Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Background

It is necessary to investigate the targets and pathways on which soy isoflavones act as radiosensitizers for their future use and their potential therapeutic effects.

Objective

This systematic review aims to discuss and highlight future perspectives on the radiosensitizing effects of soy isoflavones against cancer cells.

Methods

We thoroughly searched multiple databases, such as PubMed/MEDLINE, Cochrane Library, Web of Science, and Scopus. We aimed to find studies investigating the effectiveness of soy isoflavones in increasing the sensitivity of different types of cancer to radiation treatment. We extracted data according to the study's aim, and the studies' outcomes were reviewed.

Results

The radiosensitizing effects of soy isoflavones are related to the accumulation of intracellular Reactive Oxygen Species (ROS), reducing Glutathione (GSH), Nuclear factor erythroid 2–related factor 2 (Nrf2) and Heme Oxygenase-1 (HO-1). They also induce cancer cell apoptosis through inhibited Nuclear factor kappa B (NF-κB), apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) and HIF-1α, upregulation of poly (ADP-ribose) polymerases (PARP) and improve cytochrome c, upregulation Bcl-2-associated X protein (Bax), inhibited B-cell lymphoma-extra-large (Bcl-xL) and activation of caspase-3 and -8. Moreover, by inhibiting p21, increased phosphorylation of p53 and PARP-1-dependent ATP depletion caused DNA damage and impaired DNA repair. Soy isoflavones also arrest the cell cycle by interfering with the G/M checkpoint.

Conclusion

and studies indicated that soy isoflavones enhanced radiotherapy effects on cancer cells with protective effects on healthy cells. Also, clinical studies reported safe and satisfactory properties of soy isoflavones along with radiotherapy in cancer treatment.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947313316240603101926
2024-06-21
2026-02-12
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. DebelaD.T. MuzazuS.G.Y. HeraroK.D. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.202192050312121103436610.1177/20503121211034366 34408877
    [Google Scholar]
  3. YuS. WangY. HeP. Effective combinations of immunotherapy and radiotherapy for cancer treatment.Front. Oncol.20221280930410.3389/fonc.2022.809304 35198442
    [Google Scholar]
  4. IvashkevichA. The role of isoflavones in augmenting the effects of radiotherapy.Front. Oncol.20231280056210.3389/fonc.2022.800562 36936272
    [Google Scholar]
  5. SahinI. BilirB. AliS. SahinK. KucukO. Soy isoflavones in integrative oncology: increased efficacy and decreased toxicity of cancer therapy.Integr. Cancer Ther.20191810.1177/1534735419835310 30897972
    [Google Scholar]
  6. El-NachefL. Al-ChoboqJ. Restier-VerletJ. Human radiosensitivity and radiosusceptibility: What are the differences?Int. J. Mol. Sci.20212213715810.3390/ijms22137158 34281212
    [Google Scholar]
  7. KimI.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans.Antioxidants2021107106410.3390/antiox10071064 34209224
    [Google Scholar]
  8. Gómez-ZoritaS. González-ArceoM. Fernández-QuintelaA. EseberriI. TrepianaJ. PortilloM.P. Scientific evidence supporting the beneficial effects of isoflavones on human health.Nutrients20201212385310.3390/nu12123853 33348600
    [Google Scholar]
  9. Prades-SagarraÈ. YarominaA. DuboisL.J. Polyphenols as potential protectors against radiation-induced adverse effects in patients with thoracic cancer.Cancers2023159241210.3390/cancers15092412 37173877
    [Google Scholar]
