Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Pancreatic adenocarcinoma is projected to become the most prevalent cancer globally by 2030. Normally, mitochondria play a crucial role in providing the energy needed for cell survival. Targeting mitochondrial complexes and ubiquinone oxidoreductase with natural remedies holds promise, and a naturally occurring flavonoid called chrysin is being researched for its potential to treat cancer. Due to chitosan's adaptable and versatile properties, including cationic properties, biodegradability, high adsorption capacity, biocompatibility, ability to form films, and adhesive properties, which contribute to its anti-cancer effects, chitosan-chrysin Nano-formulations (CCNPs) are increasingly used in medicine to increase chrysin’s bioavailability and effectiveness. Additionally, Cs (chitosan) is considered safe and cost-effective. CCNPs show potential for the purpose of treating pancreatic adenocarcinoma, and a number of substances are being researched as prospective therapeutic possibilities. Researchers aim to inhibit the progression of pancreatic adenocarcinoma by targeting succinate-ubiquinone oxidoreductase, a key enzyme involved in cellular energy production and survival mechanisms.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947289474240604050027
2024-06-14
2026-02-14
Loading full text...

Full text loading...

References

  1. SamecM. LiskovaA. KoklesovaL. Flavonoids targeting HIF-1: Implications on cancer metabolism.Cancers (Basel)202113113010.3390/cancers13010130 33401572
    [Google Scholar]
  2. PearlsteinE.F. TazinkengN.N. SawyerK. S61 epidemiology of pancreatic cancer in Africa: A systematic review.Am. J. Gastroenterol.20211161S26S2710.14309/01.ajg.0000772224.74784.af
    [Google Scholar]
  3. IbrahimA.S. IsmailK. HablasA. HusseinH. ElhamzawyH. RamadanM. Cancer in Egypt, Gharbiah. Triennial Report of 2000–2002 Gharbiah Population-Based Cancer RegistryEgypt2002
    [Google Scholar]
  4. Herreros-VillanuevaM. HijonaE. CosmeA. BujandaL. Mouse models of pancreatic cancer.World J. Gastroenterol.201218121286129410.3748/wjg.v18.i12.1286 22493542
    [Google Scholar]
  5. ChangM.C. WongJ.M. ChangY.T. Screening and early detection of pancreatic cancer in high risk population.World J. Gastroenterol.20142092358236410.3748/wjg.v20.i9.2358 24605033
    [Google Scholar]
  6. CouchF.J. JohnsonM.R. RabeK.G. The prevalence of BRCA2 mutations in familial pancreatic cancer.Cancer Epidemiol. Biomarkers Prev.200716234234610.1158/1055‑9965.EPI‑06‑0783 17301269
    [Google Scholar]
  7. ReboursV. LévyP. RuszniewskiP. An overview of hereditary pancreatitis.Dig. Liver Dis.201244181510.1016/j.dld.2011.08.003 21907651
    [Google Scholar]
  8. ParkJ. LeeE. ParkK.J. Large-scale clinical validation of biomarkers for pancreatic cancer using a mass spectrometry-based proteomics approach.Oncotarget2017826427614277110.18632/oncotarget.17463 28514751
    [Google Scholar]
  9. HanM.A.T. YuQ. TafeshZ. PyrsopoulosN. Diversity in NAFLD: a review of manifestations of nonalcoholic fatty liver disease in different ethnicities globally.J. Clin. Transl. Hepatol.2021917180 33604257
    [Google Scholar]
  10. YadavD. LowenfelsA.B. The epidemiology of pancreatitis and pancreatic cancer.Gastroenterology201314461252126110.1053/j.gastro.2013.01.068 23622135
    [Google Scholar]
  11. ParkinD.M. BoydL. WalkerL.C. 16. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010.Br. J. Cancer2011105S2Suppl. 2S77S8110.1038/bjc.2011.489 22158327
    [Google Scholar]
