Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Approximately 1,70,000 of the 1 million cases of Breast Cancer (BC) identified every year globally are triple-negative. Triple-Negative Breast Cancer (TNBC) has different clinical and pathologic features. Because of its aggressive attitude, typically poor prognosis, and non-existence of targeted medicines, chemotherapy is the only treatment available, making it a clinical problem. This subgroup constitutes 15% of all types of BC cases and a larger proportion of BC cases in African-American females. It can be treated with conventional therapy because there are no special treatment recommendations for this subtype; nonetheless, this therapy leaves patients with a high incidence of local and systemic recurrence. Clinically, they manifest as interval cancer in younger women and have a higher chance of recurrence in the first three years. Epidermal Growth Factor Receptor (EGFR), VEGF, basal cytokeratins, poly (ADP-ribose) polymerase-1, p53, tyrosinase kinases, mTOR, heat and stress proteins, and TOP-2A are only a few of the biomarkers examined in research on TNBC. This study aims to concentrate on its characteristics, definition, and available treatments now and in the future. Additionally, we looked for angiogenesis, growth, and survival pathway blockade, as well as synthetic lethality. Moreover, nanomolecular therapeutic options, the role of biomarkers, and various clinical trials are discussed briefly. The successful development of targeted therapy for TNBC is still limited because of its heterogeneity. In this article, we outline the present and potential treatment landscape for TNBC and discuss how a thorough knowledge of the ecosystem around TNBC could aid in categorizing risk levels and improving the likelihood of therapy personalization.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947297237240530055719
2024-06-11
2026-02-16
Loading full text...

Full text loading...

References

  1. KumarP. AggarwalR. An overview of triple-negative breast cancer.Arch. Gynecol. Obstet.2016293224726910.1007/s00404‑015‑3859‑y 26341644
    [Google Scholar]
  2. MedinaM.A. OzaG. SharmaA. Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies.Int. J. Environ. Res. Public Health2020176207810.3390/ijerph17062078 32245065
    [Google Scholar]
  3. FoulkesW.D. SmithI.E. Reis-FilhoJ.S. Triple-negative breast cancer.N. Engl. J. Med.2010363201938194810.1056/NEJMra1001389 21067385
    [Google Scholar]
  4. Ismail-KhanR. BuiM.M. A review of triple-negative breast cancer.Cancer Contr.201017317317610.1177/107327481001700305 20664514
    [Google Scholar]
  5. Chalakur-RamireddyN.K.R. PakalaS.B. Combined drug therapeutic strategies for the effective treatment of Triple Negative Breast Cancer.Biosci. Rep.2018381BSR2017135710.1042/BSR20171357 29298879
    [Google Scholar]
  6. JamdadeV.S. SethiN. MundheN.A. KumarP. LahkarM. SinhaN. Therapeutic targets of triple‐negative breast cancer: a review.Br. J. Pharmacol.2015172174228423710.1111/bph.13211 26040571
    [Google Scholar]
  7. WieseD.A. ThaiwongT. Yuzbasiyan-GurkanV. KiupelM. Feline mammary basal-like adenocarcinomas: a potential model for human triple-negative breast cancer (TNBC) with basal-like subtype.BMC Cancer201313140310.1186/1471‑2407‑13‑403 24004841
    [Google Scholar]
  8. IrvinW.J.Jr CareyL.A. What is triple-negative breast cancer?Eur. J. Cancer200844182799280510.1016/j.ejca.2008.09.034 19008097
    [Google Scholar]
  9. de RuijterT.C. VeeckJ. de HoonJ.P.J. van EngelandM. Tjan-HeijnenV.C. Characteristics of triple-negative breast cancer.J. Cancer Res. Clin. Oncol.2011137218319210.1007/s00432‑010‑0957‑x 21069385
    [Google Scholar]
  10. ChacónR.D. CostanzoM.V. Triple-negative breast cancer.Breast Cancer Res.201012S2Suppl. 2S310.1186/bcr2574 21050424
    [Google Scholar]
  11. WahbaH.A. El-HadaadH.A. Current approaches in treatment of triple-negative breast cancer.Cancer Biol. Med.201512210611610.7497/j.issn.2095‑3941.2015.0030 26175926
    [Google Scholar]
  12. KaushikD. VermaR. KumarK. Untangling breast cancer: Trailing towards nanoformulations-based drug development.Recent Pat. Nanotechnol.20231710.2174/1872210517666230731091046 37519201
    [Google Scholar]
  13. SørlieT. Molecular portraits of breast cancer: tumour subtypes as distinct disease entities.Eur. J. Cancer200440182667267510.1016/j.ejca.2004.08.021 15571950
    [Google Scholar]
  14. SinghV. KumarK. PurohitD. Exploration of therapeutic applicability and different signaling mechanism of various phytopharmacological agents for treatment of breast cancer.Biomed. Pharmacother.202113911158410.1016/j.biopha.2021.111584 34243623
    [Google Scholar]
