Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Since breast cancer affects one in every four women, it is an utmost need to investigate novel diagnostic technologies and treatment techniques. This requires the development of diagnostic techniques to simplify the identification of cancer cells, which can facilitate cancer therapy. One of the most significant obstacles in chemotherapy is the absence of technologies that can measure its effectiveness while it is being administered. Additionally, due to its steadily expanding prevalence and mortality rate, cancer has surpassed AIDS as the world's second leading cause of death. Breast cancer accounts for a disproportionately high number of cancer-related deaths among women worldwide, making precise, sensitive imaging a necessity for this disease. Breast cancer can be successfully treated if it is diagnosed early. As an alternate strategy, the use of cutting-edge computational methodologies has been advocated for developing innovative breast cancer diagnostic imaging techniques. The following article provides an overview of the traditional diagnostic procedures that have historically been employed for the detection of breast carcinoma, as well as the current methods that are being utilized. Furthermore, a comprehensive overview of various mathematical frameworks is provided, including machine learning, deep learning, artificial neural networks, and robotics, highlighting their progress and potential applications in the field of breast cancer diagnostic imaging.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947288059240405041146
2024-04-16
2025-09-29
Loading full text...

Full text loading...

References

  1. AkramM IqbalM DaniyalM KhanAU. Awareness and current knowledge of breast cancer.Biological research2017 Dec50123
    [Google Scholar]
  2. ParejaF. D’AlfonsoT.M. Neuroendocrine neoplasms of the breast: A review focused on the updated World Health Organization (WHO) 5th Edition morphologic classification.Breast J.20202661160116710.1111/tbj.1386332383258
    [Google Scholar]
  3. DeSantisC. MaJ. BryanL. JemalA. Breast cancer statistics, 2013.CA Cancer J Clin2014641526210.3322/caac.2120324114568
    [Google Scholar]
  4. JatoiI. ProschanM.A. Randomized trials of breast-conserving therapy versus mastectomy for primary breast cancer: A pooled analysis of updated results.Am. J. Clin. Oncol.200528328929410.1097/01.coc.0000156922.58631.d715923803
    [Google Scholar]
  5. HoussamiN. MacaskillP. MarinovichM.L. DixonJ.M. IrwigL. BrennanM.E. SolinL.J. Meta-analysis of the impact of surgical margins on local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy.Eur. J. Cancer201046183219323210.1016/j.ejca.2010.07.04320817513
    [Google Scholar]
  6. ClarkeM. CollinsR. DarbyS. DaviesC. ElphinstoneP. EvansE. GodwinJ. GrayR. HicksC. JamesS. MacKinnonE. Early breast cancer trialists collaborative group (EBCTCG). Effects of radiotherapy and differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomized trials.Lancet200536695032087210610.1016/S0140‑6736(05)67887‑716360786
    [Google Scholar]
  7. Early Breast Cancer Trialists’ Collaborative GroupEarly breast cancer trialists’ collaborative group (EBCTCG): Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10,801 women in 17 randomized trials.Lancet201137898041707171610.1016/S0140‑6736(11)61629‑222019144
    [Google Scholar]
  8. AzumaH. TakaharaS. IchimaruN. WangJ.D. ItohY. OtsukiY. MorimotoJ. FukuiR. HoshigaM. IshiharaT. NonomuraN. SuzukiS. OkuyamaA. KatsuokaY. Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models.Cancer Res.20026251410141911888913
    [Google Scholar]
