Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Colorectal adenocarcinoma (COAD) is a prevalent and lethal form of cancer. Understanding the molecular mechanisms underlying COAD progression is crucial for developing effective diagnostic and therapeutic strategies.

Methods

This study aims to explore wound healing-related genes in COAD and their potential roles in tumorigenesis and prognosis using and methodology.

Results

A set of 70 genes associated with the “wound healing” term ere extracted from the Gene Ontology (GO) database (GO:0042060) and a protein-protein interaction (PPI) network was constructed using the STRING database. The PPI network was analyzed with the CytoHubba plugin in Cytoscape, identifying four major hub genes: MMP2, FN1, NF1, and PTK7. We then analyzed the expression of these hub genes across 16 COAD cell lines and nine normal colon cell lines using RT-qPCR, finding significant overexpression in COAD cell lines. ROC curve analysis confirmed the diagnostic potential of these genes, with MMP2, FN1, and NF1 showing high AUC values. Expression validation using the TCGA COAD cohort, OncoDB, and HPA databases corroborated these findings, highlighting the overexpression and high protein levels of these genes in COAD. Promoter methylation analysis indicated lower methylation levels in COAD samples, suggesting dysregulation through epigenetic mechanisms. Genetic alteration analysis cBioPortal revealed a spectrum of mutations, with FN1 being the most frequently mutated. Prognostic analysis using a KM plotter showed that high expression of the hub genes is associated with poorer overall survival (OS) and disease-free survival (DFS). Functional state correlations CancerSEA suggested that these genes promote cell cycle, proliferation, metastasis, and stemness in COAD. Expression analysis in immune cells and drug sensitivity analyses highlighted the roles of MMP2, FN1, and NF1 in macrophages and drug resistance. A miRNA-mRNA network constructed using miRNet identified hsa-miR-200a-3p as a central regulator. Finally, functional assays in HCT116 cells demonstrated that knockdown of MMP2 and FN1 reduced proliferation, colony formation, and wound healing, suggesting these genes as potential therapeutic targets in COAD.

Conclusion

In conclusion, our study identifies MMP2, FN1, NF1, and PTK7 as key wound healing-related hub genes in COAD.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096346279241203053210
2025-01-02
2026-01-21
Loading full text...

Full text loading...