  10. LiuY.P. ZhengC.C. HuangY.N. HeM.L. XuW.W. LiB. Molecular mechanisms of chemo and radiotherapy resistance and the potential implications for cancer treatment.MedComm20202331534010.1002/mco2.55
    [Google Scholar]
  11. NambiarD. RajamaniP. SinghR.P. Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy.Mutat. Res. Rev. Mutat. Res.2011728313915710.1016/j.mrrev.2011.07.005 22030216
    [Google Scholar]
  12. AhmadI.U. FormanJ.D. SarkarF.H. Soy isoflavones in conjunction with radiation therapy in patients with prostate cancer.Nutr. Cancer2010627996100010.1080/01635581.2010.509839 20924975
    [Google Scholar]
  13. FountainM.D. McLellanL.A. SmithN.L. Isoflavone-mediated radioprotection involves regulation of early endothelial cell death and inflammatory signaling in radiation-induced lung injury.Int. J. Radiat. Biol.202096224525610.1080/09553002.2020.1683642 31633433
    [Google Scholar]
  14. KhosraviM.R. RaeisiE. Heidari-SoureshjaniS. SherwinC.M.T. The survey of antitumor effects of bromelain on neoplastic breast cells: A systematic review.J Herb Med Pharmacol2024131101810.34172/jhp.2024.48078
    [Google Scholar]
  15. Shahbazi-GahroueiD. RaeisiE. RaeisiF. HeidarianE. Evaluation of the radiosensitizing potency of bromelain for radiation therapy of 4T1 breast cancer cells.J. Med. Signals Sens.201991687410.4103/jmss.JMSS_25_18 30967992
    [Google Scholar]
  16. SatariA. AminiS.A. RaeisiE. LemoigneY. HeidarianE. Synergetic impact of combined 5-fluorouracil and rutin on apoptosis in pc3 cancer cells through the modulation of p53 gene expression.Adv. Pharm. Bull.20199346246910.15171/apb.2019.055 31592435
    [Google Scholar]
  17. YanS.X. ZhengS.S. Enhancing effect of isoflavonoid genistein on radiosensitivity of DU145 prostate cancer cells.Zhejiang Da Xue Xue Bao Yi Xue Ban200433323924410.3785/j.issn.1008‑9292.2004.03.014 15179686
    [Google Scholar]
  18. HillmanG.G. RaffoulJ.J. WangY. 146 Radiosensitization of prostate cancer by genistein in vitro and in an orthotopic model in vivo.Radiother. Oncol.20067878S48S4910.1016/S0167‑8140(06)80625‑0
    [Google Scholar]
  19. EmmettL PathmanandavelS CrumbakerM Updated results of a phase I/II prospective dose escalation trial evaluating safety and efficacy of combination 177 Lu PSMA 617 and idronoxil in men with mCRPC post androgen signalling inhibition and taxane chemotherapy (LuPIN trial).J Clin Oncol2021396-suppl10310.1200/JCO.2020.38.15_suppl.5557
    [Google Scholar]
  20. de SouzaP.L. CappA.L. ChikhladzeN. MezvrishviliZ. MessinaM. MautnerG. Phase I study of a novel S1P inhibitor, NOX66, in combination with radiotherapy in patients with metastatic castration-resistant prostate cancer.J. Clin. Oncol.20203815_suppl5533310.1200/JCO.2020.38.15_suppl.5533
    [Google Scholar]
  21. PapazisisK.T. ZambouliD. KimoundriO.T. Protein tyrosine kinase inhibitor, genistein, enhances apoptosis and cell cycle arrest in K562 cells treated with γ-irradiation.Cancer Lett.2000160110711310.1016/S0304‑3835(00)00569‑3 11098091
    [Google Scholar]
  22. AkimotoT. NonakaT. IshikawaH. Genistein, a tyrosine kinase inhibitor, enhanced radiosensitivity in human esophageal cancer cell lines in vitro: Possible involvement of inhibition of survival signal transduction pathways.Int. J. Radiat. Oncol. Biol. Phys.200150119520110.1016/S0360‑3016(00)01560‑1 11316564
    [Google Scholar]
  23. HillmanG.G. FormanJ.D. KucukO. Genistein potentiates the radiation effect on prostate carcinoma cells.Clin. Cancer Res.200172382390 11234894
    [Google Scholar]
  24. HillmanG.G. WangY. KucukO. Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic model.Mol. Cancer Ther.20043101271127910.1158/1535‑7163.1271.3.10 15486194
    [Google Scholar]