  15. SotiriouC. NeoS.Y. McShaneL.M. Breast cancer classification and prognosis based on gene expression profiles from a population-based study.Proc. Natl. Acad. Sci. USA200310018103931039810.1073/pnas.1732912100 12917485
    [Google Scholar]
  16. Charafe-JauffretE. GinestierC. MonvilleF. How to best classify breast cancer: Conventional and novel classifications (Review).Int. J. Oncol.20052751307131310.3892/ijo.27.5.1307 16211226
    [Google Scholar]
  17. da SilvaJ.L. Cardoso NunesN.C. IzettiP. de MesquitaG.G. de MeloA.C. Triple negative breast cancer: A thorough review of biomarkers.Crit. Rev. Oncol. Hematol.202014510285510.1016/j.critrevonc.2019.102855 31927455
    [Google Scholar]
  18. YadavB.S. ChananaP. JhambS. Biomarkers in triple negative breast cancer: A review.World J. Clin. Oncol.20156625226310.5306/wjco.v6.i6.252 26677438
    [Google Scholar]
  19. CoccoS. PiezzoM. CalabreseA. Biomarkers in triple-negative breast cancer: state-of-the-art and future perspectives.Int. J. Mol. Sci.20202113457910.3390/ijms21134579 32605126
    [Google Scholar]
  20. BaoC. LuY. ChenJ. Exploring specific prognostic biomarkers in triple-negative breast cancer.Cell Death Dis.2019101180710.1038/s41419‑019‑2043‑x 31649243
    [Google Scholar]
  21. SukumarJ. GastK. QuirogaD. LustbergM. WilliamsN. Triple-negative breast cancer: promising prognostic biomarkers currently in development.Expert Rev. Anticancer Ther.202121213514810.1080/14737140.2021.1840984 33198517
    [Google Scholar]
  22. BernsdorfM. IngvarC. JörgensenL. Effect of adding gefitinib to neoadjuvant chemotherapy in estrogen receptor negative early breast cancer in a randomized phase II trial.Breast Cancer Res. Treat.2011126246347010.1007/s10549‑011‑1352‑2 21234672
    [Google Scholar]
  23. FleisherB. ClarkeC. Ait-OudhiaS. Current advances in biomarkers for targeted therapy in triple-negative breast cancer.Breast Cancer (Dove Med. Press)2016818319710.2147/BCTT.S114659 27785100
    [Google Scholar]
  24. LinderholmB.K. HellborgH. JohanssonU. Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer.Ann. Oncol.200920101639164610.1093/annonc/mdp062 19549711
    [Google Scholar]
  25. RydénL. JirströmK. HaglundM. StålO. FernöM. Epidermal growth factor receptor and vascular endothelial growth factor receptor 2 are specific biomarkers in triple-negative breast cancer. Results from a controlled randomized trial with long-term follow-up.Breast Cancer Res. Treat.2010120249149810.1007/s10549‑010‑0758‑6 20135347
    [Google Scholar]
  26. Perez-GarciaJ. Muñoz-CouseloE. SoberinoJ. RaccaF. CortesJ. Targeting FGFR pathway in breast cancer.Breast20183712613310.1016/j.breast.2017.10.014 29156384
    [Google Scholar]
  27. LehmannB.D. PietenpolJ.A. Identification and use of biomarkers in treatment strategies for triple‐negative breast cancer subtypes.J. Pathol.2014232214215010.1002/path.4280 24114677
    [Google Scholar]
  28. TarantinoP. HamiltonE. TolaneyS.M. HER2-low breast cancer: pathological and clinical landscape.J. Clin. Oncol.202038171951196210.1200/JCO.19.02488 32330069
    [Google Scholar]
  29. ZerkowskiM.P. CampR.L. BurtnessB.A. RimmD.L. ChungG.G. Quantitative analysis of breast cancer tissue microarrays shows high cox-2 expression is associated with poor outcome.Cancer Invest.2007251192610.1080/07357900601128825 17364553
    [Google Scholar]
  30. IgnatovA. EggemannH. BurgerE. IgnatovT. Patterns of breast cancer relapse in accordance to biological subtype.J. Cancer Res. Clin. Oncol.201814471347135510.1007/s00432‑018‑2644‑2 29675790
    [Google Scholar]
  31. FehrenbacherL. CecchiniR.S. GeyerC.E.Jr NSABP B-47/NRG oncology phase III randomized trial comparing adjuvant chemotherapy with or without trastuzumab in high-risk invasive breast cancer negative for HER2 by FISH and with IHC 1+ or 2.J. Clin. Oncol.202038544445310.1200/JCO.19.01455 31821109
    [Google Scholar]
  32. MittendorfE.A. ArdavanisA. LittonJ.K. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence.Oncotarget2016740661926620110.18632/oncotarget.11751 27589688
    [Google Scholar]
  33. HymanD.M. Piha-PaulS.A. WonH. HER kinase inhibition in patients with HER2- and HER3-mutant cancers.Nature2018554769118919410.1038/nature25475 29420467
    [Google Scholar]
  34. CollinsL.C. ColeK.S. MarottiJ.D. HuR. SchnittS.J. TamimiR.M. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study.Mod. Pathol.201124792493110.1038/modpathol.2011.54 21552212
    [Google Scholar]
  35. SantonjaA. Sánchez-MuñozA. LluchA. Triple negative breast cancer subtypes and pathologic complete response rate to neoadjuvant chemotherapy.Oncotarget2018941264062641610.18632/oncotarget.25413 29899867
    [Google Scholar]
