Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer is still a significant worldwide health issue that requires novel techniques for diagnosis and treatment. The complications associated with cancer are explored in this article, which also introduces the novel concept of biomimetic nanoparticles as potential breakthrough in the fight against the disease. The introduction gives a general review of cancer, explaining its complexity and the underlying mechanisms that give rise to it. Epidemiological findings highlight the impact of cancer on the entire world and the most extensively found cancer driving the demand for innovative therapeutic approaches. A comprehensive review of the various cancer types follows with emphasis on unique traits, diagnostic methods, and treatment modalities, highlighting the variety of difficulties. An achievable path forward for targeted cancer therapy is the emerging science of biomimetic nanoparticles. A thorough review of their many varieties and applications follows their introduction. These nanoparticles’ inventive nature, which was inspired by biological systems, is highlighted by the explanation of how they were synthesized. The focus is on biomimetic nanoparticles based on cancer cell membranes as a novel means of medication administration and targeted therapy. Their use in the treatment of cancer is being investigated, with an emphasis on their potential to improve therapeutic efficacy and lessen side effects. Particularly noteworthy are the in-depth discussions of the unique difficulties encountered in treating lung, breast, prostate, colon, colorectal, ovarian, leukemia, lymphoma, melanoma, pancreatic, bladder, oral, gastric, hepatic, perihilar cholangiocarcinoma, and cervical cancers. The article also mentions the various challenges which may occur during this entire process.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947295006240313045718
2024-03-20
2025-09-29
Loading full text...

Full text loading...

References

  1. RobertA.W. How cancer arises.Sci. Am.19962753616110.1038/scientificamerican0996‑62 https://pubmed.ncbi.nlm.nih.gov/8701295/
    [Google Scholar]
  2. WatkinsE.J. Overview of breast cancer.JAAPA20193210131710.1097/01.JAA.0000580524.95733.3d31513033
    [Google Scholar]
  3. WangL. Early diagnosis of breast cancer.Sensors2017177157210.3390/s17071572
    [Google Scholar]
  4. LoebLA ErnsterVL WarnerKE AbbottsJ LaszloJ Smoking and lung cancer: An overview.Cancer Res.19844412 Pt 159405958 https://pubmed.ncbi.nlm.nih.gov/6388830/
    [Google Scholar]
  5. RiveraM.P. DetterbeckF. MehtaA.C. Diagnosis of lung cancer.Chest20031231129S136S10.1378/chest.123.1_suppl.129S12879795
    [Google Scholar]
  6. CooperS. SpiroS.G. Small cell lung cancer: Treatment review.Respirology200611324124810.1111/j.1440‑1843.2006.00850.x16635081
    [Google Scholar]
  7. DunnM.W. KazerM.W. Prostate cancer overview.Semin. Oncol. Nurs.201127424125010.1016/j.soncn.2011.07.00222018403
    [Google Scholar]
  8. DescotesJ.L. Diagnosis of prostate cancer.Asian J. Urol.20196212913610.1016/j.ajur.2018.11.00731061798
    [Google Scholar]
  9. MármolI. de-DiegoS.C. DiesteP.A. CerradaE. YoldiR.M. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer.Int. J. Mol. Sci.201718119710.3390/ijms1801019728106826
    [Google Scholar]
  10. MarksR. An overview of skin cancers.Cancer.199575S260761210.1002/1097‑0142(19950115)75:2+<607::AID‑CNCR2820751402>3.0.CO;2‑8
    [Google Scholar]