  12. FerlayJ. SoerjomataramI. DikshitR. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.Int. J. Cancer20151365E359E38610.1002/ijc.29210 25220842
    [Google Scholar]
  13. QuanteA.S. MingC. RottmannM. Projections of cancer incidence and cancer‐related deaths in Germany by 2020 and 2030.Cancer Med.2016592649265610.1002/cam4.767 27356493
    [Google Scholar]
  14. RawlaP. SunkaraT. GaduputiV. Epidemiology of pancreatic cancer: global trends, etiology and risk factors.World J. Oncol.2019101102710.14740/wjon1166 30834048
    [Google Scholar]
  15. BardeesyN. DePinhoR.A. Pancreatic cancer biology and genetics.Nat. Rev. Cancer200221289790910.1038/nrc949 12459728
    [Google Scholar]
  16. LiuD. SteinsA. KlaassenR. Soluble compounds released by hypoxic stroma confer invasive properties to pancreatic ductal adenocarcinoma.Biomedicines202081144410.3390/biomedicines8110444 33105540
    [Google Scholar]
  17. MatsumotoS. NakataK. SagaraA. Efficient pre treatment for pancreatic cancer using chloroquine loaded nanoparticles targeting pancreatic stellate cells.Oncol. Lett.202122263310.3892/ol.2021.12894 34267825
    [Google Scholar]
  18. AmrutkarM. GladhaugI.P. Stellate cells aid growth-permissive metabolic reprogramming and promote gemcitabine chemo resistance in pancreatic cancer.Cancers (Basel)202113460110.3390/cancers13040601 33546284
    [Google Scholar]
  19. BläuerM. SandJ. LaukkarinenJ. Regulation of p38 MAPK and glucocorticoid receptor activation by hydrocortisone in mono-and co-cultured pancreatic acinar and stellate cells.Pancreatology202121238438910.1016/j.pan.2020.12.024 33454208
    [Google Scholar]
  20. PolaniF. GriersonP.M. LimK.H. Stroma-targeting strategies in pancreatic cancer: Past lessons, challenges and prospects.World J. Gastroenterol.202127182105212110.3748/wjg.v27.i18.2105 34025067
    [Google Scholar]
  21. UllahK. WuR. Hypoxia-inducible factor regulates endothelial metabolism in cardiovascular disease.Front. Physiol.20211267065310.3389/fphys.2021.670653 34290616
    [Google Scholar]
  22. ZhangL. GuF.X. ChanJ.M. WangA.Z. LangerR.S. FarokhzadO.C. Nanoparticles in medicine: Therapeutic applications and developments.Clin. Pharmacol. Ther.200883576176910.1038/sj.clpt.6100400 17957183
    [Google Scholar]
  23. PatraC.R. BhattacharyaR. MukhopadhyayD. MukherjeeP. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer.Adv. Drug Deliv. Rev.201062334636110.1016/j.addr.2009.11.007 19914317
    [Google Scholar]
  24. WangM. ThanouM. Targeting nanoparticles to cancer.Pharmacol. Res.2010622909910.1016/j.phrs.2010.03.005 20380880
    [Google Scholar]
  25. ByrneJ.D. BetancourtT. Brannon-PeppasL. Active targeting schemes for nanoparticle systems in cancer therapeutics.Adv. Drug Deliv. Rev.200860151615162610.1016/j.addr.2008.08.005 18840489
    [Google Scholar]
  26. MoutR. MoyanoD.F. RanaS. RotelloV.M. Surface functionalization of nanoparticles for nanomedicine.Chem. Soc. Rev.20124172539254410.1039/c2cs15294k 22310807
    [Google Scholar]
  27. MaN. MaC. LiC. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake.J. Nanosci. Nanotechnol.201313106485649810.1166/jnn.2013.7525 24245105
    [Google Scholar]
  28. Cooper-MullinC. CarterW.A. AmatoR.S. PodlesakD. McWilliamsS.R. Dietary vitamin E reaches the mitochondria in the flight muscle of zebra finches but only if they exercise.PLoS One2021166e025326410.1371/journal.pone.0253264 34181660
    [Google Scholar]
  29. EniafeJ. JiangS. The functional roles of TCA cycle metabolites in cancer.Oncogene202140193351336310.1038/s41388‑020‑01639‑8 33864000
    [Google Scholar]
  30. MarkakiM. TavernarakisN. Mitochondrial turnover and homeostasis in ageing and neurodegeneration.FEBS Lett.2020594152370237910.1002/1873‑3468.13802 32350855
