Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

One common cancer among women is breast cancer. Chemotherapy, radiation therapy, and surgery have historically been used as breast cancer treatments. Thanks to recent technological advancements, we have been able to progressively comprehend the complexity and heterogeneity of diseases, which has led to the development of more effective treatments for many conditions. Working with variably shaped nanoparticles, nanotechnology has recently enabled us to work on tumor targeting and drug delivery, and it has undoubtedly helped to reduce the spread and death of breast cancer. The efficacy of treatment for breast cancer can be increased by a variety of target therapies made possible by nanotechnology. The current review discusses the advantages and disadvantages of nanotechnology-based therapy for breast cancer while also highlighting the disease's current state. The article will provide an overview of the current strategy available for better treatment of breast cancer and aid in understanding the various drug delivery systems designed to provide effective treatment for the disease. By utilizing cutting-edge technologies and early screening, breast cancer fatalities can be decreased. Drug delivery methods based on nano carriers enable medication to reach the target site at the ideal concentration with the least amount of harmful side effects.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947282469240212075845
2024-02-22
2025-09-23
Loading full text...

Full text loading...

References

  1. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  2. JainV. KumarH. AnodH.V. ChandP. GuptaN.V. DeyS. KesharwaniS.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer.J. Control. Release202032662864710.1016/j.jconrel.2020.07.00332653502
    [Google Scholar]
  3. TranP. LeeS.E. KimD.H. PyoY.C. ParkJ.S. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment.J. Pharm. Investig.202050326127010.1007/s40005‑019‑00459‑7
    [Google Scholar]
  4. AvitabileE. BedognettiD. CiofaniG. BiancoA. DeloguL.G. How can nanotechnology help the fight against breast cancer?Nanoscale20181025117191173110.1039/C8NR02796J29917035
    [Google Scholar]
  5. SinnH.P. A brief overview of the WHO classification of breast tumors, 4th edition, focusing on issues and updates from the 3rd edition.Breast Care2013814915410.1159/00035077424415964
    [Google Scholar]
  6. HuangX. El-SayedI.H. QianW. El-SayedM.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J. Am. Chem. Soc.200612862115212010.1021/ja057254a16464114
    [Google Scholar]
  7. PatilS.J. ZajacA. ZhukovT. BhansaliS. Ultrasensitive electrochemical detection of cytokeratin-7, using Au nanowires based biosensor.Sens. Actuators B Chem.2008129285986510.1016/j.snb.2007.09.080
    [Google Scholar]
  8. NieS. XingY. KimG.J. SimonsJ.W. Nanotechnology applications in cancer.Annu. Rev. Biomed. Eng.20079125728810.1146/annurev.bioeng.9.060906.15202517439359
    [Google Scholar]
  9. LiY. MiaoW. HeD. WangS. LouJ. JiangY. WangS. Recent progress on immunotherapy for breast cancer: Tumor Microenvironment, nanotechnology and more.Front. Bioeng. Biotechnol.2021968031510.3389/fbioe.2021.68031534150736
    [Google Scholar]
  10. FariaR.S. SouzaD.G. PachecoT.J.A. SilvaF.M. SilvaV.C.M. LimaL.I. Drug combination and nanooncology for improvement in the treatment of breast cancer: a review.Res., Soc. Dev.2021104e4071041409810.33448/rsd‑v10i4.14098
    [Google Scholar]
  11. XinY. YinM. ZhaoL. MengF. LuoL. Recent progress on nanoparticle-based drug delivery systems for cancer therapy.Cancer Biol. Med.201714322824110.20892/j.issn.2095‑3941.2017.005228884040
    [Google Scholar]
  12. YuW.W. QuL. GuoW. PengX. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals.Chem. Mater.200315142854286010.1021/cm034081k
    [Google Scholar]
  13. SubhanM.A. YalamartyS.S.K. FilipczakN. ParveenF. TorchilinV.P. Recent advances in tumor targeting via EPR effect for cancer treatment.J. Pers. Med.202111657110.3390/jpm1106057134207137
    [Google Scholar]
  14. GlaserR. MarinopoulosS. DimitrakakisC. Breast cancer treatment in women over the age of 80: A tailored approach.Maturitas2018110293210.1016/j.maturitas.2018.01.01429563032
    [Google Scholar]
  15. WolffA.C. HammondM.E.H. HicksD.G. DowsettM. McShaneL.M. AllisonK.H. AllredD.C. BartlettJ.M.S. BilousM. FitzgibbonsP. HannaW. JenkinsR.B. ManguP.B. PaikS. PerezE.A. PressM.F. SpearsP.A. VanceG.H. VialeG. HayesD.F. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American pathologists clinical practice guideline update.J. Clin. Oncol.2013313997401310.1200/JCO.2013.50.998424101045
    [Google Scholar]
  16. HaqueR. AhmedS.A. InzhakovaG. ShiJ. AvilaC. PolikoffJ. BernsteinL. EngerS.M. PressM.F. Impact of breast cancer subtypes and treatment on survival: An analysis spanning two decades.Cancer Epidemiol. Biomarkers Prev.201221101848185510.1158/1055‑9965.EPI‑12‑047422989461
    [Google Scholar]
  17. ParkJ.H. GuL. von MaltzahnG. RuoslahtiE. BhatiaS.N. SailorM.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications.Nat. Mater.20098433133610.1038/nmat239819234444
    [Google Scholar]
  18. YuP. YuH. GuoC. CuiZ. ChenX. YinQ. ZhangP. YangX. CuiH. LiY. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles.Acta Biomater.20151411512410.1016/j.actbio.2014.12.00125498306
    [Google Scholar]