  25. YasharC.M. SpanosW.J. TaylorD.D. Gercel-TaylorC. Potentiation of the radiation effect with genistein in cervical cancer cells.Gynecol. Oncol.200599119920510.1016/j.ygyno.2005.07.002 16083949
    [Google Scholar]
  26. RaffoulJ.J. WangY. KucukO. FormanJ.D. SarkarF.H. HillmanG.G. Genistein inhibits radiation-induced activation of NF-κB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest.BMC Cancer20066110710.1186/1471‑2407‑6‑107 16640785
    [Google Scholar]
  27. WangY. RaffoulJ.J. CheM. Prostate cancer treatment is enhanced by genistein in vitro and in vivo in a syngeneic orthotopic tumor model.Radiat. Res.20061661738010.1667/RR3590.1 16808622
    [Google Scholar]
  28. ZhangB. LiuJ. PanJ. Combined treatment of ionizing radiation with genistein on cervical cancer HeLa cells.J. Pharmacol. Sci.2006102112913510.1254/jphs.FP0060165 16990704
    [Google Scholar]
  29. HermannR.M. FestJ. ChristiansenH. Radiosensitization dependent on p53 function in bronchial carcinoma cells by the isoflavone genistein and estradiol in vitro.Strahlenther. Onkol.2007183419520210.1007/s00066‑007‑1561‑0 17406801
    [Google Scholar]
  30. RaffoulJ.J. BanerjeeS. CheM. Soy isoflavones enhance radiotherapy in a metastatic prostate cancer model.Int. J. Cancer2007120112491249810.1002/ijc.22548 17304503
    [Google Scholar]
  31. RaffoulJ.J. BanerjeeS. Singh-GuptaV. Down-regulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo.Cancer Res.20076752141214910.1158/0008‑5472.CAN‑06‑2147 17332344
    [Google Scholar]
  32. HermannR.M. WolffH.A. JarryH. In vitro studies on the modification of low-dose hyper-radiosensitivity in prostate cancer cells by incubation with genistein and estradiol.Radiat. Oncol.2008311910.1186/1748‑717X‑3‑19 18625043
    [Google Scholar]
  33. KatzJ. BlakeE. MedranoT.A. SunY. ShiverickK.T. Isoflavones and gamma irradiation inhibit cell growth in human salivary gland cells.Cancer Lett.20082701879410.1016/j.canlet.2008.04.051 18585854
    [Google Scholar]
  34. ShinJ.I. ShimJ.H. KimK.H. Sensitization of the apoptotic effect of gamma-irradiation in genistein-pretreated CaSki cervical cancer cells.J. Microbiol. Biotechnol.2008183523531 18388472
    [Google Scholar]
  35. Singh-GuptaV. ZhangH. YunkerC.K. Daidzein effect on hormone refractory prostate cancer in vitro and in vivo compared to genistein and soy extract: potentiation of radiotherapy.Pharm. Res.20102761115112710.1007/s11095‑010‑0107‑9 20309614
    [Google Scholar]
  36. HillmanG.G. Singh-GuptaV. RunyanL. Soy isoflavones radiosensitize lung cancer while mitigating normal tissue injury.Radiother. Oncol.2011101232933610.1016/j.radonc.2011.10.020 22079530
    [Google Scholar]
  37. HillmanG.G. Singh-GuptaV. HoogstraD.J. Differential effect of soy isoflavones in enhancing high intensity radiotherapy and protecting lung tissue in a pre-clinical model of lung carcinoma.Radiother. Oncol.2013109111712510.1016/j.radonc.2013.08.015 24021346
    [Google Scholar]
  38. LiuX. SunC. JinX. Genistein enhances the radiosensitivity of breast cancer cells via G₂/M cell cycle arrest and apoptosis.Molecules20131811132001321710.3390/molecules181113200 24284485
    [Google Scholar]
  39. GrucaA. KrawczykZ. SzejaW. GrynkiewiczG. RusinA. Synthetic genistein glycosides inhibiting EGFR phosphorylation enhance the effect of radiation in HCT 116 colon cancer cells.Molecules20141911185581857310.3390/molecules191118558 25401399
    [Google Scholar]
  40. KimI.G. KimJ.S. LeeJ.H. ChoE.W. Genistein decreases cellular redox potential, partially suppresses cell growth in HL-60 leukemia cells and sensitizes cells to γ-radiation-induced cell death.Mol. Med. Rep.20141062786279210.3892/mmr.2014.2611 25310747
    [Google Scholar]