  9. AwadelkarimK.D. ArizziC. ElaminE.O.M. HamadH.M.A. De BlasioP. MekkiS.O. OsmanI. BiunnoI. ElwaliN.E. CostantiniM.R. BarberisM.C. Pathological, clinical and prognostic characteristics of breast cancer in Central Sudan versus Northern Italy: Implications for breast cancer in Africa.Histopathology200852444545610.1111/j.1365‑2559.2008.02966.x18315597
    [Google Scholar]
  10. FregeneA. NewmanL.A. Breast cancer in sub‐Saharan Africa: How does it relate to breast cancer in african‐american women?Cancer200510381540155010.1002/cncr.2097815768434
    [Google Scholar]
  11. RajputS. SharmaP.K. MalviyaR. Biomarkers and treatment strategies for breast cancer recurrence.Curr. Drug Targets202324151209122010.2174/011389450125805923110307202538164731
    [Google Scholar]
  12. YadavD. SharmaP.K. MishraP.S. MalviyaR. The potential of stem cells in treating breast cancer.Curr. Stem Cell Res. Ther.202419332433310.2174/1574888X1866623042809405637132308
    [Google Scholar]
  13. PaceL.E. KeatingN.L. A systematic assessment of benefits and risks to guide breast cancer screening decisions.JAMA2014311131327133510.1001/jama.2014.139824691608
    [Google Scholar]
  14. ZhengG. HorstmeyerR. YangC. Wide-field, high-resolution Fourier ptychographic microscopy.Nat. Photonics20137973974510.1038/nphoton.2013.18725243016
    [Google Scholar]
  15. NilashiM. IbrahimO. AhmadiH. ShahmoradiL. A knowledge-based system for breast cancer classification using fuzzy logic method.Telemat. Inform.201734413314410.1016/j.tele.2017.01.007
    [Google Scholar]
  16. KubatM. Introduction to machine learning.In: Advanced Topics in Artificial Intelligence: International Summer School PragueCzechoslovakia2005104138
    [Google Scholar]
  17. TangJ. RangayyanR.M. XuJ. NaqaE.I. YangY. Computer-aided detection and diagnosis of breast cancer with mammography: Recent advances.IEEE Trans. Inf. Technol. Biomed.200913223625110.1109/TITB.2008.200944119171527
    [Google Scholar]
  18. JalalianA. MashohorS.B.T. MahmudH.R. SaripanM.I.B. RamliA.R.B. KarasfiB. Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: A review.Clin. Imaging201337342042610.1016/j.clinimag.2012.09.02423153689
    [Google Scholar]
  19. KeleşA. KeleşA. YavuzU. Expert system based on neuro-fuzzy rules for diagnosis breast cancer.Expert Syst. Appl.20113855719572610.1016/j.eswa.2010.10.061
    [Google Scholar]
  20. AdekiyaT. ArulebaR. KhanyileS. MasambaP. OyinloyeB. KappoA. Structural analysis and epitope prediction of MHC class-1-chain related protein-a for cancer vaccine development.Vaccines201761110.3390/vaccines601000129295563
    [Google Scholar]
  21. HarbeckN. Penault-LlorcaF. CortesJ. GnantM. HoussamiN. PoortmansP. RuddyK. TsangJ. CardosoF. Breast cancer.Nat. Rev. Dis. Primers2019516610.1038/s41572‑019‑0111‑231548545
    [Google Scholar]
  22. MilosevicM. JankovicD. MilenkovicA. StojanovD. Early diagnosis and detection of breast cancer.Technol. Health Care201826472975910.3233/THC‑18127730124455
    [Google Scholar]
  23. LiuB. ChengH.D. HuangJ. TianJ. TangX. LiuJ. Fully automatic and segmentation-robust classification of breast tumors based on local texture analysis of ultrasound images.Pattern Recognit.201043128029810.1016/j.patcog.2009.06.002
    [Google Scholar]
  24. ShanJ. ChengH.D. WangY. Completely automated segmentation approach for breast ultrasound images using multiple-domain features.Ultrasound Med. Biol.201238226227510.1016/j.ultrasmedbio.2011.10.02222230134
    [Google Scholar]
  25. ChenG. LiQ. ShiF. RekikI. PanZ. RFDCR: Automated brain lesion segmentation using cascaded random forests with dense conditional random fields.Neuroimage202021111662010.1016/j.neuroimage.2020.11662032057997
    [Google Scholar]
  26. GayathiriE. PrakashP. KumaravelP. JayaprakashJ. RagunathanM.G. SankarS. PandiarajS. ThirumalaivasanN. ThiruvengadamM. GovindasamyR. Computational approaches for modeling and structural design of biological systems: A comprehensive review.Prog. Biophys. Mol. Biol.2023185173210.1016/j.pbiomolbio.2023.08.00237821048