  36. BartonV.N. D’AmatoN.C. GordonM.A. ChristensonJ.L. EliasA. RicherJ.K. Androgen receptor biology in triple negative breast cancer: a case for classification as AR+ or quadruple negative disease.Horm. Cancer201565-620621310.1007/s12672‑015‑0232‑3 26201402
    [Google Scholar]
  37. GucalpA. TolaneyS. IsakoffS.J. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer.Clin. Cancer Res.201319195505551210.1158/1078‑0432.CCR‑12‑3327 23965901
    [Google Scholar]
  38. TrainaT.A. MillerK. YardleyD.A. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer.J. Clin. Oncol.201836988489010.1200/JCO.2016.71.3495 29373071
    [Google Scholar]
  39. VermaR. BhattS. DuttR. KumarM. KaushikD. GautamR.K. Establishing nanotechnology-based drug development for triple-negative breast cancer treatment.Wiley202310.1002/9783527841165.ch9
    [Google Scholar]
  40. NagpalD. VermaR. MittalV. JeandetP. KaushikD. Targeted therapies against breast cancer: Clinical perspectives, obstacles and new opportunities.J. Drug Deliv. Sci. Technol.20238910504910.1016/j.jddst.2023.105049
    [Google Scholar]
  41. BronerE. AlpertG. GluschnaiderU. abstract AL101: mediated tumor inhibition in notch-altered TNBC PDX models.J. Clin. Oncol.201937151064
    [Google Scholar]
  42. StorzP. Forkhead homeobox type O transcription factors in the responses to oxidative stress.Antioxid. Redox Signal.201114459360510.1089/ars.2010.3405 20618067
    [Google Scholar]
  43. ZhengJ. YuH. ZhouA. It takes two to tango: coupling of Hippo pathway and redox signaling in biological process.Cell Cycle202019212760277510.1080/15384101.2020.1824448 33016196
    [Google Scholar]
  44. VolovatS.R. VolovatC. HordilaI. MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: a review.Front. Oncol.20201052685010.3389/fonc.2020.526850 33330019
    [Google Scholar]
  45. MatheA. ScottR. Avery-KiejdaK. MiRNAs and other epigenetic changes as biomarkers in triple negative breast cancer.Int. J. Mol. Sci.20151612283472837610.3390/ijms161226090 26633365
    [Google Scholar]
  46. GyparakiM.T. BasdraE.K. PapavassiliouA.G. MicroRNAs as regulatory elements in triple negative breast cancer.Cancer Lett.201435411410.1016/j.canlet.2014.07.036 25107641
    [Google Scholar]
  47. TodorovaV.K. ByrumS.D. GiesA.J. Circulating exosomal microRNAs as predictive biomarkers of neoadjuvant chemotherapy response in breast cancer.Curr. Oncol.202229261363010.3390/curroncol29020055 35200555
    [Google Scholar]
  48. HongH.C. ChuangC.H. HuangW.C. A panel of eight microRNAs is a good predictive parameter for triple-negative breast cancer relapse.Theranostics202010198771878910.7150/thno.46142 32754277
    [Google Scholar]
  49. Comprehensive molecular characterization of human colon and rectal cancer.Nature2012487740733033710.1038/nature11252 22810696
    [Google Scholar]
  50. CopsonE.R. MaishmanT.C. TapperW.J. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study.Lancet Oncol.201819216918010.1016/S1470‑2045(17)30891‑4 29337092
    [Google Scholar]
  51. LordC.J. AshworthA. BRCAness revisited.Nat. Rev. Cancer201616211012010.1038/nrc.2015.21 26775620
    [Google Scholar]
  52. LinP.H. ChenM. TsaiL.W. Using next‐generation sequencing to redefine BRCAness in triple‐negative breast cancer.Cancer Sci.202011141375138410.1111/cas.14313 31958182
    [Google Scholar]
  53. TimmsK.M. AbkevichV. HughesE. Association of BRCA1/2defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes.Breast Cancer Res.201416647510.1186/s13058‑014‑0475‑x 25475740
    [Google Scholar]
  54. TelliM.L. HellyerJ. AudehW. Homologous recombination deficiency (HRD) status predicts response to standard neoadjuvant chemotherapy in patients with triple-negative or BRCA1/2 mutation-associated breast cancer.Breast Cancer Res. Treat.2018168362563010.1007/s10549‑017‑4624‑7 29275435
    [Google Scholar]
  55. BelliC. DusoB.A. FerraroE. CuriglianoG. Homologous recombination deficiency in triple negative breast cancer.Breast201945152110.1016/j.breast.2019.02.007 30818144
    [Google Scholar]
  56. GatalicaZ. XiuJ. SwensenJ. VranicS. Molecular characterization of cancers with NTRK gene fusions.Mod. Pathol.201932114715310.1038/s41379‑018‑0118‑3 30171197
    [Google Scholar]
  57. HsiaoS.J. ZehirA. SireciA.N. AisnerD.L. Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy.J. Mol. Diagn.201921455357110.1016/j.jmoldx.2019.03.008 31075511
    [Google Scholar]
  58. MassihniaD. PerezA. BazanV. A headlight on liquid biopsies: a challenging tool for breast cancer management.Tumour Biol.20163744263427310.1007/s13277‑016‑4856‑x 26790442
    [Google Scholar]