  19. LvS.N. ChengC.J. SongY.Y. ZhaoZ.G. Temperature-switched controlled release nanosystems based on molecular recognition and polymer phase transition.RSC Advances2015553248325910.1039/C4RA11075G
    [Google Scholar]
  20. MiY. WolframJ. MuC. LiuX. BlancoE. ShenH. FerrariM. Enzyme-responsive multistage vector for drug delivery to tumor tissue.Pharmacol. Res.2016113Pt A929910.1016/j.phrs.2016.08.02427546164
    [Google Scholar]
  21. DingB. ZhangW. WuX. WangJ. XieC. HuangX. ZhanS. ZhengY. HuangY. XuN. DingX. GaoS. DR5 mAb-conjugated, DTIC-loaded immuno-nanoparticles effectively and specifically kill malignant melanoma cells in vivo.Oncotarget2016735571605717010.18632/oncotarget.1101427494835
    [Google Scholar]
  22. LinA. RugoH.S. The role of trastuzumab in early stage breast cancer: Current data and treatment recommendations.Curr. Treat. Options Oncol.200781476010.1007/s11864‑007‑0008‑217660958
    [Google Scholar]
  23. CartyN.J. FoggittA. HamiltonC.R. RoyleG.T. TaylorI. Patterns of clinical metastasis in breast cancer: an analysis of 100 patients.Eur. J. Surg. Oncol.199521660760810.1016/S0748‑7983(95)95176‑88631404
    [Google Scholar]
  24. GrobmyerS.R. ZhouG. GutweinL.G. IwakumaN. SharmaP. HochwaldS.N. Nanoparticle delivery for metastatic breast cancer.Nanomedicine20128S1S21S3010.1016/j.nano.2012.05.01122640908
    [Google Scholar]
  25. ChoiY. YuA.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development.Curr. Pharm. Des.201420579380710.2174/13816128200514021416521223688078
    [Google Scholar]
  26. LiY. WangH. WangZ. MakhijaS. BuchsbaumD. LoBuglioA. KimberlyR. ZhouT. Inducible resistance of tumor cells to tumor necrosis factor-related apoptosis-inducing ligand receptor 2-mediated apoptosis by generation of a blockade at the death domain function.Cancer Res.200666178520852810.1158/0008‑5472.CAN‑05‑436416951164
    [Google Scholar]
  27. RyanB.M. KonecnyG.E. KahlertS. WangH.J. UntchM. MengG. PegramM.D. PodratzK.C. CrownJ. SlamonD.J. DuffyM.J. Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1.Ann. Oncol.200617459760410.1093/annonc/mdj12116403812
    [Google Scholar]
  28. GhobrialI.M. WitzigT.E. AdjeiA.A. Targeting apoptosis pathways in cancer therapy.CA Cancer J. Clin.200555317819410.3322/canjclin.55.3.17815890640
    [Google Scholar]
  29. ReedJ.C. Apoptosis-targeted therapies for cancer.Cancer Cell200331172210.1016/S1535‑6108(02)00241‑612559172
    [Google Scholar]
  30. SchlotterC.M. VogtU. AllgayerH. BrandtB. Molecular targeted therapies for breast cancer treatment.Breast Cancer Res.200810421110.1186/bcr211218671839
    [Google Scholar]
  31. WittersL. MyersA. LiptonA. Combining flavopiridol with various signal transduction inhibitors.Oncol. Rep.200411369369810.3892/or.11.3.69314767524
    [Google Scholar]
  32. LamprechtA. Nanomedicines in gastroenterology and hepatology.Nat. Rev. Gastroenterol. Hepatol.201512419520410.1038/nrgastro.2015.3725752711
    [Google Scholar]
  33. MitragotriS. LahannJ. Physical approaches to biomaterial design.Nat. Mater.200981152310.1038/nmat234419096389
    [Google Scholar]
  34. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.00924270007
    [Google Scholar]
  35. DreherM.R. LiuW. MichelichC.R. DewhirstM.W. YuanF. ChilkotiA. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers.J. Natl. Cancer Inst.200698533534410.1093/jnci/djj07016507830
    [Google Scholar]
  36. PluenA. BoucherY. RamanujanS. McKeeT.D. GohongiT. di TomasoE. BrownE.B. IzumiY. CampbellR.B. BerkD.A. JainR.K. Role of tumor–host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors.Proc. Natl. Acad. Sci.20019884628463310.1073/pnas.08162689811274375
    [Google Scholar]
  37. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.02720797419
    [Google Scholar]
  38. HeC. HuY. YinL. TangC. YinC. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles.Biomaterials201031133657366610.1016/j.biomaterials.2010.01.06520138662
    [Google Scholar]
  39. JiangS. CaoZ. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications.Adv. Mater.201022992093210.1002/adma.20090140720217815
    [Google Scholar]
  40. LielegO. BaumgärtelR.M. BauschA.R. Selective filtering of particles by the extracellular matrix: An electrostatic bandpass.Biophys. J.20099761569157710.1016/j.bpj.2009.07.00919751661
    [Google Scholar]
  41. XuP. Van KirkE.A. ZhanY. MurdochW.J. RadoszM. ShenY. Targeted charge-reversal nanoparticles for nuclear drug delivery.Angew. Chem. Int. Ed.200746264999500210.1002/anie.20060525417526044
    [Google Scholar]
  42. ChampionJ.A. KatareY.K. MitragotriS. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers.J. Control. Release20071211-23910.1016/j.jconrel.2007.03.02217544538
    [Google Scholar]
  43. GrattonS.E.A. RoppP.A. PohlhausP.D. LuftJ.C. MaddenV.J. NapierM.E. DeSimoneJ.M. The effect of particle design on cellular internalization pathways.Proc. Natl. Acad. Sci.200810533116131161810.1073/pnas.080176310518697944
    [Google Scholar]
  44. PicartC. DischerD.E. Embedded shells decalcified.Nature2007448715687988010.1038/448879a17713523
    [Google Scholar]
  45. LeeC.C. MacKayJ.A. FréchetJ.M.J. SzokaF.C. Designing dendrimers for biological applications.Nat. Biotechnol.200523121517152610.1038/nbt117116333296
    [Google Scholar]
  46. MaedaH. MatsumotoT. KonnoT. IwaiK. UedaM. Tailor-making of protein drugs by polymer conjugation for tumor targeting: A brief review on SMANCS.J. Protein Chem.19843218119310.1007/BF01040499