    [Google Scholar]
  31. RyanD.G. FrezzaC. O’NeillL.A.J. TCA cycle signalling and the evolution of eukaryotes.Curr. Opin. Biotechnol.202168728810.1016/j.copbio.2020.09.014 33137653
    [Google Scholar]
  32. SteffensL. PettinatoE. SteinerT.M. High CO2 levels drive the TCA cycle backwards towards autotrophy.Nature2021592785678478810.1038/s41586‑021‑03456‑9 33883741
    [Google Scholar]
  33. RoostermanD. CottrellG.S. Rethinking the citric acid cycle: Connecting pyruvate carboxylase and citrate synthase to the flow of energy and material.Int. J. Mol. Sci.202122260410.3390/ijms22020604 33435350
    [Google Scholar]
  34. Dalla PozzaE. DandoI. PacchianaR. Regulation of succinate dehydrogenase and role of succinate in cancer.Semin. Cell Dev. Biol.20209841410.1016/j.semcdb.2019.04.013
    [Google Scholar]
  35. HoC.H. HuangJ.H. SunM.S. TzengI. HsuY.C. KuoC.Y. Wild bitter melon extract regulates LPS-induced hepatic stellate cell activation, inflammation, endoplasmic reticulum stress, and ferroptosis.Evid. Based Complement. Alternat. Med.202120216671129
    [Google Scholar]
  36. EijkelenkampK. OsingaT.E. LinksT.P. van der Horst-SchriversA.N.A. Clinical implications of the oncometabolite succinate in SDHx ‐mutation carriers.Clin. Genet.2020971395310.1111/cge.13553 30977114
    [Google Scholar]
  37. CourtnayR. NgoD.C. MalikN. VerverisK. TortorellaS.M. KaragiannisT.C. Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K.Mol. Biol. Rep.201542484185110.1007/s11033‑015‑3858‑x 25689954
    [Google Scholar]
  38. Abdel-HaleemA.M. LewisN.E. JamshidiN. MinetaK. GaoX. GojoboriT. The emerging facets of non-cancerous warburg effect.Front. Endocrinol.2017827910.3389/fendo.2017.00279 29109698
    [Google Scholar]
  39. LibertiM.V. LocasaleJ.W. The Warburg effect: How does it benefit cancer cells.Trends Biochem. Sci.201641321121810.1016/j.tibs.2015.12.001 26778478
    [Google Scholar]
  40. Diaz-RuizR. RigouletM. DevinA. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression.Biochim. Biophys. Acta Bioenerg.20111807656857610.1016/j.bbabio.2010.08.010 20804724
    [Google Scholar]
  41. GoetzmanE.S. ProchownikE.V. The role for Myc in coordinating glycolysis, oxidative phosphorylation, glutaminolysis, and fatty acid metabolism in normal and neoplastic tissues.Front. Endocrinol.2018912910.3389/fendo.2018.00129 29706933
    [Google Scholar]
  42. KimS.H. BaekK.H. Regulation of cancer metabolism by deubiquitinating enzymes: The Warburg effect.Int. J. Mol. Sci.20212212617310.3390/ijms22126173 34201062
    [Google Scholar]
  43. HalliwellB. Biochemistry of oxidative stress.Biochem. Soc. Trans.20073551147115010.1042/BST0351147 17956298
    [Google Scholar]
  44. JenkinsJ. MantellJ. NealC. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress.Nat. Commun.2020111162610.1038/s41467‑020‑15471‑x 32242015
    [Google Scholar]
  45. ManzurA. OluwasanmiA. MossD. CurtisA. HoskinsC. Nanotechnologies in pancreatic cancer therapy.Pharmaceutics2017943910.3390/pharmaceutics9040039 28946666
    [Google Scholar]
  46. WangL. LiuX. ZhouQ. Terminating the criminal collaboration in pancreatic cancer: Nanoparticle-based synergistic therapy for overcoming fibroblast-induced drug resistance.Biomaterials201714410511810.1016/j.biomaterials.2017.08.002 28837958
    [Google Scholar]
  47. ArachchigeM.P. LahaS.S. NaikA.R. LewisK.T. NaikR. JenaB.P. Functionalized nanoparticles enable tracking the rapid entry and release of doxorubicin in human pancreatic cancer cells.Micron201792253110.1016/j.micron.2016.10.005 27846432