  41. TaghizadehB. GhavamiL. NikoofarA. GoliaeiB. Equol as a potent radiosensitizer in estrogen receptor positive and negative human breast cancer cell lines.Breast Cancer201522438239010.1007/s12282‑013‑0492‑0 24014377
    [Google Scholar]
  42. AtefehZ. VahidC. HasanN. SaeedA. MahnazH. Combination treatment of glioblastoma by low-dose radiation and genistein.Curr. Radiopharm.20169325826310.2174/1874471009666160813232031 27527071
    [Google Scholar]
  43. LiuX. SunC. LiuB. Genistein mediates the selective radiosensitizing effect in NSCLC A549 cells via inhibiting methylation of the keap1 gene promoter region.Oncotarget2016719272672727910.18632/oncotarget.8403 27029077
    [Google Scholar]
  44. LiuX.X. SunC. JinX.D. Genistein sensitizes sarcoma cells in vitro and in vivo by enhancing apoptosis and by inhibiting DSB repair pathways.J. Radiat. Res.201657322723710.1093/jrr/rrv091 26922091
    [Google Scholar]
  45. LiuX. LiP. HirayamaR. Genistein sensitizes glioblastoma cells to carbon ions via inhibiting DNA-PKcs phosphorylation and subsequently repressing NHEJ and delaying HR repair pathways.Radiother. Oncol.20181291849410.1016/j.radonc.2018.04.005 29685705
    [Google Scholar]
  46. TangQ. MaJ. SunJ. Genistein and AG1024 synergistically increase the radiosensitivity of prostate cancer cells.Oncol. Rep.201840257958810.3892/or.2018.6468 29901146
    [Google Scholar]
  47. ZhangZ. JinF. LianX. Genistein promotes ionizing radiation-induced cell death by reducing cytoplasmic Bcl-xL levels in non-small cell lung cancer.Sci. Rep.20188132810.1038/s41598‑017‑18755‑3 29321496
    [Google Scholar]
  48. JacksonI.L. PavlovicR. AlexanderA.A. BIO 300, a nanosuspension of genistein, mitigates radiation-induced erectile dysfunction and sensitizes human prostate cancer xenografts to radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.2019105240040910.1016/j.ijrobp.2019.05.062 31175904
    [Google Scholar]
  49. YanH. JiangJ. DuA. GaoJ. ZhangD. SongL. Genistein enhances radiosensitivity of human hepatocellular carcinoma cells by inducing G2/M arrest and apoptosis.Radiat. Res.2020193328630010.1667/RR15380.1 32017668
    [Google Scholar]
  50. YanS.X. EjimaY. SasakiR. Combination of genistein with ionizing radiation on androgen-independent prostate cancer cells.Asian J. Androl.200464285290 15546018
    [Google Scholar]
  51. CrumbakerM. PathmanandavelS. YamA.O. Phase I/II trial of the combination of 177lutetium prostate specific membrane antigen 617 and Idronoxil (NOX66) in men with end-stage metastatic castration-resistant prostate cancer (LuPIN).Eur. Urol. Oncol.20214696397010.1016/j.euo.2020.07.002 32758400
    [Google Scholar]
  52. PathmanandavelS. CrumbakerM. YamA.O. 177 Lu-PSMA-617 and Idronoxil in men with end-stage metastatic castration-resistant prostate cancer (LuPIN): Patient outcomes and predictors of treatment response in a phase I/II Trial.J. Nucl. Med.202263456056610.2967/jnumed.121.262552 34326127
    [Google Scholar]
  53. Singh-GuptaV. JoinerM.C. RunyanL. Soy isoflavones augment radiation effect by inhibiting APE1/Ref-1 DNA repair activity in non-small cell lung cancer.J. Thorac. Oncol.20116468869810.1097/JTO.0b013e31821034ae 21325978
    [Google Scholar]
  54. National Library of Medicine (US), National Center for Biotechnology Information, Genistein.2004Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Genistein
  55. National Library of Medicine (US), National Center for Biotechnology Information, Daidzein.2004Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Daidzein
  56. National Library of Medicine (US), National Center for Biotechnology Information, Glycitein.2004Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Glycitein