    [Google Scholar]
  47. GaumetM. VargasA. GurnyR. DelieF. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters.Eur. J. Pharm. Biopharm.20086911910.1016/j.ejpb.2007.08.00117826969
    [Google Scholar]
  48. SafraT. MuggiaF. JeffersS. Tsao-WeiD.D. GroshenS. LyassO. HendersonR. BerryG. GabizonA. Pegylated liposomal doxorubicin (doxil): Reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2.Ann. Oncol.20001181029103410.1023/A:100836571669311038041
    [Google Scholar]
  49. NeubertR.H.H. Potentials of new nanocarriers for dermal and transdermal drug delivery.Eur. J. Pharm. Biopharm.20117711210.1016/j.ejpb.2010.11.00321111043
    [Google Scholar]
  50. MishraB. PatelB.B. TiwariS. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery.Nanomedicine20106192410.1016/j.nano.2009.04.00819447208
    [Google Scholar]
  51. HowC.W. RasedeeA. ManickamS. RosliR. Tamoxifen-loaded nanostructured lipid carrier as a drug delivery system: Characterization, stability assessment and cytotoxicity.Colloids Surf. B Biointerfaces201311239339910.1016/j.colsurfb.2013.08.00924036474
    [Google Scholar]
  52. SunT. ZhangY.S. PangB. HyunD.C. YangM. XiaY. Engineered nanoparticles for drug delivery in cancer therapy.Angew. Chem. Int. Ed.20145346123201236410.1002/anie.20140303625294565
    [Google Scholar]
  53. PisanoS. WangX. Garcia-ParraJ. GazzeA. EdwardsK. FeltraccoV. HuY. HeL. GonzalezD. FrancisL.W. ConlanR.S. LiC. Nanomicelles potentiate histone deacetylase inhibitor efficacy in vitro.Cancer Nanotechnol.20201111410.1186/s12645‑020‑00070‑8
    [Google Scholar]
  54. Al TamimiS. AshrafS. AbdulrehmanT. ParrayA. MansourS.A. HaikY. QadriS. Synthesis and analysis of silver–copper alloy nanoparticles of different ratios manifest anticancer activity in breast cancer cells.Cancer Nanotechnol.20201111310.1186/s12645‑020‑00069‑1
    [Google Scholar]
  55. Taherzadeh-SoureshjaniP. ChehelgerdiM. Algae-meditated route to cuprous oxide (Cu2O) nanoparticle: differential expression profile of MALAT1 and GAS5 LncRNAs and cytotoxic effect in human breast cancer.Cancer Nanotechnol.20201111110.1186/s12645‑020‑00066‑4
    [Google Scholar]
  56. IbiyeyeK.M. NordinN. AjatM. ZukiA.B.Z. Ultrastructural changes and antitumor effects of doxorubicin/thymoquinone-loaded CaCO3 nanoparticles on breast cancer cell line.Front. Oncol.2019959910.3389/fonc.2019.0059931334120
    [Google Scholar]
  57. CartonF. ChevalierY. NicolettiL. TarnowskaM. StellaB. ArpiccoS. MalatestaM. JordheimL.P. BriançonS. LolloG. Rationally designed hyaluronic acid-based nano-complexes for pentamidine delivery.Int. J. Pharm.201956811852610.1016/j.ijpharm.2019.11852631323370
    [Google Scholar]
  58. DagA. OzgenO.P.S. AtasoyS. Glyconanoparticles for targeted tumor therapy of platinum anticancer drug.Biomacromolecules20192082962297210.1021/acs.biomac.9b0052831314508
    [Google Scholar]
  59. WangX. ChengX. HeL. ZengX. ZhengY. TangR. Self-assembled indomethacin dimer nanoparticles loaded with doxorubicin for combination therapy in resistant breast cancer.ACS Appl. Mater. Interfaces20191132285972860910.1021/acsami.9b0585531314480
    [Google Scholar]
  60. TripathyS. RademanS. MatsabisaM.G. Effects of silver nanoparticle from Dicoma anomala (Sond.). Root extract on MCF-7 cancer cell line and NF54 parasite strain: An in vitro study.Biol. Trace Elem. Res.20191951829410.1007/s12011‑019‑01822‑331309447
    [Google Scholar]
  61. DjemaaSB. Hervé-AubertK. LajoieL. FalangaA. GaldieroS. NedellecS. SoucéM. MunnierE. ChourpaI. DavidS. Allard-VannierE. GH625 cell-penetrating peptide promotes the endosomal escape of nanovectorized siRNA in a triple negative breast cancer cell line.Biomacromolecules20192083076308610.1021/acs.biomac.9b0063731305991
    [Google Scholar]
  62. AttariE. NosratiH. DanafarH. ManjiliHK. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier.J. Biomed. Mater. Res. A2019107112492250010.1002/jbm.a.3675531298774
    [Google Scholar]
  63. KunjiappanS. PanneerselvamT. GovindarajS. ParasuramanP. BaskararajS. SankaranarayananM. ArunachalamS. BabkiewiczE. JeyakumarA. LakshmananM. Design, in silico modelling, and functionality theory of novel folate receptor targeted rutin encapsulated folic acid conjugated keratin nanoparticles for effective cancer treatment.Anticancer. Agents Med. Chem.202019161966198210.2174/187152061966619070214560931267878
    [Google Scholar]
  64. TucciS.T. KheirolomoomA. InghamE.S. MahakianL.M. TamS.M. FoiretJ. HubbardN.E. BorowskyA.D. BaikoghliM. ChengR.H. FerraraK.W. Tumor-specific delivery of gemcitabine with activatable liposomes.J. Control. Release201930927728810.1016/j.jconrel.2019.07.01431301340
    [Google Scholar]
  65. MonteiroL.O.F. FernandesR.S. CastroL. ReisD. CassaliG.D. EvangelistaF. LouresC. SabinoA.P. CardosoV. OliveiraM.C. Branco de BarrosA. LeiteE.A. Paclitaxel-loaded folate-coated pH-sensitive liposomes enhance cellular uptake and antitumor activity.Mol. Pharm.20191683477348810.1021/acs.molpharmaceut.9b0032931257891
    [Google Scholar]
  66. LiN. FuT. FeiW. HanT. GuX. HouY. LiuY. YangJ. Vitamin E D-alpha-tocopheryl polyethylene glycol 1000 succinate-conjugated liposomal docetaxel reverses multidrug resistance in breast cancer cells.J. Pharm. Pharmacol.20197181243125410.1111/jphp.1312631215039
    [Google Scholar]