  59. WoodL.D. ParsonsD.W. JonesS. The genomic landscapes of human breast and colorectal cancers.Science200731858531108111310.1126/science.1145720 17932254
    [Google Scholar]
  60. Gonzalez-AnguloA.M. BlumenscheinG.R.Jr Defining biomarkers to predict sensitivity to PI3K/Akt/mTOR pathway inhibitors in breast cancer.Cancer Treat. Rev.201339431332010.1016/j.ctrv.2012.11.002 23218708
    [Google Scholar]
  61. MayerI.A. ArteagaC.L. The PI3K/AKT pathway as a target for cancer treatment.Annu. Rev. Med.2016671112810.1146/annurev‑med‑062913‑051343 26473415
    [Google Scholar]
  62. KimS.B. DentR. ImS.A. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial.Lancet Oncol.201718101360137210.1016/S1470‑2045(17)30450‑3 28800861
    [Google Scholar]
  63. VranicS. CyprianF.S. GatalicaZ. PalazzoJ. PD-L1 status in breast cancer: Current view and perspectives.Semin. Cancer Biol.20217214615410.1016/j.semcancer.2019.12.003 31883913
    [Google Scholar]
  64. MittendorfE.A. PhilipsA.V. Meric-BernstamF. PD-L1 expression in triple-negative breast cancer.Cancer Immunol. Res.20142436137010.1158/2326‑6066.CIR‑13‑0127 24764583
    [Google Scholar]
  65. KimH.M. LeeJ. KooJ.S. Clinicopathological and prognostic significance of programmed death ligand-1 expression in breast cancer: a meta-analysis.BMC Cancer201717169010.1186/s12885‑017‑3670‑1 29041905
    [Google Scholar]
  66. IlieM. HofmanV. DietelM. SoriaJ.C. HofmanP. Assessment of the PD-L1 status by immunohistochemistry: challenges and perspectives for therapeutic strategies in lung cancer patients.Virchows Arch.2016468551152510.1007/s00428‑016‑1910‑4 26915032
    [Google Scholar]
  67. CerbelliB. PernazzaA. BotticelliA. PD-L1 expression in TNBC: a predictive biomarker of response to neoadjuvant chemotherapy?BioMed Res. Int.201720171710.1155/2017/1750925 29387716
    [Google Scholar]
  68. MuenstS. SchaerliA.R. GaoF. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer.Breast Cancer Res. Treat.20141461152410.1007/s10549‑014‑2988‑5 24842267
    [Google Scholar]
  69. SabatierR. FinettiP. MamessierE. Prognostic and predictive value of PDL1 expression in breast cancer.Oncotarget2015675449546410.18632/oncotarget.3216 25669979
    [Google Scholar]
  70. SchmidP. AdamsS. RugoH.S. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer.N. Engl. J. Med.2018379222108212110.1056/NEJMoa1809615 30345906
    [Google Scholar]
  71. DenkertC. von MinckwitzG. Darb-EsfahaniS. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy.Lancet Oncol.2018191405010.1016/S1470‑2045(17)30904‑X 29233559
    [Google Scholar]
  72. AdamsS. GrayR.J. DemariaS. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199.J. Clin. Oncol.201432272959296610.1200/JCO.2013.55.0491 25071121
    [Google Scholar]
  73. AdamsS. SchmidP. RugoH.S. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study.Ann. Oncol.201930339740410.1093/annonc/mdy517 30475950
    [Google Scholar]
  74. LoiS. WinerE. LipatovO. Im SA, Goncalves A, Cortes J, Salgado R. Abstract PD5-03: Relationship between tumor-infiltrating lymphocytes (TILs) and outcomes in the KEYNOTE-119 study of pembrolizumab vs chemotherapy for previously treated metastatic triple-negative breast cancer (mTNBC).Cancer Res.2020804Suppl.PD5PD03
    [Google Scholar]
  75. ShaD. JinZ. BudcziesJ. KluckK. StenzingerA. SinicropeF.A. Tumor mutational burden as a predictive biomarker in solid tumors.Cancer Discov.202010121808182510.1158/2159‑8290.CD‑20‑0522 33139244
    [Google Scholar]
  76. ChidaK. KawazoeA. KawazuM. A low tumor mutational burden and pten mutations are predictors of a negative response to PD-1 blockade in MSI-H/dMMR gastrointestinal tumorslow TMB and PTEN mutations predict ICI response in MSI-H GI tumors.Clin. Cancer Res.202127133714372410.1158/1078‑0432.CCR‑21‑0401 33926917
    [Google Scholar]
  77. DuffyM.J. CrownJ. Biomarkers for predicting response to immunotherapy with immune checkpoint inhibitors in cancer patients.Clin. Chem.201965101228123810.1373/clinchem.2019.303644 31315901
    [Google Scholar]
  78. SegalN.H. ParsonsD.W. PeggsK.S. Epitope landscape in breast and colorectal cancer.Cancer Res.200868388989210.1158/0008‑5472.CAN‑07‑3095 18245491
    [Google Scholar]
  79. YarchoanM. JohnsonB.A.III LutzE.R. LaheruD.A. JaffeeE.M. Targeting neoantigens to augment antitumour immunity.Nat. Rev. Cancer201717420922210.1038/nrc.2016.154 28233802
    [Google Scholar]
  80. LuenS. VirassamyB. SavasP. SalgadoR. LoiS. The genomic landscape of breast cancer and its interaction with host immunity.Breast20162924125010.1016/j.breast.2016.07.015 27481651
    [Google Scholar]
  81. LiuX.S. MardisE.R. Applications of immunogenomics to cancer.Cell2017168460061210.1016/j.cell.2017.01.014 28187283
    [Google Scholar]