  57. RayS.D. KrmicM. HussainA. Toxicity of natural products.Encyclopedia of Toxicology.4th edOxfordAcademic Press202425728210.1016/B978‑0‑12‑824315‑2.01189‑1
    [Google Scholar]
  58. NievesJ.W. Alternative Therapy through Nutrients and Nutraceuticals.Osteoporosis.4th edSan DiegoAcademic Press20131739174910.1016/B978‑0‑12‑415853‑5.00074‑1
    [Google Scholar]
  59. VitaleD.C. PiazzaC. MelilliB. DragoF. SalomoneS. Isoflavones: estrogenic activity, biological effect and bioavailability.Eur. J. Drug Metab. Pharmacokinet.2013381152510.1007/s13318‑012‑0112‑y 23161396
    [Google Scholar]
  60. SongQ. LanG. LiQ. A hydrogel-enabled cascade amplification of radiosensitization and immune activation for cancer radiotherapy.Chem. Eng. J.202346214220110.1016/j.cej.2023.142201
    [Google Scholar]
  61. LinY. ChenX. YuC. Radiotherapy-mediated redox homeostasis-controllable nanomedicine for enhanced ferroptosis sensitivity in tumor therapy.Acta Biomater.202315930031110.1016/j.actbio.2023.01.022 36642338
    [Google Scholar]
  62. YoonG.A. ParkS. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats.Nutr. Res. Pract.20148661862410.4162/nrp.2014.8.6.618 25489400
    [Google Scholar]
  63. TuliH.S. TuorkeyM.J. ThakralF. Molecular mechanisms of action of genistein in cancer: Recent advances.Front. Pharmacol.201910133610.3389/fphar.2019.01336 31866857
    [Google Scholar]
  64. WangQ. XieC. XiS. Radioprotective effect of flavonoids on ionizing radiation-induced brain damage.Molecules20202523571910.3390/molecules25235719 33287417
    [Google Scholar]
  65. HillmanG.G. Soy isoflavones protect normal tissues while enhancing radiation responses.Semin. Radiat. Oncol.2019291627110.1016/j.semradonc.2018.10.002 30573186
    [Google Scholar]
  66. ParkS.H. SungJ.H. KimE.J. ChungN. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines.Braz. J. Med. Biol. Res.201548211111910.1590/1414‑431x20144293 25517919
    [Google Scholar]
  67. LiY. KongD. BaoB. AhmadA. SarkarF.H. Induction of cancer cell death by isoflavone: the role of multiple signaling pathways.Nutrients201131087789610.3390/nu3100877 22200028
    [Google Scholar]
  68. RoyT. BoatengS.T. UddinM.B. The PI3K-Akt-mTOR and associated signaling pathways as molecular drivers of immune-mediated inflammatory skin diseases: Update on therapeutic strategy using natural and synthetic compounds.Cells20231212167110.3390/cells12121671 37371141
    [Google Scholar]
  69. Borrego-SotoG. Ortiz-LópezR. Rojas-MartínezA. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer.Genet. Mol. Biol.201538442043210.1590/S1415‑475738420150019 26692152
    [Google Scholar]
  70. MoralesJ. LiL. FattahF.J. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases.Crit. Rev. Eukaryot. Gene Expr.2014241152810.1615/CritRevEukaryotGeneExpr.2013006875 24579667
    [Google Scholar]
  71. CooperG.M. The Cell: A Molecular Approach.Sunderland (MA),Sinauer Associates2000
    [Google Scholar]
  72. LonatiL. BarbieriS. GuardamagnaI. OttolenghiA. BaioccoG. Radiation-induced cell cycle perturbations: a computational tool validated with flow-cytometry data.Sci. Rep.202111192510.1038/s41598‑020‑79934‑3 33441727
    [Google Scholar]
  73. ShimonoH. KaidaA. HommaH. Fluctuation in radioresponse of HeLa cells during the cell cycle evaluated based on micronucleus frequency.Sci. Rep.20201012087310.1038/s41598‑020‑77969‑0 33257719
    [Google Scholar]
  74. ZhaL. QiaoT. YuanS. LeiL. Enhancement of radiosensitivity by CpG-oligodeoxyribonucleotide-7909 in human non-small cell lung cancer A549 cells.Cancer Biother. Radiopharm.201025216517010.1089/cbr.2009.0686 20423229
    [Google Scholar]