    [Google Scholar]
  27. ChristauS. RuizL.A. HabibiN. WitteJ. BannonM.S. McEnnisK. LahannJ. Macrophage‐targeting poly(lactide‐ co ‐glycolic acid) nanoparticles decorated with multifunctional brush polymers.Part. Part. Syst. Charact.2022395210028410.1002/ppsc.202100284
    [Google Scholar]
  28. JeevanandamJ. SabbihG. TanK.X. DanquahM.K. Oncological ligand-target binding systems and developmental approaches for cancer theranostics.Mol. Biotechnol.202163316718310.1007/s12033‑020‑00296‑233423212
    [Google Scholar]
  29. AhmadS. KhanF.N. RamlalA. BegumS. QaziS. RazaK. Nanoinformatics and nanomodeling: Recent developments in computational nanodrug design and delivery systems.Emerging Nanotechnologies for Medical Applications2023129733210.1016/B978‑0‑323‑91182‑5.00001‑2
    [Google Scholar]
  30. BhattacharyaT SoaresGA ChopraH RahmanMM HasanZ SwainSS CavaluS Applications nano modeling of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials2022213804
    [Google Scholar]
  31. HuaS. de MatosM.B.C. MetselaarJ.M. StormG. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization.Front. Pharmacol.2018979010.3389/fphar.2018.0079030065653
    [Google Scholar]
  32. ShafiullahA. ChowdhuryA. RosenR. Improved classification of ultrasound breast cancer rf data with nakagami and derived nakagami parameters using advanced machine learning algorithm.Doctoral dissertation, Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh2021
    [Google Scholar]
  33. TariqM. IqbalS. AyeshaH. AbbasI. AhmadK.T. NiaziM.F.K. Medical image based breast cancer diagnosis: State of the art and future directions.Expert Syst. Appl.202116711409510.1016/j.eswa.2020.114095
    [Google Scholar]
  34. BoatengE.Y. OtooJ. AbayeD.A. Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest, and neural network: A review.JDAIP20208434135710.4236/jdaip.2020.84020
    [Google Scholar]
  35. SeyedzadehS. RahimianF.P. OliverS. RodriguezS. GleskI. Machine learning modeling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making.Appl. Energy2020279115908
    [Google Scholar]
  36. SuthaharanS. Machine learning models and algorithms for big data classification.Integrat. Ser. Inform. Syst.20163611210.1007/978‑1‑4899‑7641‑3
    [Google Scholar]
  37. TsaiH.H. ChangY.C. Facial expression recognition using a combination of multiple facial features and support vector machine.Soft Comput.201822134389440510.1007/s00500‑017‑2634‑3
    [Google Scholar]
  38. ManavalanB. ShinT.H. LeeG. PVP-SVM: Sequence-based prediction of phage virion proteins using a support vector machine.Front. Microbiol.2018947610.3389/fmicb.2018.0047629616000
    [Google Scholar]
  39. ChenS. WuX. ZhangR. A novel twin support vector machine for binary classification problems.Neural Process. Lett.201644379581110.1007/s11063‑016‑9495‑0
    [Google Scholar]
  40. AcharyaU.R. NgE.Y.K. TanJ.H. SreeS.V. Thermography based breast cancer detection using texture features and Support Vector Machine.J. Med. Syst.20123631503151010.1007/s10916‑010‑9611‑z20957511
    [Google Scholar]
  41. MaglogiannisI. ZafiropoulosE. AnagnostopoulosI. An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers.Appl. Intell.2009301243610.1007/s10489‑007‑0073‑z
    [Google Scholar]
  42. HuangY.L. WangK.L. ChenD.R. Diagnosis of breast tumors with ultrasonic texture analysis using support vector machines.Neural Comput. Appl.200615216416910.1007/s00521‑005‑0019‑5
    [Google Scholar]
  43. WangH. ZhengB. YoonS.W. KoH.S. A support vector machine-based ensemble algorithm for breast cancer diagnosis.Eur. J. Oper. Res.2018267268769910.1016/j.ejor.2017.12.001
    [Google Scholar]