  82. CrutcherC.L. CornwellL.B. ChagparA.B. Effect of triple-negative status on surgical decision making.ASCO2010
    [Google Scholar]
  83. FreedmanG.M. AndersonP.R. LiT. NicolaouN. Locoregional recurrence of triple‐negative breast cancer after breast‐conserving surgery and radiation.Cancer2009115594695110.1002/cncr.24094 19156929
    [Google Scholar]
  84. DawoodS. Triple-negative breast cancer: epidemiology and management options.Drugs201070172247225810.2165/11538150‑000000000‑00000 21080741
    [Google Scholar]
  85. PanoffJ.E. HurleyJ. TakitaC. Risk of locoregional recurrence by receptor status in breast cancer patients receiving modern systemic therapy and post-mastectomy radiation.Breast Cancer Res. Treat.2011128389990610.1007/s10549‑011‑1495‑1 21475999
    [Google Scholar]
  86. AbdulkarimB.S. CuarteroJ. HansonJ. DeschênesJ. LesniakD. SabriS. Increased risk of locoregional recurrence for women with T1-2N0 triple-negative breast cancer treated with modified radical mastectomy without adjuvant radiation therapy compared with breast-conserving therapy.J. Clin. Oncol.201129212852285810.1200/JCO.2010.33.4714 21670451
    [Google Scholar]
  87. BerradaN. DelalogeS. AndréF. Treatment of triple-negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization?Ann. Oncol.201021Suppl. 7vii30vii3510.1093/annonc/mdq279 20943632
    [Google Scholar]
  88. AmosK.D. AdamoB. AndersC.K. Triple-negative breast cancer: an update on neoadjuvant clinical trials.Int. J. Breast Cancer201220121710.1155/2012/385978 22461984
    [Google Scholar]
  89. CardosoF. Senkus-KonefkaE. FallowfieldL. CostaA. CastiglioneM. Locally recurrent or metastatic breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann. Oncol.2010215Suppl. 5v15v1910.1093/annonc/mdq160 20555067
    [Google Scholar]
  90. GluzO. LiedtkeC. GottschalkN. PusztaiL. NitzU. HarbeckN. Triple-negative breast cancer—current status and future directions.Ann. Oncol.200920121913192710.1093/annonc/mdp492 19901010
    [Google Scholar]
  91. SlamonD MackeyJ RobertN CrownJ MartinM EiremannW Role of anthracycline-based therapy in the adjuvant treatment of breast cancer: efficacy analyses determined by molecular subtypes of the disease.Breast Cancer Res Treat2007106Abstr 13
    [Google Scholar]
  92. GennariA. SormaniM.P. PronzatoP. HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials.J. Natl. Cancer Inst.20081001142010.1093/jnci/djm252 18159072
    [Google Scholar]
  93. QuinnJ.E. KennedyR.D. MullanP.B. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis.Cancer Res.2003631962216228 14559807
    [Google Scholar]
  94. CleatorS. HellerW. CoombesR.C. Triple-negative breast cancer: therapeutic options.Lancet Oncol.20078323524410.1016/S1470‑2045(07)70074‑8 17329194
    [Google Scholar]
  95. GeislerS. LønningP.E. AasT. Influence of TP53 gene alterations and c-erbB-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer.Cancer Res.200161625052512 11289122
    [Google Scholar]
  96. LinN.U. ClausE. SohlJ. RazzakA.R. ArnaoutA. WinerE.P. Sites of distant recurrence and clinical outcomes in patients with metastatic triple‐negative breast cancer.Cancer2008113102638264510.1002/cncr.23930 18833576
    [Google Scholar]
  97. KassamF. EnrightK. DentR. Survival outcomes for patients with metastatic triple-negative breast cancer: implications for clinical practice and trial design.Clin. Breast Cancer200991293310.3816/CBC.2009.n.005 19299237
    [Google Scholar]
  98. VermaS. ProvencherL. DentR. Emerging trends in treatment of TNBC.Curr. Oncol.20111818019010.3747/co.v18i4.913 21874117
    [Google Scholar]
  99. CareyL.A. DeesE.C. SawyerL. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes.Clin. Cancer Res.20071382329233410.1158/1078‑0432.CCR‑06‑1109 17438091
    [Google Scholar]
  100. Le TourneauC DettwilerS LaurenceV AlranS BeuzebocP PiergaJY 47% pathologic complete response rate to anthracyclines-based associated with high cyclophosphamide doses neoadjuvant chemotherapy in basal-like and triple negative breast cancer patients.Breast Cancer Res Treat2007106Abstr 4010
    [Google Scholar]
  101. WangS. YangH. TongF. Response to neoadjuvant therapy and disease free survival in patients with triple-negative breast cancer.Gan To Kagaku Ryoho2009362255258 19223741
    [Google Scholar]
  102. RastogiP. AndersonS.J. BearH.D. Preoperative chemotherapy: updates of national surgical adjuvant breast and bowel project protocols B-18 and B-27.J. Clin. Oncol.200826577878510.1200/JCO.2007.15.0235 18258986
    [Google Scholar]
  103. RouzierR. PerouC.M. SymmansW.F. Breast cancer molecular subtypes respond differently to preoperative chemotherapy.Clin. Cancer Res.200511165678568510.1158/1078‑0432.CCR‑04‑2421 16115903