References

  1. MohammadK.S. AkhundS.A. From tumor to bone: Growth factor receptors as key players in cancer metastasis.Front. Biosci. (Landmark Ed.)202429518410.31083/j.fbl2905184 38812320
    [Google Scholar]
  2. ElaasserB. ArakilN. MohammadK.S. Bridging the gap in understanding bone metastasis: A multifaceted perspective.Int. J. Mol. Sci.2024255284610.3390/ijms25052846 38474093
    [Google Scholar]
  3. ZampaglioneL. FerrariJ. Vietti VioliN. GoossensN. The role of extrahepatic features on the development and management of hepatocellular carcinoma in steatotic liver disease.Discov. Med.2024361851127113810.24976/Discov.Med.202436185.103 38926099
    [Google Scholar]
  4. FarsettiA. IlliB. GaetanoC. How epigenetics impacts on human diseases.Eur. J. Intern. Med.2023114152210.1016/j.ejim.2023.05.036 37277249
    [Google Scholar]
  5. ZouY. ZhuS. KongY. FengC. WangR. LeiL. ZhaoY. ChangL. ChenL. Precision matters: The value of PET/CT and PET/MRI in the clinical management of cervical cancer.Strahlenther. Onkol.202411210.1007/s00066‑024‑02294‑8 39331065
    [Google Scholar]
  6. MorganE. ArnoldM. GiniA. LorenzoniV. CabasagC.J. LaversanneM. VignatJ. FerlayJ. MurphyN. BrayF. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN.Gut202372233834410.1136/gutjnl‑2022‑327736 36604116
    [Google Scholar]
  7. AraghiM. SoerjomataramI. JenkinsM. BrierleyJ. MorrisE. BrayF. ArnoldM. Global trends in colorectal cancer mortality: Projections to the year 2035.Int. J. Cancer2019144122992300010.1002/ijc.32055 30536395
    [Google Scholar]
  8. O’ReillyM. LinehanA. KrsticA. KolchW. SheahanK. WinterD.C. Mc DermottR. Oncotherapeutic strategies in early onset colorectal cancer.Cancers202315255210.3390/cancers15020552 36672501
    [Google Scholar]
  9. HoseiniS.H. EnayatiP. NazariM. BabakhanzadehE. RastgooM. SohrabiN.B. Biomarker profile of colorectal cancer: Current findings and future perspective.J. Gastrointest. Cancer202455249751010.1007/s12029‑023‑00990‑9 38168859
    [Google Scholar]
  10. LecuelleJ. TruntzerC. BasileD. LaghiL. GrecoL. IlieA. RageotD. EmileJ.F. BibeauF. TaïebJ. DerangereV. LepageC. GhiringhelliF. Machine learning evaluation of immune infiltrate through digital tumour score allows prediction of survival outcome in a pooled analysis of three international stage III colon cancer cohorts.EBioMedicine202410510520710520710.1016/j.ebiom.2024.105207 38880067
    [Google Scholar]
  11. IkramA. PervezS. KhadimM.T. SohaibM. UddinH. BadarF. MasoodA.I. KhattakZ.I.A. NazS. RahatT. MuradN. MemonF.N. AbidS. BashirF. RafiqueI. MustafaM.A. KumarR. ShafiqA. National cancer registry of Pakistan: First comprehensive report of cancer statistics 2015-2019.J. Coll. Physicians Surg. Pak.2023336625632 37300256
    [Google Scholar]
  12. YinJ. BaiZ. ZhangJ. ZhengZ. YaoH. YeP. LiJ. GaoX. ZhangZ. Burden of colorectal cancer in China, 1990− 2017: Findings from the global burden of disease study 2017.Chin. J. Cancer Res.201931348949810.21147/j.issn.1000‑9604.2019.03.11 31354218
    [Google Scholar]
  13. KangX. NgS.K. LiuC. LinY. ZhouY. KwongT.N.Y. NiY. LamT.Y.T. WuW.K.K. WeiH. SungJ.J.Y. YuJ. WongS.H. Altered gut microbiota of obesity subjects promotes colorectal carcinogenesis in mice.EBioMedicine20239310467010467010.1016/j.ebiom.2023.104670 37343363
    [Google Scholar]
  14. FigueroaB.A.C. GuzmánB.I.L. RodríguezR.R. Role of tumor suppressor genes in carcinogenesis: A narrative review.Int. J. Med. Sci. Clin. Res. Stud.202331127072716