  44. LisboaP.J. TaktakA.F.G. The use of artificial neural networks in decision support in cancer: A systematic review.Neural Netw.200619440841510.1016/j.neunet.2005.10.00716483741
    [Google Scholar]
  45. KamalA.M. SakorikarT. PalU.M. PandyaH.J. Engineering approaches for breast cancer diagnosis: A review.IEEE Rev. Biomed. Eng.20221668770535687618
    [Google Scholar]
  46. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature1453926017442
    [Google Scholar]
  47. ZhaoR. YanR. ChenZ. MaoK. WangP. GaoR.X. Deep learning and its applications to machine health monitoring.Mech. Syst. Signal Process.201911521323710.1016/j.ymssp.2018.05.050
    [Google Scholar]
  48. KalchbrennerN. GrefenstetteE. BlunsomP. A convolutional neural network for modeling sentences.2014, arXiv:1404.2188
    [Google Scholar]
  49. CongI. ChoiS. LukinM.D. Quantum convolutional neural networks.Nat. Phys.201915121273127810.1038/s41567‑019‑0648‑8
    [Google Scholar]
  50. ColeyC.W. JinW. RogersL. JamisonT.F. JaakkolaT.S. GreenW.H. BarzilayR. JensenK.F. A graph-convolutional neural network model for the prediction of chemical reactivity.Chem. Sci.201910237037710.1039/C8SC04228D30746086
    [Google Scholar]
  51. IndoliaS. GoswamiA.K. MishraS.P. AsopaP. Conceptual understanding of convolutional neural network-a deep learning approach.Procedia Comput. Sci.201813267968810.1016/j.procs.2018.05.069
    [Google Scholar]
  52. NahidA.A. MehrabiM.A. KongY. Histopathological breast cancer image classification by deep neural network techniques guided by local clustering.BioMed Res. Int.201812010.1155/2018/236210829707566
    [Google Scholar]
  53. MurtazaG. ShuibL. MujtabaG. RazaG. Breast cancer multi-classification through deep neural network and hierarchical classification approach.Multimedia Tools Appl.20207921-22154811551110.1007/s11042‑019‑7525‑4
    [Google Scholar]
  54. TanY.J. SimK.S. TingF.F. Breast cancer detection using convolutional neural networks for the mammogram imaging system.2017 International Conference on Robotics, Automation and Sciences (ICORAS)20171510.1109/ICORAS.2017.8308076
    [Google Scholar]
  55. AmitG. Ben-AriR. HadadO. MonovichE. GranotN. HashoulS. Classification of breast MRI lesions using small-size training sets: Comparison of deep learning approaches.Proc. SPIE201710134101341H10.1117/12.2249981
    [Google Scholar]
  56. ByraM. WróblewskaP.H. SobczakD.K. NowickiA. Combining Nakagami imaging and convolutional neural network for breast lesion classification.IEEE International Ultrasonics Symposium (IUS)06-09 September 2017Washington, DC, USA201714
    [Google Scholar]
  57. GoodfellowI.J. On distinguishability criteria for estimating generative models.arXiv 2014.10.48550/arXiv.1412.6515https://arxiv.org/abs/1412.6515
    [Google Scholar]
  58. KazeminiaS. BaurC. KuijperA. van GinnekenB. NavabN. AlbarqouniS. MukhopadhyayA. GANs for medical image analysis.Artif. Intell. Med.202010910193810.1016/j.artmed.2020.10193834756215
    [Google Scholar]
  59. OdenaA. OlahC. ShlensJ. Conditional image synthesis with auxiliary classifier gan.2017, arXiv:1610.09585
    [Google Scholar]
  60. SonJ. ParkS.J. JungK.H. Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks.J. Digit. Imaging201932349951210.1007/s10278‑018‑0126‑330291477
    [Google Scholar]
  61. PanZ. YuW. YiX. KhanA. YuanF. ZhengY. Recent progress on generative adversarial networks (GANs): A survey.IEEE Access20197363223633310.1109/ACCESS.2019.2905015
    [Google Scholar]
  62. ArulebaK. ObaidoG. OgbuokiriB. FadakaA.O. KleinA. AdekiyaT.A. ArulebaR.T. Applications of computational methods in biomedical breast cancer imaging diagnostics: A review.J. Imaging202061010510.3390/jimaging610010534460546
    [Google Scholar]
  63. SinghV.K. RomaniS. RashwanH.A. AkramF. PandeyN. MdM.K.S. AbdulwahabS. Conditional generative adversarial and convolutional networks for X-ray breast mass segmentation and shape classification.2018, arXiv:1805.1020710.1007/978‑3‑030‑00934‑2_92