  67. ZhaoZ. ZhaoY. XieC. ChenC. LinD. WangS. LinD. CuiX. GuoZ. ZhouJ. Dual-active targeting liposomes drug delivery system for bone metastatic breast cancer: Synthesis and biological evaluation.Chem. Phys. Lipids201922310478510.1016/j.chemphyslip.2019.10478531194968
    [Google Scholar]
  68. LuR. ZhouL. YueQ. LiuQ. CaiX. XiaoW. HaiL. GuoL. WuY. Liposomes modified with double-branched biotin: A novel and effective way to promote breast cancer targeting.Bioorg. Med. Chem.201927143115312710.1016/j.bmc.2019.05.03931155297
    [Google Scholar]
  69. LiY. LuoJ. LinM.T. ZhiP. GuoW.W. HanM. YouJ. GaoJ.Q. Co-delivery of metformin enhances the anti-multidrug resistant tumor effect of doxorubicin by improving hypoxic tumor microenvironment.Mol. Pharm.20191672966297910.1021/acs.molpharmaceut.9b0019931095914
    [Google Scholar]
  70. YuS. BiX. YangL. WuS. YuY. JiangB. ZhangA. LanK. DuanS. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo.J. Biomed. Nanotechnol.20191561135114810.1166/jbn.2019.275131072423
    [Google Scholar]
  71. ZuoJ. JiangY. ZhangE. ChenY. LiangZ. ZhuJ. ZhaoY. XuH. LiuG. LiuJ. WangW. ZhangS. ZhenY. Synergistic effects of 7-O-geranylquercetin and siRNAs on the treatment of human breast cancer.Life Sci.201922714515210.1016/j.lfs.2019.04.04731009625
    [Google Scholar]
  72. WuP.T. LinC.L. LinC.W. ChangN.C. TsaiW.B. YuJ. Methylene-blue-encapsulated liposomes as photodynamic therapy nano agents for breast cancer cells.Nanomaterials2018911410.3390/nano901001430583581
    [Google Scholar]
  73. HuY.J. ZhangJ.Y. LuoQ. XuJ.R. YanY. MuL.M. BaiJ. LuW.L. Nanostructured dihydroartemisinin plus epirubicin liposomes enhance treatment efficacy of breast cancer by inducing autophagy and apoptosis.Nanomaterials201881080410.3390/nano810080430304783
    [Google Scholar]
  74. BaraniM. MirzaeiM. Torkzadeh-MahaniM. NematollahiM.H. Lawsone-loaded niosome and its antitumor activity in MCF-7 breast cancer cell line: A Nano-herbal treatment for cancer.Daru2018261111710.1007/s40199‑018‑0207‑330159762
    [Google Scholar]
  75. HuangF.Y.J. HungC.C. ChangC.W. ChaoJ.H. HsiehB.T. Evaluation of injectable chitosan-based co-cross-linking hydrogel for local delivery of 188 Re-LIPO-DOX to breast-tumor-bearing mouse model.Anticancer Res.20183884651465910.21873/anticanres.1277030061232
    [Google Scholar]
  76. JoseA. NinaveK.M. KarnamS. VenugantiV.V.K. Temperature-sensitive liposomes for co-delivery of tamoxifen and imatinib for synergistic breast cancer treatment.J. Liposome Res.201929215316210.1080/08982104.2018.150231530022700
    [Google Scholar]
  77. NovohradskyV. ZajacJ. VranaO. KasparkovaJ. BrabecV. Correction: Simultaneous delivery of olaparib and carboplatin in PEGylated liposomes imparts this drug combination hypersensitivity and selectivity for breast tumor cells.Oncotarget20189853559910.18632/oncotarget.2630430473754
    [Google Scholar]
  78. KepinskaM. KizekR. MilnerowiczH. Metallothionein and superoxide dismutase—antioxidative protein status in fullerene-doxorubicin delivery to MCF-7 human breast cancer cells.Int. J. Mol. Sci.20181910325310.3390/ijms1910325330347787
    [Google Scholar]
  79. JoshiM. KumarP. KumarR. SharmaG. SinghB. KatareO.P. RazaK. Aminated carbon-based “cargo vehicles” for improved delivery of methotrexate to breast cancer cells.Mater. Sci. Eng. C2017751376138810.1016/j.msec.2017.03.05728415429
    [Google Scholar]
  80. DavoodiP. NgW.C. SrinivasanM.P. WangC.H. Codelivery of anti‐cancer agents via double‐walled polymeric microparticles/injectable hydrogel: A promising approach for treatment of triple negative breast cancer.Biotechnol. Bioeng.2017114122931294610.1002/bit.2640628832946
    [Google Scholar]
  81. BonartsevA. ZernovA. YakovlevS. ZharkovaI. MyshkinaV. MahinaT. BonartsevaG. AndronovaN. SmirnovaG. BorisovaJ. KalishjanM. ShaitanK. TreshalinaH. New poly(3-hydroxybutyrate) microparticles with paclitaxel sustained release for intraperitoneal administration.Anticancer. Agents Med. Chem.201717343444110.2174/187152061566616050409543327141874
    [Google Scholar]
  82. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑410840199
    [Google Scholar]
  83. MalamY. LoizidouM. SeifalianA.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer.Trends Pharmacol. Sci.2009301159259910.1016/j.tips.2009.08.00419837467
    [Google Scholar]
  84. QureshiO.S. KimH.S. ZebA. ChoiJ.S. KimH.S. KwonJ.E. KimM.S. KangJ.H. RyouC. ParkJ.S. KimJ.K. Sustained release docetaxel-incorporated lipid nanoparticles with improved pharmacokinetics for oral and parenteral administration.J. Microencapsul.201734325026110.1080/02652048.2017.133724728557649
    [Google Scholar]
  85. BattagliaL. GallarateM. PeiraE. ChirioD. MuntoniE. BiasibettiE. CapucchioM.T. ValazzaA. PancianiP.P. LanotteM. SchifferD. AnnovazziL. CalderaV. MellaiM. RigantiC. Solid lipid nanoparticles for potential doxorubicin delivery in glioblastoma treatment: Preliminary in vitro studies.J. Pharm. Sci.201410372157216510.1002/jps.2400224824141
    [Google Scholar]
  86. YuanH. MiaoJ. DuY. YouJ. HuF. ZengS. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells.Int. J. Pharm.20083481-213714510.1016/j.ijpharm.2007.07.01217714896
    [Google Scholar]
  87. KakkarD. DumogaS. KumarR. ChuttaniK. MishraA.K. PEGylated solid lipid nanoparticles: Design, methotrexate loading and biological evaluation in animal models.MedChemComm2015681452146310.1039/C5MD00104H
    [Google Scholar]