    [Google Scholar]
  104. TassoneP. TagliaferriP. PerricelliA. BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells.Br. J. Cancer20038881285129110.1038/sj.bjc.6600859 12698198
    [Google Scholar]
  105. BhattacharyyaA. EarU.S. KollerB.H. WeichselbaumR.R. BishopD.K. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin.J. Biol. Chem.200027531238992390310.1074/jbc.C000276200 10843985
    [Google Scholar]
  106. GarberJ. RichardsonA. HarrisL. MironnA. SilverD. GolshanM. Neo-adjuvant cisplatin (CDDP) in triple-negative breast cancer (BC).Breast Cancer Res. Treat.2006100S149
    [Google Scholar]
  107. EzzatA.A. IbrahimE.M. AjarimD.S. Phase II study of neoadjuvant paclitaxel and cisplatin for operable and locally advanced breast cancer: analysis of 126 patients.Br. J. Cancer200490596897410.1038/sj.bjc.6601616 14997191
    [Google Scholar]
  108. FrasciG. ComellaP. RinaldoM. Preoperative weekly cisplatin–epirubicin–paclitaxel with G-CSF support in triple-negative large operable breast cancer.Ann. Oncol.20092071185119210.1093/annonc/mdn748 19218307
    [Google Scholar]
  109. BearH.D. TangG. RastogiP. The effect on pCR of bevacizumab and/or antimetabolites added to standard neoadjuvant chemotherapy: NSABP protocol B-40.J. Clin. Oncol.20112918_supplLBA100510.1200/jco.2011.29.18_suppl.lba1005
    [Google Scholar]
  110. ZelnakA.B. Harichand-HerdtS. StybloT.M. Final results from randomized phase II trial of preoperative docetaxel (D) and capecitabine (C) given sequentially or concurrently for HER2-negative breast cancers.J. Clin. Oncol.20112915_suppl1118[Meeting Abstracts].10.1200/jco.2011.29.15_suppl.1118
    [Google Scholar]
  111. AlbainK.S. AllredD.C. ClarkG.M. Breast cancer outcome and predictors of outcome: are there age differentials?J. Natl. Cancer Inst. Monogr.1994163542 7999467
    [Google Scholar]
  112. GerberB. LoiblS. EidtmannH. RezaiM. FaschingP.A. TeschH. Neoadjuvant bevacizumab and anthracycline-taxane-based chemotherapy in 678 triple-negative primary breast cancers: seconday endpoint analysis of the GeparQuinto study (GBG 44).Ann. Oncol.2013242978298410.1093/annonc/mdt361 24136883
    [Google Scholar]
  113. von MinckwitzG. EidtmannH. RezaiM. Abstract S4-6: Neoadjuvant chemotherapy with or without Bevacizumab: primary efficacy endpoint analysis of the GEPARQUINTO Study (GBG 44).Cancer Res.20107024_SupplementS4S610.1158/0008‑5472.SABCS10‑S4‑6
    [Google Scholar]
  114. GoodinS. Novel cytotoxic agents: Epothilones.Am J Health Syst Pharm20086510_Supplement_3)(Suppl. 3S10510.2146/ajhp08008918463327
    [Google Scholar]
  115. BaselgaJ. ZambettiM. Llombart-CussacA. Phase II genomics study of ixabepilone as neoadjuvant treatment for breast cancer.J. Clin. Oncol.200927452653410.1200/JCO.2007.14.2646 19075286
    [Google Scholar]
  116. DentR. TrudeauM. PritchardK.I. Triple-negative breast cancer: clinical features and patterns of recurrence.Clin. Cancer Res.200713154429443410.1158/1078‑0432.CCR‑06‑3045 17671126
    [Google Scholar]
  117. PetitT. WiltM. RodierJ. Are BRCA1 mutations a predictive factor for anthracycline-based neoadjuvant chemotherapy response in triple-negative breast cancers?J. Clin. Oncol.20072518_suppl580[Meeting Abstracts].10.1200/jco.2007.25.18_suppl.580
    [Google Scholar]
  118. BerradaN. ConfortiR. DelalogeS. SpielmannM. AndreF. Use of molecular classification combined with p53 and topoisomerase IIa expression to identify tumors highly responsive to FEC regimen: A tissue microarray.J. Clin. Oncol.20092715_suppl546[Meeting Abstracts].10.1200/jco.2009.27.15_suppl.546
    [Google Scholar]
  119. CheangM. ChiaS.K. TuD. Anthracyclines in basal breast cancer: The NCIC-CTG trial MA5 comparing adjuvant CMF to CEF.J. Clin. Oncol.20092715_suppl51910.1200/jco.2009.27.15_suppl.519
    [Google Scholar]
  120. HendersonI.C. BerryD.A. DemetriG.D. Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer.J. Clin. Oncol.200321697698310.1200/JCO.2003.02.063 12637460
    [Google Scholar]
  121. SparanoJ.A. WangM. MartinoS. Weekly paclitaxel in the adjuvant treatment of breast cancer.N. Engl. J. Med.2008358161663167110.1056/NEJMoa0707056 18420499
    [Google Scholar]
  122. HarrisL.N. BroadwaterG. LinN.U. Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: results from CALGB 9342.Breast Cancer Res.200686R6610.1186/bcr1622 17129383
    [Google Scholar]
  123. RottenbergS. NygrenA.O.H. PajicM. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer.Proc. Natl. Acad. Sci. USA200710429121171212210.1073/pnas.0702955104 17626183
    [Google Scholar]
  124. HughJ. HansonJ. CheangM.C.U. Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial.J. Clin. Oncol.20092781168117610.1200/JCO.2008.18.1024 19204205