  75. PonsD.G. Nadal-SerranoM. Blanquer-RosselloM.M. Sastre-SerraJ. OliverJ. RocaP. Genistein modulates proliferation and mitochondrial functionality in breast cancer cells depending on ERalpha/ERbeta ratio.J. Cell. Biochem.2014115594995810.1002/jcb.24737 24375531
    [Google Scholar]
  76. MahmoudA.M. YangW. BoslandM.C. Soy isoflavones and prostate cancer: A review of molecular mechanisms.J. Steroid Biochem. Mol. Biol.201414011613210.1016/j.jsbmb.2013.12.010 24373791
    [Google Scholar]
  77. PaveseJ.M. FarmerR.L. BerganR.C. Inhibition of cancer cell invasion and metastasis by genistein.Cancer Metastasis Rev.201029346548210.1007/s10555‑010‑9238‑z 20730632
    [Google Scholar]
  78. BalkE. ChungM. ChewP. Effects of Soy on Health Outcomes: Summary. AHRQ Evidence Report Summaries.Rockville (MD).Agency for Healthcare Research and Quality (US).2005
    [Google Scholar]
  79. MoutsatsouP. The spectrum of phytoestrogens in nature: Our knowledge is expanding.Hormones200763173193 17724002
    [Google Scholar]
  80. OtunJ. SahebkarA. ÖstlundhL. AtkinS.L. SathyapalanT. Systematic review and meta-analysis on the effect of soy on thyroid function.Sci. Rep.201991396410.1038/s41598‑019‑40647‑x 30850697
    [Google Scholar]
  81. ChandraA.K. MukhopadhyayS. LahariD. TripathyS. Goitrogenic content of Indian cyanogenic plant foods and their in vitro anti-thyroidal activity.Indian J. Med. Res.20041195180185 15218979
    [Google Scholar]
  82. JakesR.W. AlexanderL. DuffyS.W. LeongJ. ChenL.H. LeeW.H. Dietary intake of soybean protein and menstrual cycle length in pre-menopausal Singapore Chinese women.Public Health Nutr.20014219119610.1079/PHN200063 11299091
    [Google Scholar]
  83. OseniT. PatelR. PyleJ. JordanV. Selective estrogen receptor modulators and phytoestrogens.Planta Med.200874131656166510.1055/s‑0028‑1088304 18843590
    [Google Scholar]
  84. MurrayM.J. MeyerW.R. LesseyB.A. OiR.H. DeWireR.E. FritzM.A. Soy protein isolate with isoflavones does not prevent estradiol-induced endometrial hyperplasia in postmenopausal women: A pilot trial.Menopause200310545646410.1097/01.GME.0000063567.84134.D1 14501608
    [Google Scholar]
  85. RickardD.J. MonroeD.G. RuesinkT.J. KhoslaS. RiggsB.L. SpelsbergT.C. Phytoestrogen genistein acts as an estrogen agonist on human osteoblastic cells through estrogen receptors α and β.J. Cell. Biochem.200389363364610.1002/jcb.10539 12761896
    [Google Scholar]
  86. KimJ.H. KimY.J. Effects of genistein in combination with conjugated estrogens on endometrial hyperplasia and metabolic dysfunction in ovariectomized mice.Endocr. J.201562653154210.1507/endocrj.EJ15‑0056 25877295
    [Google Scholar]
  87. MessinaM.J. WoodC.E. Soy isoflavones, estrogen therapy, and breast cancer risk: analysis and commentary.Nutr. J.2008711710.1186/1475‑2891‑7‑17 18522734
    [Google Scholar]
  88. JarginS.V. Soy and phytoestrogens: Possible side effects.Ger. Med. Sci.201412Doc1810.3205/000203 25587246
    [Google Scholar]
  89. HillmanG.G. Singh-GuptaV. Soy isoflavones sensitize cancer cells to radiotherapy.Free Radic. Biol. Med.201151228929810.1016/j.freeradbiomed.2011.04.039 21605661
    [Google Scholar]
  90. MalikA. SultanaM. QaziA. Role of natural radiosensitizers and cancer cell radioresistance: An update.Anal. Cell. Pathol.201620161810.1155/2016/6146595 26998418
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947313316240603101926
Loading
/content/journals/cctr/10.2174/0115733947313316240603101926
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): cancer; daidzein; genistein; glycitein; radiosensitizer; radiotherapy; Soy isoflavones
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test