [Google Scholar]
  103. JayaramanR. PashaM.K. WilliamsA. GohK.C. EthirajuluK. Metabolism and disposition of pacritinib (SB1518), an orally active janus kinase 2 inhibitor in preclinical species and humans.Drug Metab. Lett.201591284710.2174/187231280966615011910525025600203
    [Google Scholar]
  104. LevisM. Quizartinib for the treatment of FLT3/ITD acute myeloid leukemia.Future Oncol.20141091571157910.2217/fon.14.10525145428
    [Google Scholar]
  105. OttoM.A. FDA approves quizartinib for newly diagnosed AML.2023Available from: https://www.medscape.com/viewarticle/994618?form=fpf
    [Google Scholar]
  106. Garcia-HortonA. YeeK.W. Quizartinib for the treatment of acute myeloid leukemia.Expert Opin. Pharmacother.202021172077209010.1080/14656566.2020.180163732772726
    [Google Scholar]
  107. ZhouF. GeZ. ChenB. Quizartinib (AC220): A promising option for acute myeloid leukemia.Drug Des. Devel. Ther.2019131117112510.2147/DDDT.S19895031114157
    [Google Scholar]
  108. ZhongL. LiY. XiongL. WangW. WuM. YuanT. YangW. TianC. MiaoZ. WangT. YangS. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216120110.1038/s41392‑021‑00572‑w34054126
    [Google Scholar]
  109. RoskoskiR.Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update.Pharmacol. Res.202015210460910.1016/j.phrs.2019.10460931862477
    [Google Scholar]
  110. LiuW.A. YuL. MorcosP.N. MercierF. BrennanB.J. Assessing the translational value of pre-clinical studies for clinical response rate in oncology: An exploratory investigation of 42 FDA-approved small-molecule targeted anticancer drugs.Cancer Chemother. Pharmacol.20208561015102710.1007/s00280‑020‑04076‑232424570
    [Google Scholar]
  111. BouzianeT. HabelD. AllaliS. In vitro antifungal activity of the extracts of punica granatum l obtained by reflux method against fusarium oxysoprum albedenis in south west of algeria Advances in biology &.Earth Sci.202273178191
    [Google Scholar]
  112. LythgoeMP. KrellJ. DharmarajanP. Trends in FDA approvals of first-in-class and next-in-class anticancer drugs between 2019 and 2023: Implications for innovation and access.Nat Rev Drug Disc202322968168410.1038/s41573‑023‑00382‑9
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947301362240330090709
Loading
/content/journals/cctr/10.2174/0115733947301362240330090709
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anticancer drugs; cancer; clinical efficacy; drug targets; FDA; mechanism; target therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test