    [Google Scholar]
  15. ConstantinM. MătanieC. PetrescuL. BolocanA. AndronicO. BleotuC. MitacheM.M. TudoracheS. VrancianuC.O. Landscape of genetic mutations in appendiceal cancers.Cancers20231514359110.3390/cancers15143591 37509254
    [Google Scholar]
  16. KhanA.A. LiuX. YanX. TahirM. AliS. HuangH. An overview of genetic mutations and epigenetic signatures in the course of pancreatic cancer progression.Cancer Metastasis Rev.202140124527210.1007/s10555‑020‑09952‑0 33423164
    [Google Scholar]
  17. Walton BernstedtS. Risk factors for colorectal cancer and the impact on life in lynch syndrome: Inst för medicin.HuddingeHuddinge/Dept of Medicine2024
    [Google Scholar]
  18. DemaréN. JuliaC. BellichaA. BenallaouaM. Aït OmarA. ArnaultN. BenamouzigR. Deschasaux-TanguyM. Dietary behaviours of individuals with lynch syndrome at high risk of colorectal cancer: Results from the AAS-lynch study.Clin. Nutr. ESPEN20235719720610.1016/j.clnesp.2023.06.017 37739656
    [Google Scholar]
  19. El HadadJ. SchreinerP. VavrickaS.R. GreuterT. The genetics of inflammatory bowel disease.Mol. Diagn. Ther.2024281273510.1007/s40291‑023‑00678‑7 37847439
    [Google Scholar]
  20. BeghiE. GiussaniG. CostaC. DiFrancescoJ.C. DhakarM. LeppikI. KwanP. AkamatsuN. CretinB. O’DwyerR. KraemerG. PiccennaL. FaughtE. The epidemiology of epilepsy in older adults: A narrative review by the ILAE task force on epilepsy in the elderly.Epilepsia202364358660110.1111/epi.17494 36625133
    [Google Scholar]
  21. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.21820 38230766
    [Google Scholar]
  22. ChenL.C. YangP.C. ChenC.Y. ChiangS.F. ChenT.W. ChenW.T.L. KeT.W. LiangJ.A. ShiauA.C. ChaoK.S.C. HuangK.C.Y. Dual inhibition of B7-H3 and EGFR overcomes acquired chemoresistance in Colon adenocarcinoma.J. Cancer20241561750176110.7150/jca.91089 38370387
    [Google Scholar]
  23. Fernández-GuarinoM. Hernández-BuleM.L. BacciS. Cellular and molecular processes in wound healing.Biomedicines2023119252610.3390/biomedicines11092526 37760967
    [Google Scholar]
  24. FuW. SunS. ChengY. MaJ. HuY. YangZ. YaoH. ZhangZ. Opportunities and challenges of nanomaterials in wound healing: Advances, mechanisms, and perspectives.Chem. Eng. J.202449515364010.1016/j.cej.2024.153640
    [Google Scholar]
  25. SchäferM. WernerS. Cancer as an overhealing wound: An old hypothesis revisited.Nat. Rev. Mol. Cell Biol.20089862863810.1038/nrm2455 18628784
    [Google Scholar]
  26. ShanL. WangF. ZhaiD. MengX. LiuJ. LvX. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis.Biomed. Pharmacother.202316111447210.1016/j.biopha.2023.114472 37002573
    [Google Scholar]
  27. AlmutairiS. KalloushH.M. ManoonN.A. BardaweelS.K. Matrix metalloproteinases inhibitors in cancer treatment: An updated review (2013–2023).Molecules20232814556710.3390/molecules28145567 37513440
    [Google Scholar]
  28. JavadianM. GharibiT. ShekariN. Abdollahpour-AlitappehM. MohammadiA. HossieniA. MohammadiH. KazemiT. The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis.J. Cell. Physiol.201923455399541210.1002/jcp.27445 30565667
    [Google Scholar]
  29. KnapinskaA.M. EstradaC.A. FieldsG.B. The roles of matrix metalloproteinases in pancreatic cancer.Prog. Mol. Biol. Transl. Sci.201714833935410.1016/bs.pmbts.2017.03.004 28662827
    [Google Scholar]