  88. PatelM.N. LakkadwalaS. MajradM.S. InjetiE.R. GollmerS.M. ShahZ.A. BodduS.H.S. NesamonyJ. Characterization and evaluation of 5-fluorouracil-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification technique.AAPS PharmSciTech20141561498150810.1208/s12249‑014‑0168‑x25035070
    [Google Scholar]
  89. ZhuY. LiaoL. Applications of nanoparticles for anticancer drug delivery: A review.J. Nanosci. Nanotechnol.20151574753477310.1166/jnn.2015.1029826373036
    [Google Scholar]
  90. HusseiniG.A. PittW.G. Micelles and nanoparticles for ultrasonic drug and gene delivery.Adv. Drug Deliv. Rev.200860101137115210.1016/j.addr.2008.03.00818486269
    [Google Scholar]
  91. TorchilinV.P. Micellar nanocarriers: Pharmaceutical perspectives.Pharm. Res.200624111610.1007/s11095‑006‑9132‑017109211
    [Google Scholar]
  92. ZhangY. HuangY. LiS. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery.AAPS PharmSciTech201415486287110.1208/s12249‑014‑0113‑z24700296
    [Google Scholar]
  93. LeeK.S. ChungH.C. Multicenter phase II trial of Genex-ol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer.Breast Cancer Res. Treat.200810822415010.1007/s10549‑007‑9591‑y17476588
    [Google Scholar]
  94. WolinskyJ. GrinstaffM. Therapeutic and diagnostic applications of dendrimers for cancer treatment.Adv. Drug Deliv. Rev.20086091037105510.1016/j.addr.2008.02.01218448187
    [Google Scholar]
  95. EsfandR. TomaliaD.A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications.Drug Discov. Today20016842743610.1016/S1359‑6446(01)01757‑311301287
    [Google Scholar]
  96. KitchensK. ElsayedM. GhandehariH. Transepithelial and endothelial transport of poly (amidoamine) dendrimers.Adv. Drug Deliv. Rev.200557152163217610.1016/j.addr.2005.09.01316289433
    [Google Scholar]
  97. NorthfeltD.W. DezubeB.J. ThommesJ.A. MillerB.J. FischlM.A. Friedman-KienA. KaplanL.D. Du MondC. MamelokR.D. HenryD.H. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial.J. Clin. Oncol.19981672445245110.1200/JCO.1998.16.7.24459667262
    [Google Scholar]
  98. SatsangiA. RoyS.S. SatsangiR.K. VadlamudiR.K. OngJ.L. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells.Mol. Pharm.20141161906191810.1021/mp500128k24847940
    [Google Scholar]
  99. LeeW.H. LooC.Y. TrainiD. YoungP.M. Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages.Expert Opin. Drug Deliv.20151261009102610.1517/17425247.2015.103950925912721
    [Google Scholar]
  100. DeshpandeP.P. BiswasS. TorchilinV.P. Current trends in the use of liposomes for tumor targeting.Nanomedicine2013891509152810.2217/nnm.13.11823914966
    [Google Scholar]
  101. KalepuS. NekkantiV. Insoluble drug delivery strategies: Review of recent advances and business prospects.Acta Pharm. Sin. B20155544245310.1016/j.apsb.2015.07.00326579474
    [Google Scholar]
  102. TorchilinV.P. Recent advances with liposomes as pharmaceutical carriers.Nat. Rev. Drug Discov.20054214516010.1038/nrd163215688077
    [Google Scholar]
  103. SharmaA. StraubingerR.M. OjimaI. BernackiR.J. Antitumor efficacy of taxane liposomes on a human ovarian tumor xenograft in nude athymic mice.J. Pharm. Sci.199584121400140410.1002/jps.26008412048748320
    [Google Scholar]
  104. SharmaA. MayhewE. BolcsakL. CavanaughC. HarmonP. JanoffA. BernackiR.J. Activity of paclitaxel liposome formulations against human ovarian tumor xenografts.Int. J. Cancer199771110310710.1002/(SICI)1097‑0215(19970328)71:1<103::AID‑IJC17>3.0.CO;2‑J9096672
    [Google Scholar]
  105. SukJ.S. XuQ. KimN. HanesJ. EnsignL.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.201699Pt A285110.1016/j.addr.2015.09.01226456916
    [Google Scholar]
  106. DuncanR. Polymer conjugates as anticancer nanomedicines.Nat. Rev. Cancer20066968870110.1038/nrc195816900224
    [Google Scholar]
  107. VicentM.J. DuncanR. Polymer conjugates: Nanosized medicines for treating cancer.Trends Biotechnol.2006241394710.1016/j.tibtech.2005.11.00616307811
    [Google Scholar]
  108. VicentM.J. DieudonnéL. CarbajoR.J. Pineda-LucenaA. Polymer conjugates as therapeutics: Future trends, challenges and opportunities.Expert Opin. Drug Deliv.20085559361410.1517/17425247.5.5.59318491984
    [Google Scholar]
  109. GrecoF. VicentM.J. Combination therapy: Opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines.Adv. Drug Deliv. Rev.200961131203121310.1016/j.addr.2009.05.00619699247
    [Google Scholar]
  110. LeeJ.H. NanA. Combination drug delivery approaches in metastatic breast cancer.J. Drug Deliv.2012201211710.1155/2012/91537522619725
    [Google Scholar]
  111. SauT.K. MurphyC.J. Seeded high yield synthesis of short Au nanorods in aqueous solution.Langmuir200420156414642010.1021/la049463z15248731
    [Google Scholar]
  112. LiJ.L. WangL. LiuX.Y. ZhangZ.P. GuoH.C. LiuW.M. TangS.H. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles.Cancer Lett.2009274231932610.1016/j.canlet.2008.09.02418977071
    [Google Scholar]
  113. YangP.H. SunX. ChiuJ.F. SunH. HeQ.Y. Transferrin-mediated gold nanoparticle cellular uptake.Bioconjug. Chem.200516349449610.1021/bc049775d15898713
    [Google Scholar]
  114. BaeP.K. ChungB.H. Multiplexed detection of various breast cancer cells by perfluorocarbon/quantum dot nanoemulsions conjugated with antibodies.Nano Converg.2014112310.1186/s40580‑014‑0023‑528191403
    [Google Scholar]
  115. SunG. XingW. XingR. CongL. TongS. YuS. Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe.Oncol. Lett.20181522471247610.3892/ol.2017.761529434960