  11. SimõesM.C.F. SousaJ.J.S. PaisA.A.C.C. Skin cancer and new treatment perspectives: A review.Cancer Lett.2015357184210.1016/j.canlet.2014.11.00125444899
    [Google Scholar]
  12. MasoodA Al-JumailyAA Computer aided diagnostic support system for skin cancer: A review of techniques and algorithms.Int J Biomed Imaging2013201332326810.1155/2013/323268
    [Google Scholar]
  13. DavisA.S. VieraA.J. MeadM.D. Leukemia: An overview for primary care.Am. Fam. Physician201489973173824784336
    [Google Scholar]
  14. MatasarM.J. ZelenetzA.D. Overview of lymphoma diagnosis and management.Radiol. Clin. North Am.2008462175198, vii10.1016/j.rcl.2008.03.00518619375
    [Google Scholar]
  15. BosettiC. BertuccioP. NegriE. La VecchiaC. ZeegersM.P. BoffettaP. Pancreatic cancer: Overview of descriptive epidemiology.Mol. Carcinog.201251131310.1002/mc.2078522162227
    [Google Scholar]
  16. ConroyT. BachetJ.B. AyavA. HuguetF. LambertA. CaramellaC. MaréchalR. Van LaethemJ.L. DucreuxM. Current standards and new innovative approaches for treatment of pancreatic cancer.Eur. J. Cancer201657102210.1016/j.ejca.2015.12.02626851397
    [Google Scholar]
  17. DebB. UddinA. ChakrabortyS. miRNAs and ovarian cancer: An overview.J. Cell. Physiol.201823353846385410.1002/jcp.2609528703277
    [Google Scholar]
  18. OrrB. EdwardsR.P. Diagnosis and treatment of ovarian cancer.Hematol. Oncol. Clin. North Am.201832694396410.1016/j.hoc.2018.07.01030390767
    [Google Scholar]
  19. SrivatanakulP. SriplungH. DeerasameeS. Epidemiology of liver cancer: An overview.Asian Pac. J. Cancer Prev.20045211812515244512
    [Google Scholar]
  20. GretenT.F. Treatment of liver cancer.Liver Biol Pathobiol20202020782791
    [Google Scholar]
  21. ChowdhuryN. DrakeC.G. Kidney Cancer.Urol. Clin. North Am.202047441943110.1016/j.ucl.2020.07.00933008493
    [Google Scholar]
  22. FangR.H. KrollA.V. GaoW. ZhangL. Cell membrane coating nanotechnology.Adv. Mater.20183023170675910.1002/adma.20170675929582476
    [Google Scholar]
  23. LiuH. SuY.Y. JiangX.C. GaoJ.Q. Cell membrane-coated nanoparticles: A novel multifunctional biomimetic drug delivery system.Drug Deliv. Transl. Res.202313371673710.1007/s13346‑022‑01252‑036417162
    [Google Scholar]
  24. HuC.M.J. ZhangL. AryalS. CheungC. FangR.H. ZhangL. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform.Proc. Natl. Acad. Sci.201110827109801098510.1073/pnas.110663410821690347
    [Google Scholar]
  25. WangD. WangS. ZhouZ. BaiD. ZhangQ. AiX. GaoW. ZhangL. White blood cell membrane‐coated nanoparticles: Recent development and medical applications.Adv. Healthc. Mater.2022117210134910.1002/adhm.20210134934468090
    [Google Scholar]
  26. HarrisJ.C. ScullyM.A. DayE.S. Cancer cell membrane-coated nanoparticles for cancer management.Cancers20191112183610.3390/cancers1112183631766360
    [Google Scholar]
  27. WangS. DuanY. ZhangQ. KomarlaA. GongH. GaoW. ZhangL. Drug targeting via platelet membrane–coated nanoparticles.Small Struct.202011200001810.1002/sstr.20200001833817693
    [Google Scholar]
  28. FariaF.I. YousefiaslS. SoaresM.A. SilvaP.M. PeixotoD. ZafarH. RazaF. FanecaH. VeigaF. HamblinM.R. TayF.R. GaoJ. SharifiE. MakvandiP. Paiva-SantosA.C. Stem cell membrane-coated abiotic nanomaterials for biomedical applications.J. Control. Release202235117419710.1016/j.jconrel.2022.09.01236103910
    [Google Scholar]