  30. ZhangL. WangY. SongM. ChangA. ZhuoW. ZhuY. Fibronectin 1 as a key gene in the genesis and progression of cadmium-related bladder cancer.Biol. Trace Elem. Res.202320194349435910.1007/s12011‑022‑03510‑1 36471209
    [Google Scholar]
  31. ZhouY. ShuC. HuangY. Fibronectin promotes cervical cancer tumorigenesis through activating FAK signaling pathway.J. Cell. Biochem.20191207109881099710.1002/jcb.28282 30977220
    [Google Scholar]
  32. TsunekiM. MadriJ.A. CD44 influences fibroblast behaviors via modulation of cell–cell and cell–matrix interactions, affecting survivin and hippo pathways.J. Cell. Physiol.2016231373174310.1002/jcp.25123 26248063
    [Google Scholar]
  33. JothyS. CD44 and its partners in metastasis.Clin. Exp. Metastasis200320319520110.1023/A:1022931016285 12741678
    [Google Scholar]
  34. LuL. WuM. SunL. LiW. FuW. ZhangX. LiuT. Clinicopathological and prognostic significance of cancer stem cell markers CD44 and CD133 in patients with gastric cancer.Medicine20169542e516310.1097/MD.0000000000005163 27759647
    [Google Scholar]
  35. SinghP. RajputM. PandeyM. Tumor hypoxia and role of hypoxia-inducible factor in oral cancer.World J. Surg. Oncol.20242211810.1186/s12957‑023‑03284‑3 38200568
    [Google Scholar]
  36. ZhouX. YuD. SunX. HuangW. XuY. LiC. ZhangY. Hypoxia-inducible factor-1α in diabetic foot ulcers: Plain but not simple.Gene Expr.202322430632010.14218/GE.2023.00051
    [Google Scholar]
  37. NirenjenS. NarayananJ. TamilanbanT. SubramaniyanV. ChitraV. FuloriaN.K. WongL.S. RamachawolranG. SekarM. GuptaG. FuloriaS. ChinniS.V. SelvarajS. Exploring the contribution of pro-inflammatory cytokines to impaired wound healing in diabetes.Front. Immunol.202314121632110.3389/fimmu.2023.1216321 37575261
    [Google Scholar]
  38. ChenX-W. ZhouS-F. Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis.Taylor & Francis201529412946
    [Google Scholar]
  39. KumariN. DwarakanathB.S. DasA. BhattA.N. Role of interleukin-6 in cancer progression and therapeutic resistance.Tumour Biol.2016379115531157210.1007/s13277‑016‑5098‑7 27260630
    [Google Scholar]
  40. HuangB. LangX. LiX. The role of IL-6/JAK2/STAT3 signaling pathway in cancers.Front. Oncol.202212102317710.3389/fonc.2022.1023177 36591515
    [Google Scholar]
  41. FlorescuD.N. BoldeanuM.V. ȘerbanR.E. FlorescuL.M. SerbanescuM.S. IonescuM. StrebaL. ConstantinC. VereC.C. Correlation of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, inflammatory markers, and tumor markers with the diagnosis and prognosis of colorectal cancer.Life20231312226110.3390/life13122261 38137862
    [Google Scholar]
  42. Berlanga-AcostaJ. Garcia-OjalvoA. Fernández-MontequinJ. Falcon-CamaV. Acosta-RiveroN. Guillen-NietoG. Pujol-FerrerM. Limonta-FernandezM. Ayala-AvilaM. ErikssonE. Epidermal growth factor intralesional delivery in chronic wounds: The pioneer and standalone technique for reversing wound chronicity and promoting sustainable healing.Int. J. Mol. Sci.202425201088310.3390/ijms252010883 39456666
    [Google Scholar]
  43. TarditoS. MatisS. ZocchiM.R. BenelliR. PoggiA. Epidermal growth factor receptor targeting in colorectal carcinoma: Antibodies and patient-derived organoids as a smart model to study therapy resistance.Int. J. Mol. Sci.20242513713110.3390/ijms25137131 39000238
    [Google Scholar]
  44. NairS. BonnerJ.A. BredelM. EGFR mutations in head and neck squamous cell carcinoma.Int. J. Mol. Sci.2022237381810.3390/ijms23073818 35409179