    [Google Scholar]
  116. GuptaA.K. GuptaM. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials200526183995402110.1016/j.biomaterials.2004.10.01215626447
    [Google Scholar]
  117. WangY.X. XuanS. PortM. IdeeJ.M. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research.Curr. Pharm. Des.201319376575659310.2174/138161281131937000323621536
    [Google Scholar]
  118. WolinskyJ.B. ColsonY.L. GrinstaffM.W. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers.J. Control. Release20121591142610.1016/j.jconrel.2011.11.03122154931
    [Google Scholar]
  119. SegoviaN. PontM. OlivaN. RamosV. BorrósS. ArtziN. Hydrogel doped with nanoparticles for local sustained release of siRNA in breast cancer.Adv. Healthc. Mater.20154227128010.1002/adhm.20140023525113263
    [Google Scholar]
  120. DooleyW.C. LjungB.M. VeronesiU. CazzanigaM. ElledgeR.M. O’ShaughnessyJ.A. KuererH.M. HungD.T. KhanS.A. PhillipsR.F. GanzP.A. EuhusD.M. EssermanL.J. HafftyB.G. KingB.L. KelleyM.C. AndersonM.M. SchmitP.J. ClarkR.R. KassF.C. AndersonB.O. TroyanS.L. AriasR.D. QuiringJ.N. LoveS.M. PageD.L. KingE.B. Ductal lavage for detection of cellular atypia in women at high risk for breast cancer.J. Natl. Cancer Inst.200193211624163210.1093/jnci/93.21.162411698566
    [Google Scholar]
  121. LuR.M. ChenM.S. ChangD.K. ChiuC.Y. LinW.C. YanS.L. WangY.P. KuoY.S. YehC.Y. LoA. WuH.C. Targeted drug delivery systems mediated by a novel Peptide in breast cancer therapy and imaging.PLoS One201386e6612810.1371/journal.pone.006612823776619
    [Google Scholar]
  122. BurnessM.L. GrushkoT.A. OlopadeO.I. Epidermal growth factor receptor in triple-negative and basal-like breast cancer: Promising clinical target or only a marker?Cancer J.2010161233210.1097/PPO.0b013e3181d24fc120164687
    [Google Scholar]
  123. GuérinM. GabillotM. MathieuM.C. TravagliJ.P. SpielmannM. AndrieuN. RiouG. Structure and expression of c‐ erb B‐2 and EGF receptor genes in inflammatory and non‐inflammatory breast cancer: Prognostic significance.Int. J. Cancer198943220120810.1002/ijc.29104302052563719
    [Google Scholar]
  124. MorinM.J. From oncogene to drug: Development of small molecule tyrosine kinase inhibitors as anti-tumor and anti-angiogenic agents.Oncogene200019566574658310.1038/sj.onc.120410211426642
    [Google Scholar]
  125. YoungrenJ.F. GableK. PenarandaC. MadduxB.A. ZavodovskayaM. LoboM. CampbellM. KernerJ. GoldfineI.D. Nordihydroguaiaretic acid (NDGA) inhibits the IGF-1 and c-erbB2/HER2/neu receptors and suppresses growth in breast cancer cells.Breast Cancer Res. Treat.2005941374610.1007/s10549‑005‑6939‑z16142439
    [Google Scholar]
  126. JinS. YeK. Targeted drug delivery for breast cancer treatment.Recent Pat Anticancer Drug Discov.20138214315310.2174/157489281130802000323394116
    [Google Scholar]
  127. TaiW. MahatoR. ChengK. The role of HER2 in cancer therapy and targeted drug delivery.J. Control. Release2010146326427510.1016/j.jconrel.2010.04.00920385184
    [Google Scholar]
  128. NamiB. MaadiH. WangZ. Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting her2-positive breast cancer.Cancers2018101034210.3390/cancers1010034230241301
    [Google Scholar]
  129. PandaP.K. JainS.K. Doxorubicin bearing peptide anchored PEGylated PLGA nanoparticles for the effective delivery to prostate cancer cells.J. Drug Deliv. Sci. Technol.20238610466710.1016/j.jddst.2023.104667
    [Google Scholar]
  130. JensenE.V. JacobsonH.I. WalfA.A. FryeC.A. CherylF. Estrogen action: A historic perspective on the implications of considering alternative approaches.Physiol. Behav.201099215116210.1016/j.physbeh.2009.08.01319737574
    [Google Scholar]
  131. SinghS. SinghS. LillardJ.W.Jr SinghR. Drug delivery approaches for breast cancer.Int. J. Nanomedicine2017126205621810.2147/IJN.S14032528883730
    [Google Scholar]
  132. SiersbækR. KumarS. CarrollJ.S. Signaling pathways and steroid receptors modulating estrogen receptor α function in breast cancer.Genes Dev.20183217-181141115410.1101/gad.316646.11830181360
    [Google Scholar]
  133. SflomosG. DormoyV. MetsaluT. JeitzinerR. BattistaL. ScabiaV. RaffoulW. DelaloyeJ.F. TrebouxA. FicheM. ViloJ. AyyananA. BriskenC. A preclinical model for ERα-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response.Cancer Cell201629340742210.1016/j.ccell.2016.02.00226947176
    [Google Scholar]
  134. EkoueD.N. UnniN. RajG.V. A new class of agents for estrogen-receptor-positive breast cancer.Expert Rev. Clin. Pharmacol.201811432532810.1080/17512433.2018.143973629439601
    [Google Scholar]
  135. AboodyK.S. NajbauerJ. DanksM.K. Stem and progenitor cell-mediated tumor selective gene therapy.Gene Ther.2008151073975210.1038/gt.2008.4118369324
    [Google Scholar]
  136. WuD. SiM. XueH.Y. WongH.L. Nanomedicine applications in the treatment of breast cancer: current state of the art.Int. J. Nanomedicine2017125879589210.2147/IJN.S12343728860754
    [Google Scholar]
  137. MarinaS.F. MarjorieC.R. MonicaC.O. Active targeting of breast cancer cells using nanocarriers.Mod Appl Pharm Pharmacol.2017122637775610.31031/MAPP.2017.01.000507
    [Google Scholar]
  138. HowardE.W. YangX. microRNA regulation in estrogen receptor-positive breast cancer and endocrine therapy.Biol. Proced. Online20182011710.1186/s12575‑018‑0082‑930214383
    [Google Scholar]