    [Google Scholar]
  125. MussH.B. BerryD.A. CirrincioneC.T. Adjuvant chemotherapy in older women with early-stage breast cancer.N. Engl. J. Med.2009360202055206510.1056/NEJMoa0810266 19439741
    [Google Scholar]
  126. JoensuuH. Kellokumpu-LehtinenP-L. HuovinenR. Abstract S4-1: FinXX final 5-year analysis: results of the randomised, open-label, phase III trial in medium-to-high risk early breast cancer.Cancer Res.20107024_SupplementS4S110.1158/0008‑5472.SABCS10‑S4‑1
    [Google Scholar]
  127. RugoHS RocheH ThomasE BlackwellK ChungH LerzoG Ixabepilone plus capecitabine vs capecitabine in patients with triple negative tumors: a pooled analysis of patients from two large phase III clinical studies.Cancer Res200969Abstract nr 305710.1158/0008‑5472.SABCS‑3057
    [Google Scholar]
  128. BiganzoliL. CuferT. BruningP. Doxorubicin and paclitaxel versus doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer: The European Organization for Research and Treatment of Cancer 10961 Multicenter Phase III Trial.J. Clin. Oncol.200220143114312110.1200/JCO.2002.11.005 12118025
    [Google Scholar]
  129. WysockiP.J. KorskiK. LamperskaK. ZaluskiJ. MackiewiczA. Primary resistance to docetaxel-based chemotherapy in metastatic breast cancer patients correlates with a high frequency of BRCA1 mutations.Med. Sci. Monit.2008147SC7SC10 18591931
    [Google Scholar]
  130. ByrskiT. Foszczynska-KlodaM. HuzarskiT. Cisplatin chemotherapy in the treatment of BRCA1-positive metastatic breast cancer (MBC).J. Clin. Oncol.20092715_suppl109910.1200/jco.2009.27.15_suppl.1099
    [Google Scholar]
  131. KilburnL.S. ‘Triple negative’ breast cancer: a new area for phase III breast cancer clinical trials.Clin. Oncol. (R. Coll. Radiol.)2008201353910.1016/j.clon.2007.09.010 17977700
    [Google Scholar]
  132. O’ShaughnessyJ. MilesD. VukeljaS. Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results.J. Clin. Oncol.200220122812282310.1200/JCO.2002.09.002 12065558
    [Google Scholar]
  133. MartínM. RuizA. MuñozM. Gemcitabine plus vinorelbine versus vinorelbine monotherapy in patients with metastatic breast cancer previously treated with anthracyclines and taxanes: final results of the phase III Spanish Breast Cancer Research Group (GEICAM) trial.Lancet Oncol.20078321922510.1016/S1470‑2045(07)70041‑4 17329192
    [Google Scholar]
  134. AlbainK.S. NagS.M. Calderillo-RuizG. Gemcitabine plus Paclitaxel versus Paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment.J. Clin. Oncol.200826243950395710.1200/JCO.2007.11.9362 18711184
    [Google Scholar]
  135. RottenbergS. JaspersJ.E. KersbergenA. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs.Proc. Natl. Acad. Sci. USA200810544170791708410.1073/pnas.0806092105 18971340
    [Google Scholar]
  136. FarmerH. McCabeN. LordC.J. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.Nature2005434703591792110.1038/nature03445 15829967
    [Google Scholar]
  137. O’ShaughnessyJ. OsborneC. PippenJ. Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): Results of a randomized phase II trial.J. Clin. Oncol.20092718_suppl3[Meeting Abstracts].10.1200/jco.2009.27.18_suppl.3
    [Google Scholar]
  138. CepedaV. FuertesM. CastillaJ. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy.Recent Patents Anticancer Drug Discov.200611395310.2174/157489206775246430 18221025
    [Google Scholar]
  139. MillerK. WangM. GralowJ. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer.N. Engl. J. Med.2007357262666267610.1056/NEJMoa072113 18160686
    [Google Scholar]
  140. MilesD. ChanA. RomieuG. Randomized, double-blind, placebo-controlled, phase III study of bevacizumab with docetaxel or docetaxel with placebo as first-line therapy for patients with locally recurrent or metastatic breast cancer (mBC): AVADO.J Clin Oncol (Meeting Abstracts)200826LBA1011
    [Google Scholar]
  141. RobertN.J. DierasV. GlaspyJ. RIBBON-1: Randomized, double-blind, placebo-controlled, phase iii trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer.J. Clin. Oncol.200927100510.1200/jco.2009.27.15_suppl.1005 21383283
    [Google Scholar]
  142. TwelvesC. LoeschD. BlumJ.L. A phase III study (EMBRACE) of eribulin mesylate versus treatment of physician’s choice in patients with locally recurrent or metastatic breast cancer previously treated with an anthracycline and a taxane.J. Clin. Oncol.20102818_supplCRA100410.1200/jco.2010.28.18_suppl.cra1004
    [Google Scholar]
  143. DesaiN. Nab technology: a drug delivery platform utilizing endothelial gp60 receptor-based transport and tumour-derived SPARC for targeting.Oxford PharmaVentures Ltd20073741
    [Google Scholar]