    [Google Scholar]
  64. WuE. WuK. CoxD. LotterW. Conditional infilling GANs for data augmentation in mammogram classification.arXiv201810.48550/arXiv.1807.08093 https://arxiv.org/abs/1807.08093
    [Google Scholar]
  65. GuanS. LoewM. Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural networks.J. Med. Imaging201963110.1117/1.JMI.6.3.03141130915386
    [Google Scholar]
  66. TanY.J. SimK.S. TingF.F. Breast cancer detection using convolutional neural networks for the mammogram imaging system.International Conference on Robotics, Automation and Sciences (ICORAS)20171510.1109/ICORAS.2017.8308076
    [Google Scholar]
  67. AmitG. Ben-AriR. HadadO. MonovichE. GranotN. HashoulS. Classification of breast MRI lesions using small-size training sets: Comparison of deep learning approaches.Proc. SPIE201710134101341H6
    [Google Scholar]
  68. RagabD.A. SharkasM. MarshallS. RenJ. Breast cancer detection using deep convolutional neural networks and support vector machines.PeerJ20197e620110.7717/peerj.620130713814
    [Google Scholar]
  69. YuS. LiuL. WangZ. DaiG. XieY. Transferring deep neural networks for the differentiation of mammographic breast lesions.Sci. China Technol. Sci.201962344144710.1007/s11431‑017‑9317‑3
    [Google Scholar]
  70. AshrafianH. ClancyO. GroverV. DarziA. The evolution of robotic surgery: Surgical and anaesthetic aspects.Br. J. Anaesth.2017119S1i72i8410.1093/bja/aex38329161400
    [Google Scholar]
  71. HongZ. CuiB. WangK. BaiX. YangN. ZhangY. WuX. ChengT. JinD. ZhaoJ. GouY. Comparison of clinical efficacy between da vinci robot-assisted ivor lewis esophagectomy and mckeown esophagectomy for middle and lower thoracic esophageal cancer: A multicenter propensity score-matched study.Ann. Surg. Oncol.202330138271827710.1245/s10434‑023‑14208‑637698668
    [Google Scholar]
  72. TaylorR.H. SimaanN. MenciassiA. YangG.Z. Surgical robotics and computer-integrated interventional medicine.Proc. IEEE2022110782383410.1109/JPROC.2022.3177693
    [Google Scholar]
  73. FeiziN. TavakoliM. PatelR.V. AtashzarS.F. Robotics and AI for teleoperation, tele-assessment, and tele-training for surgery in the era of COVID-19: Existing challenges, and future vision.Front. Robot. AI2021861067710.3389/frobt.2021.61067733937347
    [Google Scholar]
  74. GargP. MohantyA. RamisettyS. KulkarniP. HorneD. PisickE. SalgiaR. SinghalS.S. Artificial intelligence and allied subsets in early detection and preclusion of gynecological cancers.Biochimica et Biophysica Acta (BBA). Rev. Can.202320189026
    [Google Scholar]
  75. KiranN SapnaFN KiranFN KumarD RajaFN ShiwlaniS PaladiniA SonamFN BendariA PerkashRS AnjaliFN Digital pathology: Transforming diagnosis in the digital age.Cureus2023159e4462010.7759/cureus.4462037799211
    [Google Scholar]
  76. WangZ. LiM. WangH. JiangH. YaoY. ZhangH. XinJ. Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features.IEEE Access2019710514610515810.1109/ACCESS.2019.2892795
    [Google Scholar]
  77. KatoI. KoganezawaK. TakanishiA. Automatic breast cancer palpation robot: WAPRO-4.Adv. Robot.19883425126110.1163/156855389X00217
    [Google Scholar]
  78. KobayashiY. SuzukiM. KatoA. KonishiK. HashizumeM. FujieM.G. A robotic palpation-based needle insertion method for diagnostic biopsy and treatment of breast cancer.IEEE/RSJ International Conference On Intelligent Robots And Systems20095534553910.1109/IROS.2009.5354485
    [Google Scholar]
  79. LarsonB.T. TsekosN.V. ErdmanA.G. A robotic device for minimally invasive breast interventions with real-time MRI guidance.Third IEEE Symposium on Bioinformatics and Bioengineering200319019710.1109/BIBE.2003.1188946
    [Google Scholar]