    [Google Scholar]
  48. EmamzadehM. DesmaëleD. CouvreurP. PasparakisG. Dual controlled delivery of squalenoyl-gemcitabine and paclitaxel using thermo-responsive polymeric micelles for pancreatic cancer.J. Mater. Chem. B Mater. Biol. Med.20186152230223910.1039/C7TB02899G 32254563
    [Google Scholar]
  49. MalekigorjiM. AlfahadM. Kong Thoo LinP. JonesS. CurtisA. HoskinsC. Thermally triggered theranostics for pancreatic cancer therapy.Nanoscale2017934127351274510.1039/C7NR02751F 28829476
    [Google Scholar]
  50. OluwasanmiA. Al-ShakarchiW. ManzurA. Diels Alder-mediated release of gemcitabine from hybrid nanoparticles for enhanced pancreatic cancer therapy.J. Control. Release201726635536410.1016/j.jconrel.2017.09.027 28943195
    [Google Scholar]
  51. LiuX. SituA. KangY. Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer.ACS Nano20161022702271510.1021/acsnano.5b07781 26835979
    [Google Scholar]
  52. SethyC. KunduC.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition.Biomed. Pharmacother.202113711128510.1016/j.biopha.2021.111285 33485118
    [Google Scholar]
  53. ZyadA. TilaouiM. JaafariA. OukerrouM.A. MouseH.A. More insights into the pharmacological effects of artemisinin.Phytother. Res.201832221622910.1002/ptr.5958 29193409
    [Google Scholar]
  54. IqbalJ. MahmoodT. AbbasiB.A. Role of dietary phytochemicals in modulation of miRNA expression: Natural swords combating breast cancer.Asian Pac. J. Trop. Med.201811950150910.4103/1995‑7645.242314
    [Google Scholar]
  55. MehdiS.H. NafeesS. ZafaryabM. KhanM.A. Alam RizviM.M. Chrysin: A promising anticancer agent its current trends and future perspectives.Eur. J. Exp. Biol.2018831610.21767/2248‑9215.100057
    [Google Scholar]
  56. HarborneJ.B. WilliamsC.A. Advances in flavonoid research since 1992.Phytochemistry200055648150410.1016/S0031‑9422(00)00235‑1 11130659
    [Google Scholar]
  57. ChenD. DanielK.G. ChenM.S. KuhnD.J. Landis-PiwowarK.R. DouQ.P. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells.Biochem. Pharmacol.200569101421143210.1016/j.bcp.2005.02.022 15857606
    [Google Scholar]
  58. RavishankarD. RajoraA.K. GrecoF. OsbornH.M.I. Flavonoids as prospective compounds for anti-cancer therapy.Int. J. Biochem. Cell Biol.201345122821283110.1016/j.biocel.2013.10.004 24128857
    [Google Scholar]
  59. SulaimanG.M. JabirM.S. HameedA.H. Nanoscale modification of chrysin for improved of therapeutic efficiency and cytotoxicity.Artif. Cells Nanomed. Biotechnol.201846S170872010.1080/21691401.2018.1434661
    [Google Scholar]
  60. SawickaD. CarH. BorawskaM.H. NiklińskiJ. The anticancer activity of propolis.Folia Histochem. Cytobiol.2012501253710.5603/FHC.2012.0004 22532133
    [Google Scholar]
  61. KachadourianR. DayB.J. Flavonoid-induced glutathione depletion: Potential implications for cancer treatment.Free Radic. Biol. Med.2006411657610.1016/j.freeradbiomed.2006.03.002 16781454
    [Google Scholar]
  62. van MeeuwenJ.A. KorthagenN. de JongP.C. PiersmaA.H. van den BergM. (Anti)estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture.Toxicol. Appl. Pharmacol.2007221337238310.1016/j.taap.2007.03.016 17482226
    [Google Scholar]
  63. GanaiS.A. SheikhF.A. BabaZ.A. Plant flavone Chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic‐based anticancer therapy.Phytother. Res.202135282383410.1002/ptr.6869 32930436
    [Google Scholar]
  64. FuB. XueJ. LiZ. ShiX. JiangB.H. FangJ. Chrysin inhibits expression of hypoxia-inducible factor-1α through reducing hypoxia-inducible factor-1α stability and inhibiting its protein synthesis.Mol. Cancer Ther.20076122022610.1158/1535‑7163.MCT‑06‑0526 17237281