  139. SharmaA. JainN. SareenR. Nanocarriers for diagnosis and targeting of breast cancer.BioMed Res. Int.2013201311010.1155/2013/96082123865076
    [Google Scholar]
  140. HasibuanP.A.Z. SumaiyahS. The anti-proliferative and pro-apoptotic properties of ethanol Plectranthus amboinicus (Lour.) Spreng. leaves ethanolic extract nanoparticles on T47D cell lines.Asian Pac. J. Cancer Prev.201920389790110.31557/APJCP.2019.20.3.89730912412
    [Google Scholar]
  141. KumbharP.S. SakateA.M. PatilO.B. ManjappaA.S. DisouzaJ.I. Podophyllotoxin-polyacrylic acid conjugate micelles: Improved anticancer efficacy against multidrug-resistant breast cancer.J. Egypt. Natl. Canc. Inst.20203214210.1186/s43046‑020‑00053‑133191444
    [Google Scholar]
  142. RautrayS. PanikarS. AmuthaT. RajananthiniA.U. Anticancer activity of Adiantum capillus veneris and Pteris quadriureta L. in human breast cancer cell lines.Mol. Biol. Rep.20184561897191110.1007/s11033‑018‑4337‑y30194562
    [Google Scholar]
  143. KharazmiA AttaranN Evaluation of the parameters affecting the loading of anticancer drug Paclitaxel on coated gold nanoparticles for breast cancer treatment.IET Nanobiotechnol202317323424510.1049/nbt2.12121
    [Google Scholar]
  144. JabirM.S. SalehY.M. SulaimanG.M. YaseenN.Y. SahibU.I. DewirY.H. AlwahibiM.S. SolimanD.A. Green synthesis of silver nanoparticles using Annona muricata extract as an inducer of apoptosis in cancer cells and inhibitor for NLRP3 inflammasome via enhanced autophagy.Nanomaterials202111238410.3390/nano1102038433546151
    [Google Scholar]
  145. AnbuselvamC. VijayavelK. BalasubramanianM.P. Protective effect of Operculina turpethum against 7,12-dimethyl benz(a)anthracene induced oxidative stress with reference to breast cancer in experimental rats.Chem. Biol. Interact.2007168322923610.1016/j.cbi.2007.04.00717531963
    [Google Scholar]
  146. NayakaS. BhatM.P. ChakrabortyB. PallaviS.S. AirodagiD. MuthurajR. HalaswamyH.M. DhanyakumaraS.B. ShashirajK.N. KupaneshiC. Seed extract-mediated synthesis of silver nanoparticles from Putranjiva roxburghii Wall.: phytochemical characterization, antibacterial activity and anticancer activity against MCF-7 cell line.Indian J. Pharm. Sci.202082226026910.36468/pharmaceutical‑sciences.646
    [Google Scholar]
  147. SalehiF. JamaliT. KavoosiG. ArdestaniS.K. VahdatiS.N. Stabilization of Zataria essential oil with pectin-based nanoemulsion for enhanced cytotoxicity in monolayer and spheroid drug-resistant breast cancer cell cultures and deciphering its binding mode with gDNA.Int. J. Biol. Macromol.20201643645365510.1016/j.ijbiomac.2020.08.08432795576
    [Google Scholar]
  148. Farasati FarB. OmraniM. Naimi JamalM.R. JavanshirS. Multi-responsive chitosan-based hydrogels for controlled release of vincristine.Commun. Chem.2023612810.1038/s42004‑023‑00829‑136765265
    [Google Scholar]
  149. KneževićN.Ž. MrđanovićJ. BoriševI. MilenkovićS. JanaćkovićĐ. CuninF. DjordjevicA. Hydroxylated fullerene-capped, vinblastine-loaded folic acid-functionalized mesoporous silica nanoparticles for targeted anticancer therapy.RSC Advances2016697061706510.1039/C5RA22937E
    [Google Scholar]
  150. DrummondD.C. NobleC.O. GuoZ. HayesM.E. Connolly-IngramC. GabrielB.S. HannB. LiuB. ParkJ.W. HongK. BenzC.C. MarksJ.D. KirpotinD.B. Development of a highly stable and targetable nanoliposomal formulation of topotecan.J. Control. Release20101411132110.1016/j.jconrel.2009.08.00619686789
    [Google Scholar]
  151. SepehriN. RouhaniH. TavassolianF. MontazeriH. KhoshayandM.R. GhahremaniM.H. OstadS.N. AtyabiF. DinarvandR. SN38 polymeric nanoparticles: In vitro cytotoxicity and in vivo antitumor efficacy in xenograft BALB/c model with breast cancer versus irinotecan.Int. J. Pharm.20144711-248549710.1016/j.ijpharm.2014.05.04624879937
    [Google Scholar]
  152. BarenholzY.C. Doxil® — The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.02022484195
    [Google Scholar]
  153. MarinaS.F. MarjorieC.R. MonicaC.O. Active targeting of breast cancer cells using nanocarriers.Mod Appl Pharm Pharmacol.2017-2018160117134
    [Google Scholar]
  154. AnselmoA.C. MitragotriS. Nanoparticles in the clinic.Bioeng. Transl. Med.201611102910.1002/btm2.1000329313004
    [Google Scholar]
  155. JohnstonS.J. CheungK.L. Endocrine therapy for breast cancer: A model of hormonal manipulation.Oncol. Ther.20186214115610.1007/s40487‑018‑0062‑x32700026
    [Google Scholar]
  156. DaviesC. PanH. GodwinJ. GrayR. ArriagadaR. RainaV. AbrahamM. AlencarV.H.M. BadranA. BonfillX. BradburyJ. ClarkeM. CollinsR. DavisS.R. DelmestriA. ForbesJ.F. HaddadP. HouM.F. InbarM. KhaledH. KielanowskaJ. KwanW.H. MathewB.S. MittraI. MüllerB. NicolucciA. PeraltaO. PernasF. PetruzelkaL. PienkowskiT. RadhikaR. RajanB. RubachM.T. TortS. UrrútiaG. ValentiniM. WangY. PetoR. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial.Lancet2013381986980581610.1016/S0140‑6736(12)61963‑123219286
    [Google Scholar]
  157. ChanA. DelalogeS. HolmesF.A. MoyB. IwataH. HarveyV.J. RobertN.J. SilovskiT. GokmenE. von MinckwitzG. EjlertsenB. ChiaS.K.L. MansiJ. BarriosC.H. GnantM. BuyseM. GoreI. SmithJ.II HarkerG. MasudaN. PetrakovaK. ZotanoA.G. IannottiN. RodriguezG. TassoneP. WongA. BryceR. YeY. YaoB. MartinM. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial.Lancet Oncol.201617336737710.1016/S1470‑2045(15)00551‑326874901
    [Google Scholar]
  158. LiuQ. LiJ. PuG. ZhangF. LiuH. ZhangY. Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy.Drug Deliv.20162341364136810.3109/10717544.2015.103129525874959