  29. WuY. WanS. YangS. HuH. ZhangC. LaiJ. ZhouJ. ChenW. TangX. LuoJ. ZhouX. YuL. WangL. WuA. FanQ. WuJ. Macrophage cell membrane-based nanoparticles: A new promising biomimetic platform for targeted delivery and treatment.J. Nanobiotechnology202220154210.1186/s12951‑022‑01746‑636575429
    [Google Scholar]
  30. NaskarA. ChoH. LeeS. KimK. Biomimetic nanoparticles coated with bacterial outer membrane vesicles as a new-generation platform for biomedical applications.Pharmaceutics20211311188710.3390/pharmaceutics1311188734834302
    [Google Scholar]
  31. AngsantikulP JollaL JollaL ZhangQ JollaL SpiekermannK Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection.Adv Ther2019121800016 https://pubmed.ncbi.nlm.nih.gov/30320205/
    [Google Scholar]
  32. ChenW. ZhangQ. LukB.T. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function.Nanoscale2016819103647010.1039/c6nr00535g27139582
    [Google Scholar]
  33. ChughV. KrishnaV.K. PanditA. Cell membrane-coated mimics: A methodological approach for fabrication, characterization for therapeutic applications, and challenges for clinical translation.ACS Nano20211511170801712310.1021/acsnano.1c0380034699181
    [Google Scholar]
  34. FangR.H. HuC.M.J. LukB.T. GaoW. CoppJ.A. TaiY. O’ConnorD.E. ZhangL. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery.Nano Lett.20141442181218810.1021/nl500618u24673373
    [Google Scholar]
  35. University Of California San DiegoBiomimetic nanoparticles for targeted delivery and removal.Available From :https://www.sandiego.edu/academics/majors-and-minors.php?gad_source=1&gclid=EAIaIQobChMIk5SRr4rYhAMV61WRBR2XaQQqEAAYASAAEgLicPD_BwE 2019
  36. GlinskyV.V. GlinskyG.V. GlinskiiO.V. HuxleyV.H. TurkJ.R. MossineV.V. DeutscherS.L. PientaK.J. QuinnT.P. Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium.Cancer Res.200363133805381112839977
    [Google Scholar]
  37. RabinovichG.A. GabrilovichD. SotomayorE.M. Immunosuppressive strategies that are mediated by tumor cells.Annu. Rev. Immunol.200725126729610.1146/annurev.immunol.25.022106.14160917134371
    [Google Scholar]
  38. YeX. LiangX. ChenQ. MiaoQ. ChenX. ZhangX. MeiL. Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy.ACS Nano20191332956296810.1021/acsnano.8b0737130789699
    [Google Scholar]
  39. GongC. YuX. YouB. WuY. WangR. HanL. WangY. GaoS. YuanY. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy.J. Nanobiotechnology20201819210.1186/s12951‑020‑00649‑832546174
    [Google Scholar]
  40. NieD. DaiZ. LiJ. YangY. XiZ. WangJ. ZhangW. QianK. GuoS. ZhuC. WangR. LiY. YuM. ZhangX. ShiX. GanY. Cancer-cell-membrane-coated nanoparticles with a yolk–shell structure augment cancer chemotherapy.Nano Lett.202020293694610.1021/acs.nanolett.9b0381731671946
    [Google Scholar]
  41. ZhuJ.Y. ZhengD.W. ZhangM.K. YuW.Y. QiuW.X. HuJ.J. FengJ. ZhangX.Z. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes.Nano Lett.20161695895590110.1021/acs.nanolett.6b0278627513184
    [Google Scholar]
  42. McMahonK.M. MutharasanR.K. TripathyS. VeliceasaD. BobeicaM. ShumakerD.K. LuthiA.J. HelfandB.T. ArdehaliH. MirkinC.A. VolpertO. ThaxtonC.S. Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery.Nano Lett.20111131208121410.1021/nl104194721319839
    [Google Scholar]
  43. MinnaJ.D. RothJ.A. GazdarA.F. Focus on lung cancer.Cancer Cell200211495210.1016/S1535‑6108(02)00027‑212086887
    [Google Scholar]
  44. ChiC. LiF. LiuH. FengS. ZhangY. ZhouD. ZhangR. Docetaxel-loaded biomimetic nanoparticles for targeted lung cancer therapy in vivo.J. Nanopart. Res.201921714410.1007/s11051‑019‑4580‑8
    [Google Scholar]