  144. IbrahimN.K. DesaiN. LeghaS. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel.Clin. Cancer Res.20028510381044 12006516
    [Google Scholar]
  145. GradisharW.J. TjulandinS. DavidsonN. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer.J. Clin. Oncol.200523317794780310.1200/JCO.2005.04.937 16172456
    [Google Scholar]
  146. CareyL.A. RugoH.S. MarcomP.K. TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple-negative (basal-like) breast cancer.J. Clin. Oncol.20082615_suppl100910.1200/jco.2008.26.15_suppl.1009
    [Google Scholar]
  147. JovanovićB. TemkoD. StevensL.E. Heterogeneity and transcriptional drivers of triple-negative breast cancer.Cell Rep.2023421211356410.1016/j.celrep.2023.113564 38100350
    [Google Scholar]
  148. AslehK. RiazN. NielsenT.O. Heterogeneity of triple negative breast cancer: Current advances in subtyping and treatment implications.J. Exp. Clin. Cancer Res.202241126510.1186/s13046‑022‑02476‑1 36050786
    [Google Scholar]
  149. SuoM. LiuZ. TangW. Development of a novel oxidative stress-amplifying nanocomposite capable of supplying intratumoral H 2 O 2 and O 2 for enhanced chemodynamic therapy and radiotherapy in patient-derived xenograft (PDX) models.Nanoscale20201245232592326510.1039/D0NR06594C 33206098
    [Google Scholar]
  150. KarlssonJ. VaughanH.J. GreenJ.J. Biodegradable polymeric nanoparticles for therapeutic cancer treatments.Annu. Rev. Chem. Biomol. Eng.20189110512710.1146/annurev‑chembioeng‑060817‑084055 29579402
    [Google Scholar]
  151. KempJ.A. ShimM.S. HeoC.Y. KwonY.J. “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy.Adv. Drug Deliv. Rev.20169831810.1016/j.addr.2015.10.019 26546465
    [Google Scholar]
  152. SieglerE.L. KimY.J. ChenX. Combination cancer therapy using chimeric antigen receptor-engineered natural killer cells as drug carriers. Molecul ther j Am Socf.Gene Ther.201725122607261910.1016/j.ymthe.2017.08.010
    [Google Scholar]
  153. MiY. HaganC.T.IV VincentB.G. WangA.Z. Emerging Nano‐/Microapproaches for Cancer Immunotherapy.Adv. Sci. (Weinh.)201966180184710.1002/advs.201801847 30937265
    [Google Scholar]
  154. BilanR. NabievI. SukhanovaA. Quantum dot‐based nanotools for bioimaging, diagnostics, and drug delivery.ChemBioChem201617222103211410.1002/cbic.201600357 27535363
    [Google Scholar]
  155. BaconM. BradleyS.J. NannT. Graphene quantum dots.Part. Part. Syst. Charact.201431441542810.1002/ppsc.201300252
    [Google Scholar]
  156. de Sousa MarcialS.P. CarneiroG. LeiteE.A. Lipid-based nanoparticles as drug delivery system for paclitaxel in breast cancer treatment.J. Nanopart. Res.2017191034035010.1007/s11051‑017‑4042‑0
    [Google Scholar]
  157. BomanN.L. MasinD. MayerL.D. CullisP.R. BallyM.B. Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors.Cancer Res.1994541128302833 8187061
    [Google Scholar]
  158. CruchoC.I.C. BarrosM.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods.Mater. Sci. Eng. C20178077178410.1016/j.msec.2017.06.004 28866227
    [Google Scholar]
  159. PradhanR. DeyA. TaliyanR. PuriA. KharavtekarS. DubeyS.K. Recent advances in targeted nanocarriers for the management of triple negative breast cancer.Pharmaceutics202315124610.3390/pharmaceutics15010246 36678877
    [Google Scholar]
  160. JangW.D. Kamruzzaman SelimK.M. LeeC.H. KangI.K. Bioinspired application of dendrimers: From bio-mimicry to biomedical applications.Prog. Polym. Sci.200934112310.1016/j.progpolymsci.2008.08.003
    [Google Scholar]
  161. Sanchis-GualR. Coronado-PuchauM. MallahT. CoronadoE. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism.Coord. Chem. Rev.202348021502510.1016/j.ccr.2023.215025
    [Google Scholar]
  162. AziziM. GhourchianH. YazdianF. BagherifamS. BekhradniaS. NyströmB. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line.Sci. Rep.201771517810.1038/s41598‑017‑05461‑3 28701707
    [Google Scholar]
  163. FangL. ZhouH. ChengL. WangY. LiuF. WangS. The application of mesoporous silica nanoparticles as a drug delivery vehicle in oral disease treatment.Front. Cell. Infect. Microbiol.202313112441110.3389/fcimb.2023.1124411 36864881
    [Google Scholar]
  164. ProdanaM. IonitaD. UngureanuC. BojinD. DemetrescuI. Enhancing antibacterial effect of multiwalled carbon nanotubes using silver nanoparticles.Microscopy201162549556
    [Google Scholar]
  165. SantosA.C. CostaD. FerreiraL. Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies.Drug Deliv. Transl. Res.2021111497110.1007/s13346‑020‑00778‑5 32441011
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947297237240530055719
Loading
/content/journals/cctr/10.2174/0115733947297237240530055719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test