    [Google Scholar]
  159. PeoplesG.E. PonniahS. Vaccine for the prevention of breast cancer relapse.US8222214B22012
  160. BayeverE. FitzgeraldJ.B. KimJ. KlinzS. Treatment of breast cancer with liposomal irinotecan.US20170151226A12017
  161. DaltonJ.T. SteinerM.S. NarayananR. AhnS. Method of treating estrogen receptor (ER)-positive breast cancers with selective androgen receptor modulator (SARMS).US20140080905A12014
  162. DeviG. Use of disulfiram for inflammatory breast cancer therapy.U.S. Patent. Application US20170020828A12017
  163. PanD. KocherginskyM. ConzenS.D. Methods and compositions related to glucocorticoid receptor antagonists and breast cancer.US20140186367A12014
  164. MirzaM. ShaughnessyE. HurleyJ.K. VanpattenK.V. PestanoG. WeberG.F. Grading, staging, and prognosing cancer using osteopontin-c.US20180119232A1
  165. KimI.H. Diagnosis of breast cancer based on expression level of thioredoxin-1.US9382587B2
  166. BakerJ.B. SinicropiD.S. PelhamR.J. CollinF CragerM LiuM-l MorlanJ QuK StephansJC Method of predicting breast cancer prognosis.AU2012336120B22017
  167. WalfishP. RalhanR. Methods for the prognosis of breast cancer.WO2015081446A12016
  168. PerouC.M. EllisM.J. BernardP.S. NielsenT.O. Methods of treating breast cancer with anthracycline therapy.U.S. Patent 9,066,9632015
  169. KerinM.J. MillerN. McDermottA. miRNA oncologic biomarker of breast cancer.U.S. Patent 14/412, 1742015
  170. SambiM. BagheriL. SzewczukM.R. Current challenges in cancer immunotherapy: Multimodal approaches to improve efficacy and patient response rates.J. Oncol.2019201911210.1155/2019/450879430941175
    [Google Scholar]
  171. TiwariA. SarafS. VermaA. PandaP.K. JainS.K. Novel targeting approaches and signaling pathways of colorectal cancer: An insight.World J. Gastroenterol.201824394428443510.3748/wjg.v24.i39.442830357011
    [Google Scholar]
  172. PandaP.K. SarafS. TiwariA. VermaA. RaikwarS. JainA. JainS.K. Novel strategies for targeting prostate cancer.Curr. Drug Deliv.201916871272710.2174/156720181666619082114380531433757
    [Google Scholar]
  173. Gomez-CabreroA. WrasidloW. ReisfeldR.A. IMD-0354 targets breast cancer stem cells: a novel approach for an adjuvant to chemotherapy to prevent multidrug resistance in a murine model.PLoS One201388e7360710.1371/journal.pone.007360724014113
    [Google Scholar]
  174. TongC.W.S. WuM. ChoW.C.S. ToK.K.W. Recent advances in the treatment of breast cancer.Front. Oncol.2018822710.3389/fonc.2018.0022729963498
    [Google Scholar]
  175. YounasM. HanoC. Giglioli-Guivarc’hN. AbbasiB.H. Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives.RSC Advances2018852297142974410.1039/C8RA04879G35547279
    [Google Scholar]
  176. WolbersF. FrankeH.R. KlaaseJ.M. BrinkhuisM. van den BergA. VermesI. Future prospects in breast cancer research - cancer stem cells.EJIFCC2012233808627683420
    [Google Scholar]
  177. SarafS TiwariA VermaA PandaPK RaikwarS JainA DubeyR JainSK Targeting approaches for the diagnosis and treatment of cancer.In Front. Anti-Cancer Drug Discov, Bentham Science.20201110513810.2174/9789811422133120110007https://www.eurekaselect.com/chapter/13262
    [Google Scholar]
  178. NathA CosgrovePA ChangJT BildAH. Predicting clinical response to everolimus in ER+ breast cancers using machinelearning.Front Mol Biosci2022998196210.3389/fmolb.2022.98196236304922
    [Google Scholar]
  179. RaikwarS. JainA. SarafS. BidlaP.D. PandaP.K. TiwariA. VermaA. JainS.K. Opportunities in combinational chemo-immunotherapy for breast cancer using nanotechnology: An emerging landscape.Expert Opin. Drug Deliv.202219324726810.1080/17425247.2022.204478535184620
    [Google Scholar]
  180. PandaP.K. JainS.K. Polymeric nanocarrier system bearing anticancer agent for the treatment of prostate cancer: Systematic development and in vitro characterization.Int. J. Pharm. Investig. ijpi2022131878310.5530/223097131799
    [Google Scholar]
  181. PassosJS. DartoraV.F.M.C. SalataGC. MalagóID. LopesL.B. Contributions of nanotechnology to the intraductal drug delivery for local treatment and prevention of breast cancer.Int. J. Pharm.202363512268110.1016/j.ijpharm.2023.12268136738808
    [Google Scholar]
  182. DongsarTT DongsarTS AbourehabMA GuptaN KesharwaniP Emerging application of magnetic nanoparticles for breast cancer therapy.Eur. Polym. J.202318711189810.1016/j.eurpolymj.2023.111898
    [Google Scholar]
  183. KirtoniaA. SethiG. GargM. The multifaceted role of reactive oxygen species in tumorigenesis.Cell. Mol. Life Sci.202077224459448310.1007/s00018‑020‑03536‑532358622
    [Google Scholar]
  184. ZouY. YeF. KongY. HuX. DengX. XieJ. SongC. OuX. WuS. WuL. XieY. TianW. TangY. WongC.W. ChenZ.S. XieX. TangH. The single‐cell landscape of Intratumoral heterogeneity and the immunosuppressive microenvironment in liver and brain metastases of breast cancer.Adv. Sci.2023105220369910.1002/advs.20220369936529697
    [Google Scholar]
  185. YeF. DewanjeeS. LiY. JhaN.K. ChenZ.S. KumarA. Vishakha BehlT. JhaS.K. TangH. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer.Mol. Cancer202322110510.1186/s12943‑023‑01805‑y37415164
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947282469240212075845
Loading
/content/journals/cctr/10.2174/0115733947282469240212075845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test