  45. ChenS. RenY. DuanP. Biomimetic nanoparticle loading obatoclax mesylate for the treatment of non-small-cell lung cancer (NSCLC) through suppressing Bcl-2 signaling.Biomed. Pharmacother.2020129April11037110.1016/j.biopha.2020.11037132563984
    [Google Scholar]
  46. BahmaniB. GongH. LukB.T. HaushalterK.J. DeTeresaE. PrevitiM. ZhouJ. GaoW. BuiJ.D. ZhangL. FangR.H. ZhangJ. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors.Nat. Commun.2021121199910.1038/s41467‑021‑22311‑z33790276
    [Google Scholar]
  47. WuP. YinD. LiuJ. ZhouH. GuoM. LiuJ. LiuY. WangX. LiuY. ChenC. Cell membrane based biomimetic nanocomposites for targeted therapy of drug resistant EGFR-mutated lung cancer.Nanoscale20191141195201952810.1039/C9NR05791A31573595
    [Google Scholar]
  48. ZhangW. GongC. ChenZ. LiM. LiY. GaoJ. Tumor microenvironment-activated cancer cell membrane-liposome hybrid nanoparticle-mediated synergistic metabolic therapy and chemotherapy for non-small cell lung cancer.J. Nanobiotechnology202119133910.1186/s12951‑021‑01085‑y34689761
    [Google Scholar]
  49. PengQ. LiH. DengQ. LiangL. WangF. LinY. YangL. ZhangY. YuX. ZhangL. Hybrid artificial cell-mediated epigenetic inhibition in metastatic lung cancer.J. Colloid Interface Sci.202160331933210.1016/j.jcis.2021.06.06634186407
    [Google Scholar]
  50. SunH. SuJ. MengQ. YinQ. ChenL. GuW. ZhangP. ZhangZ. YuH. WangS. LiY. Cancer‐cell‐biomimetic nanoparticles for targeted therapy of homotypic tumors.Adv. Mater.201628439581958810.1002/adma.20160217327628433
    [Google Scholar]
  51. Down-HolmesC. SilvermanP. Breast cancer: Overview & updates.Nurse Pract201136122026 https://pubmed.ncbi.nlm.nih.gov/22089837/
    [Google Scholar]
  52. FengQ. YangX. HaoY. WangN. FengX. HouL. ZhangZ. Cancer cell membrane-biomimetic nanoplatform for enhanced sonodynamic therapy on breast cancer via autophagy regulation strategy.ACS Appl. Mater. Interfaces20191136327293273810.1021/acsami.9b1094831415145
    [Google Scholar]
  53. CaoH. DanZ. HeX. ZhangZ. YuH. YinQ. LiY. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer.ACS Nano20161087738774810.1021/acsnano.6b0314827454827
    [Google Scholar]
  54. WangY. CaoY. JiangZ. LiY. YuanB. XingJ. LiM. GaoQ. XuK. AkakuruO.U. WuA. LiJ. The neuropeptide Y 1 receptor ligand-modified cell membrane promotes targeted photodynamic therapy of zeolitic imidazolate frameworks for breast cancer.J. Phys. Chem. Lett.20211246112801128710.1021/acs.jpclett.1c0356234767373
    [Google Scholar]
  55. ZhaoH. LiL. ZhangJ. ZhengC. DingK. XiaoH. WangL. ZhangZ. C–C chemokine ligand 2 (CCL2) recruits macrophage-membrane-camouflaged hollow bismuth selenide nanoparticles to facilitate photothermal sensitivity and inhibit lung metastasis of breast cancer.ACS Appl. Mater. Interfaces20181037311243113510.1021/acsami.8b1164530141614
    [Google Scholar]
  56. WangX. ZhuX. LiB. WeiX. ChenY. ZhangY. WangY. ZhangW. LiuS. LiuZ. ZhaiW. ZhuP. GaoY. ChenZ. Intelligent biomimetic nanoplatform for systemic treatment of metastatic triple-negative breast cancer via enhanced egfr-targeted therapy and immunotherapy.ACS Appl. Mater. Interfaces20221420231522316310.1021/acsami.2c0292535549005
    [Google Scholar]
  57. LiL. FuJ. WangX. ChenQ. ZhangW. CaoY. RanH. Biomimetic “Nanoplatelets” as a targeted drug delivery platform for breast cancer theranostics.ACS Appl. Mater. Interfaces20211333605362110.1021/acsami.0c1925933449625
    [Google Scholar]