  80. TsekosN.V. ShudyJ. YacoubE. TsekosP.V. KoutlasI.G. Development of a robotic device for MRI-guided interventions in the breast.Proceedings 2nd annual IEEE International Symposium on Bioinformatics and Bioengineering200120120810.1109/BIBE.2001.974430
    [Google Scholar]
  81. MallapragadaV. SarkarN. PodderT.K. Toward a robot-assisted breast intervention system.IEEE/ASME Trans. Mechatron.20111661011102010.1109/TMECH.2010.2068575
    [Google Scholar]
  82. FudgeN. SadlerE. FisherH.R. MaherJ. WolfeC.D.A. McKevittC. Optimising translational research opportunities: A systematic review and narrative synthesis of basic and clinician Scientists’ perspectives of factors which enable or hinder translational research.PLoS One2016118e016047510.1371/journal.pone.016047527490373
    [Google Scholar]
  83. WilsonB.C. JermynM. LeblondF. Challenges and opportunities in clinical translation of biomedical optical spectroscopy and imaging.J. Biomed. Opt.201823311310.1117/1.JBO.23.3.03090129512358
    [Google Scholar]
  84. KimJ.A. WalesD.J. YangG.Z. Optical spectroscopy for in vivo medical diagnosis—A review of the state of the art and future perspectives.Prog. Biomed. Eng.20202404200110.1088/2516‑1091/abaaa3
    [Google Scholar]
  85. NgE.Y.K. SreeS.V. NgK.H. KawG. The use of tissue electrical characteristics for breast cancer detection: A perspective review.Technol. Cancer Res. Treat.20087429530810.1177/15330346080070040418642968
    [Google Scholar]
  86. ParkJ. JeongY. KimJ. GuJ. WangJ. ParkI. Biopsy needle integrated with multi-modal physical/chemical sensor array.Biosens. Bioelectron.202014811182210.1016/j.bios.2019.11182231698304
    [Google Scholar]
  87. KimB.S. IsaacsonD. XiaH. KaoT.J. NewellJ.C. SaulnierG.J. A method for analyzing electrical impedance spectroscopy data from breast cancer patients.Physiol. Meas.2007287S237S24610.1088/0967‑3334/28/7/S1717664638
    [Google Scholar]
  88. ZarafshaniA. DhurjatyS. WangY. TangS. XiangL. ZhengB. Feasibility test of quantitative assessment of breast density based on dielectric impedance spectroscopy.Appl Biotechnol Bioen201726004710.15406/jabb.2017.02.00047
    [Google Scholar]
  89. ZhaoS. WangP. HeidariA.A. ChenH. TurabiehH. MafarjaM. LiC. Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease.Comput. Biol. Med.202113410442710.1016/j.compbiomed.2021.10442734020128
    [Google Scholar]
  90. HuZ. WangJ. ZhangC. LuoZ. LuoX. XiaoL. ShiJ. Uncertainty modeling for multicenter autism spectrum disorder classification using Takagi–Sugeno–Kang fuzzy systems.IEEE Trans. Cogn. Dev. Syst.202214273073910.1109/TCDS.2021.3073368
    [Google Scholar]
  91. ChenC.Z. WuQ. LiZ.Y. XiaoL. HuZ.Y. Diagnosis of Alzheimer’s disease based on deeply-fused nets.Comb. Chem. High Throughput Screen.202124678178910.2174/138620732366620082509264932842937
    [Google Scholar]
  92. LiuL. ZhaoD. YuF. HeidariA.A. RuJ. ChenH. MafarjaM. TurabiehH. PanZ. Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation.Comput. Biol. Med.202113810491010.1016/j.compbiomed.2021.10491034638022
    [Google Scholar]
  93. SaberA. SakrM. Abo-SeidaO.M. KeshkA. ChenH. A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique.IEEE Access20219711947120910.1109/ACCESS.2021.3079204
    [Google Scholar]
  94. SankurB¨. SankurB.L. Survey over image thresholding techniques and quantitative performance evaluation.J. Electron. Imaging200413114616810.1117/1.1631315
    [Google Scholar]
  95. AbutalebA.S. Automatic thresholding of gray-level pictures using two-dimensional entropy.Comput. Vis. Graph. Image Process.1989471223210.1016/0734‑189X(89)90051‑0
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947288059240405041146
Loading
/content/journals/cctr/10.2174/0115733947288059240405041146
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test