    [Google Scholar]
  65. KseibatiMO SharawyMH SalemHA Chrysin mitigates bleomycin-induced pulmonary fibrosis in rats through regulating inflammation, oxidative stress, and hypoxia.Int Immunopharmacol202089Pt A10701110.1016/j.intimp.2020.10701133045575
    [Google Scholar]
  66. khoshravan L, Dadashpour M, Hashemi M, Zarghami N. Design and development of nanostructured co delivery of artemisinin and chrysin for targeting hTERT gene expression in breast cancer cell line: Possible clinical application in cancer treatment.Asian Pac. J. Cancer Prev.202223391992710.31557/APJCP.2022.23.3.919 35345364
    [Google Scholar]
  67. BhandareN. NarayanaA. Applications of nanotechnology in cancer: A literature review of imaging and treatment.J. Nucl. Med. Radiat. Ther.20145419
    [Google Scholar]
  68. AdangaleS.C. WairkarS. Potential therapeutic activities and novel delivery systems of chrysin-a nature’s boon.Food Biosci.20224510131610.1016/j.fbio.2021.101316
    [Google Scholar]
  69. BellI.R. SarterB. KoithanM. Integrative nanomedicine: Treating cancer with nanoscale natural products.Glob. Adv. Health Med.201431365310.7453/gahmj.2013.009 24753994
    [Google Scholar]
  70. SinghP. KaurJ. SinghG. BhattiR. Triblock conjugates: Identification of a highly potent antiinflammatory agent.J. Med. Chem.201558155989600110.1021/acs.jmedchem.5b00952 26204057
    [Google Scholar]
  71. JiangJ. YaoS. CaiH.H. YangP.H. CaiJ. Synthesis and synergetic effects of chrysin–organogermanium (IV) complex as potential anti-oxidant.Bioorg. Med. Chem. Lett.201323205727573210.1016/j.bmcl.2013.07.073 23993775
    [Google Scholar]
  72. YangF. GongL. JinH. Chrysin–organogermanium (IV) complex induced Colo205 cell apoptosis‐associated mitochondrial function and anti‐angiogenesis.Scanning201537424625710.1002/sca.21205 25914235
    [Google Scholar]
  73. MartinsI.L. CharneiraC. GandinV. Selenium-containing chrysin and quercetin derivatives: Attractive scaffolds for cancer therapy.J. Med. Chem.201558104250426510.1021/acs.jmedchem.5b00230 25906385
    [Google Scholar]
  74. JungJ. Emerging utilization of chrysin using nanoscale modification.J. Nanomater.201620161710.1155/2016/2894089
    [Google Scholar]
  75. RampinoA. BorgognaM. BlasiP. BellichB. CesàroA. Chitosan nanoparticles: Preparation, size evolution and stability.Int. J. Pharm.20134551-221922810.1016/j.ijpharm.2013.07.034 23886649
    [Google Scholar]
  76. O’CallaghanK.A.M. KerryJ.P. Preparation of low and medium-molecular weight chitosan nanoparticles and their antimicrobial evaluation against a panel of microorganisms, including cheese-derived cultures.Food Control20166925626110.1016/j.foodcont.2016.05.005
    [Google Scholar]
  77. RagabE.M. El GamalD.M. MohamedT.M. KhamisA.A. Study of the inhibitory effects of chrysin and its nanoparticles on mitochondrial complex II subunit activities in normal mouse liver and human fibroblasts.J. Genet. Eng. Biotechnol.20222011510.1186/s43141‑021‑00286‑0 35089446
    [Google Scholar]
  78. SwierczewskaM HanHS KimK ParkJH LeeS Polysaccharide-based nanoparticles for theranostic nanomedicine.Adv Drug Deliv Rev201699Pt A708410.1016/j.addr.2015.11.01526639578
    [Google Scholar]
  79. MoghadamE.R. AngH.L. AsnafS.E. Broad-spectrum preclinical antitumor activity of chrysin: Current trends and future perspectives.Biomolecules20201010137410.3390/biom10101374 32992587
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947289474240604050027
Loading
/content/journals/cctr/10.2174/0115733947289474240604050027
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test