  58. XieQ. LiB. FanJ. LiangJ. JiangS. QinY. JiangL. CuiJ. NieX. SunS. LiuB. WangW. Biomimetic hybrid-cell membrane nanoparticles loaded with panaxytriol for breast cancer combinational therapy.Mater. Des.202222311121910.1016/j.matdes.2022.111219
    [Google Scholar]
  59. MarshallS.K. AngsantikulP. PangZ. NasongklaN. HussenR.S.D. ThamphiwatanaS.D. Biomimetic targeted theranostic nanoparticles for breast cancer treatment.Molecules20222719647310.3390/molecules2719647336235009
    [Google Scholar]
  60. HanL. XuY. GuoX. YuanC. MuD. XiaoY. Cancer cell membrane-coated biomimetic platform for targeted therapy of breast cancer in an orthotopic mouse model.J. Biomater. Sci. Polym. Ed.202031121538155110.1080/09205063.2020.176416332362234
    [Google Scholar]
  61. XiaoL. HuangY. YangY. MiaoZ. ZhuJ. ZhongM. FengC. TangW. ZhouJ. WangL. ZhaoX. WangZ. Biomimetic cytomembrane nanovaccines prevent breast cancer development in the long term.Nanoscale20211363594360110.1039/D0NR08978H33564813
    [Google Scholar]
  62. LiuY. SukumarU.K. KanadaM. KrishnanA. MassoudT.F. PaulmuruganR. Camouflaged hybrid cancer cell‐platelet fusion membrane nanovesicles deliver therapeutic MicroRNAs to presensitize triple‐negative breast cancer to doxorubicin.Adv. Funct. Mater.20213141210360010.1002/adfm.20210360034899115
    [Google Scholar]
  63. RenD. WilliamsG.R. ZhangY. RenR. LouJ. ZhuL.M. Mesoporous doxorubicin-loaded polydopamine nanoparticles coated with a platelet membrane suppress tumor growth in a murine model of human breast cancer.ACS Appl. Bio Mater.20225112313310.1021/acsabm.1c0092635014822
    [Google Scholar]
  64. SunK. YuW. JiB. ChenC. YangH. DuY. SongM. CaiH. YanF. SuR. Saikosaponin D loaded macrophage membrane-biomimetic nanoparticles target angiogenic signaling for breast cancer therapy.Appl. Mater. Today20201810050510.1016/j.apmt.2019.100505
    [Google Scholar]
  65. GuoK LiuY TangL ShubhraQTH Homotypic biomimetic coating synergizes chemo-photothermal combination therapy to treat breast cancer overcoming drug resistance.Chem Eng J2022428713112010.1016/j.cej.2021.131120
    [Google Scholar]
  66. TianW. LuJ. JiaoD. Stem cell membrane vesicle–coated nanoparticles for efficient tumor‐targeted therapy of orthotopic breast cancer.Polym. Adv. Technol.20193041051106010.1002/pat.4538
    [Google Scholar]
  67. MengQ.F. RaoL. ZanM. ChenM. YuG.T. WeiX. WuZ. SunY. GuoS.S. ZhaoX.Z. WangF.B. LiuW. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy.Nanotechnology2018291313400410.1088/1361‑6528/aaa7c729334363
    [Google Scholar]
  68. ZhangT. LiuH. LiL. GuoZ. SongJ. YangX. WanG. LiR. WangY. Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment.Bioact. Mater.20216113865387810.1016/j.bioactmat.2021.04.00433937590
    [Google Scholar]
  69. ZhaoL. GuC. GanY. ShaoL. ChenH. ZhuH. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis.J. Control. Release202031811510.1016/j.jconrel.2019.12.00531830541
    [Google Scholar]
  70. SunM. DuanY. MaY. ZhangQ. Cancer cell-erythrocyte hybrid membrane coated gold nanocages for near infrared light-activated photothermal/radio/ chemotherapy of breast cancer.Int. J. Nanomedicine2020156749676010.2147/IJN.S26640532982231
    [Google Scholar]
  71. PeiW. HuangB. ChenS. WangL. XuY. NiuC. Platelet-mimicking drug delivery nanoparticles for enhanced chemo-photothermal therapy of breast cancer.Int. J. Nanomedicine202015101511016710.2147/IJN.S28595233363371
    [Google Scholar]
  72. LiQ. LinB. LiY. LuN. Erythrocyte-camouflaged mesoporous titanium dioxide nanoplatform for an ultrasound-mediated sequential therapies of breast cancer.Int. J. Nanomedicine2021163875388710.2147/IJN.S30185534135582
    [Google Scholar]
  73. XuC. FengQ. YangH. WangG. HuangL. BaiQ. ZhangC. WangY. ChenY. ChengQ. ChenM. HanY. YuZ. LesniakM.S. ChengY. A light‐triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo‐photothermal therapy of triple negative breast cancer.Adv. Sci.2018510180038210.1002/advs.20180038230356957
    [Google Scholar]
  74. CaoB. YangM. ZhuY. QuX. MaoC. Stem cells loaded with nanoparticles as a drug carrier for in vivo breast cancer therapy.Adv. Mater.201426274627463110.1002/adma.20140155024890678
    [Google Scholar]
  75. NicaV MarinoA PucciC Cell-membrane-coated and cell-penetrating peptide-conjugated trimagnetic nanoparticles for targeted magnetic hyperthermia of prostate cancer cells.Appl Mater interfaces.2023152520 https://pmc.ncbi.nlm.nih.gov/articles/PMC10316402/
    [Google Scholar]
  76. LiuY. ZhaoJ. JiangJ. ChenF. FangX. Doxorubicin delivered using nanoparticles camouflaged with mesenchymal stem cell membranes to treat colon cancer.Int. J. Nanomedicine2020152873288410.2147/IJN.S24278732368059
    [Google Scholar]
  77. XuM. ChenQ. LiJ. PengL. DingL. Dendritic cell-derived exosome-entrapped fluorouracil can enhance its anti-colon cancer effect.J. BUON20202531413142232862584
    [Google Scholar]
  78. WangZ.H. LiuJ.M. YangF.E. HuY. LvH. WangS. Tailor-made cell-based biomimetic nanoprobes for fluorescence imaging guided colorectal cancer chemo-immunotherapy.ACS Appl. Bio Mater.2021421920193110.1021/acsabm.0c0155335014461
    [Google Scholar]
  79. WangZ.H. LiuJ.M. ZhaoN. LiC.Y. LvS.W. HuY. LvH. WangD. WangS. Cancer cell macrophage membrane camouflaged persistent luminescent nanoparticles for imaging-guided photothermal therapy of colorectal cancer.ACS Appl. Nano Mater.2020377105711810.1021/acsanm.0c01433
    [Google Scholar]
  80. XiongJ. WuM. ChenJ. LiuY. ChenY. FanG. LiuY. ChengJ. WangZ. WangS. LiuY. ZhangW. Cancer-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian cancer.ACS Nano20211512197561977010.1021/acsnano.1c0718034860006
    [Google Scholar]
  81. HarrisJ.C. SterinE.H. DayE.S. Membrane-wrapped nanoparticles for enhanced chemotherapy of acute myeloid leukemia.ACS Biomater. Sci. Eng.20228104439444810.1021/acsbiomaterials.2c0083236103274
    [Google Scholar]
  82. ZhaoQ. SunX. WuB. ShangY. HuangX. DongH. LiuH. ChenW. GuiR. LiJ. Construction of homologous cancer cell membrane camouflage in a nano-drug delivery system for the treatment of lymphoma.J. Nanobiotechnology2021191810.1186/s12951‑020‑00738‑833407527
    [Google Scholar]
  83. WuM. MeiT. LinC. WangY. ChenJ. LeW. SunM. XuJ. DaiH. ZhangY. XueC. LiuZ. ChenB. Melanoma cell membrane biomimetic versatile CuS nanoprobes for homologous targeting photoacoustic imaging and photothermal chemotherapy.ACS Appl. Mater. Interfaces20201214160311603910.1021/acsami.9b2317732186357
    [Google Scholar]
  84. YamanS. RamachandramoorthyH. OterG. ZhukovaD. NguyenT. SabnaniM.K. WeidanzJ.A. NguyenK.T. Melanoma peptide MHC specific TCR expressing t-cell membrane camouflaged PLGA nanoparticles for treatment of melanoma skin cancer.Front. Bioeng. Biotechnol.2020894310.3389/fbioe.2020.0094332850765
    [Google Scholar]
  85. LiX. ZhangW. LinJ. WuH. YaoY. ZhangJ. YangC. T cell membrane cloaking tumor microenvironment-responsive nanoparticles with a smart “membrane escape mechanism” for enhanced immune-chemotherapy of melanoma.Biomater. Sci.2021993453346410.1039/D1BM00331C33949434
    [Google Scholar]
  86. GuoY. WangD. SongQ. WuT. ZhuangX. BaoY. KongM. QiY. TanS. ZhangZ. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma.ACS Nano2015976918693310.1021/acsnano.5b0104226153897
    [Google Scholar]
  87. WangD. DongH. LiM. CaoY. YangF. ZhangK. DaiW. WangC. ZhangX. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma.ACS Nano20181265241525210.1021/acsnano.7b0835529800517
    [Google Scholar]
  88. ZhouY. ZhouW. ChenX. WangQ. LiC. ChenQ. ZhangY. LuY. DingX. JiangC. Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer.Acta Pharm. Sin. B20201081563157510.1016/j.apsb.2019.11.01332963950
    [Google Scholar]
  89. CaoX. HuY. LuoS. WangY. GongT. SunX. FuY. ZhangZ. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma.Acta Pharm. Sin. B20199357558910.1016/j.apsb.2018.12.00931193785
    [Google Scholar]
  90. YinZ. ZhouY. MaT. ChenS. ShiN. ZouY. HouB. ZhangC. Down‐regulated lncRNA SBF2‐AS1 in M2 macrophage‐derived exosomes elevates miR‐122‐5p to restrict XIAP, thereby limiting pancreatic cancer development.J. Cell. Mol. Med.20202495028503810.1111/jcmm.1512532301277
    [Google Scholar]
  91. ZhengB. LiuZ. WangH. SunL. LaiW.F. ZhangH. WangJ. LiuY. QinX. QiX. WangS. ShenY. ZhangP. ZhangD. R11 modified tumor cell membrane nanovesicle-camouflaged nanoparticles with enhanced targeting and mucus-penetrating efficiency for intravesical chemotherapy for bladder cancer.J. Control. Release202235183484610.1016/j.jconrel.2022.09.05536191674
    [Google Scholar]
  92. SunQ. WuJ. JinL. HongL. WangF. MaoZ. WuM. Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer.J. Mater. Chem. B Mater. Biol. Med.20208327253726310.1039/D0TB01063D32638824
    [Google Scholar]
  93. ChenH. DengJ. YaoX. HeY. LiH. JianZ. TangY. ZhangX. ZhangJ. DaiH. Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC.J. Nanobiotechnology202119134210.1186/s12951‑021‑01088‑934702291
    [Google Scholar]
  94. ZhangL. LiR. ChenH. WeiJ. QianH. SuS. ShaoJ. WangL. QianX.P. LiuB. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: A new approach to enhance drug targeting in gastric cancer.Int. J. Nanomedicine2017122129214210.2147/IJN.S12601628360520
    [Google Scholar]
  95. MaW. ZhuD. LiJ. ChenX. XieW. JiangX. WuL. WangG. XiaoY. LiuZ. WangF. LiA. ShaoD. DongW. LiuW. YuanY. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment.Theranostics20201031281129510.7150/thno.4029131938065
    [Google Scholar]
  96. ZhangX. ZhangY. ZhangY. LvP. ZhangP. ChuC. MaoJ. WangX. LiW. LiuG. Bio-engineered cell membrane nanovesicles as precision theranostics for perihilar cholangiocarcinoma.Biomater. Sci.2020861575157910.1039/C9BM02088H32096499
    [Google Scholar]
  97. LongY. WuX. LiZ. FanJ. HuX. LiuB. PEGylated WS 2 nanodrug system with erythrocyte membrane coating for chemo/photothermal therapy of cervical cancer.Biomater. Sci.20208185088510510.1039/D0BM00972E32812542
    [Google Scholar]
  98. LuoL. ZengF. XieJ. FanJ. XiaoS. WangZ. XieH. LiuB. A RBC membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of cervical cancer.J. Mater. Chem. B Mater. Biol. Med.20208184080409210.1039/C9TB02937K32239064
    [Google Scholar]
  99. NajibM. BinF. YazidM.D. HeikalM. YunusM. ChowdhuryS.R. Large-scale expansion of human mesenchymal stem cells.Stem Cells Int202020209529465
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947295006240313045718
Loading
/content/journals/cctr/10.2174/0115733947295006240313045718
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test