    [Google Scholar]
  45. BoeckxC. BaayM. WoutersA. SpecenierP. VermorkenJ.B. PeetersM. LardonF. Anti-epidermal growth factor receptor therapy in head and neck squamous cell carcinoma: Focus on potential molecular mechanisms of drug resistance.Oncologist201318785086410.1634/theoncologist.2013‑0013 23821327
    [Google Scholar]
  46. HuangP.H. XuA.M. WhiteF.M. Oncogenic EGFR signaling networks in glioma.Sci. Signal.2009287re610.1126/scisignal.287re6 19738203
    [Google Scholar]
  47. GiniB. ThomasN. BlakelyC.M. Impact of concurrent genomic alterations in epidermal growth factor receptor (EGFR)-mutated lung cancer.J. Thorac. Dis.20201252883289510.21037/jtd.2020.03.78 32642201
    [Google Scholar]
  48. YaoX. ZhuY. HuangZ. WangY. CongS. WanL. WuR. ChenL. HuZ. Fusion of shallow and deep features from 18F-FDG PET/CT for predicting EGFR-sensitizing mutations in non-small cell lung cancer.Quant. Imaging Med. Surg.20241485460547210.21037/qims‑23‑1028
    [Google Scholar]
  49. ZengQ. JiangT. WangJ. Role of LMO7 in cancer (Review).Oncol. Rep.202452311710.3892/or.2024.8776 38994754
    [Google Scholar]
  50. HarrisM.A. ClarkJ. IrelandA. LomaxJ. AshburnerM. FoulgerR. EilbeckK. LewisS. MarshallB. MungallC. RichterJ. RubinG.M. BlakeJ.A. BultC. DolanM. DrabkinH. EppigJ.T. HillD.P. NiL. RingwaldM. BalakrishnanR. CherryJ.M. ChristieK.R. CostanzoM.C. DwightS.S. EngelS. FiskD.G. HirschmanJ.E. HongE.L. NashR.S. SethuramanA. TheesfeldC.L. BotsteinD. DolinskiK. FeierbachB. BerardiniT. MundodiS. RheeS.Y. ApweilerR. BarrellD. CamonE. DimmerE. LeeV. ChisholmR. GaudetP. KibbeW. KishoreR. SchwarzE.M. SternbergP. GwinnM. HannickL. WortmanJ. BerrimanM. WoodV. de la CruzN. TonellatoP. JaiswalP. SeigfriedT. WhiteR. The Gene Ontology (GO) database and informatics resource.Nucleic Acids Res.200432Database issueD258D261 14681407
    [Google Scholar]
  51. MargadantC. SonnenbergA. Integrin–TGF‐β crosstalk in fibrosis, cancer and wound healing.EMBO Rep.20101129710510.1038/embor.2009.276 20075988
    [Google Scholar]
  52. BarrientosS. StojadinovicO. GolinkoM.S. BremH. Tomic-CanicM. PERSPECTIVE ARTICLE: Growth factors and cytokines in wound healing.Wound Repair Regen.200816558560110.1111/j.1524‑475X.2008.00410.x 19128254
    [Google Scholar]
  53. BehmB. BabilasP. LandthalerM. SchremlS. Cytokines, chemokines and growth factors in wound healing.J. Eur. Acad. Dermatol. Venereol.201226781282010.1111/j.1468‑3083.2011.04415.x 22211801
    [Google Scholar]
  54. ChandrashekarD.S. BashelB. BalasubramanyaS.A.H. CreightonC.J. Ponce-RodriguezI. ChakravarthiB.V.S.K. VaramballyS. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses.Neoplasia201719864965810.1016/j.neo.2017.05.002 28732212
    [Google Scholar]
  55. TangG. ChoM. WangX. OncoDB. An interactive online database for analysis of gene expression and viral infection in cancer.Nucleic Acids Res.202250D1D1334D133910.1093/nar/gkab970 34718715
    [Google Scholar]
  56. ThulP.J. LindskogC. The human protein atlas: A spatial map of the human proteome.Protein Sci.201827123324410.1002/pro.3307 28940711
    [Google Scholar]
  57. LiuC.J. HuF.F. XieG.Y. MiaoY.R. LiX.W. ZengY. GuoA.Y. GSCA: An integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels.Brief. Bioinform.2023241bbac55810.1093/bib/bbac558 36549921
    [Google Scholar]
  58. CeramiE. GaoJ. DogrusozU. GrossB.E. SumerS.O. AksoyB.A. JacobsenA. ByrneC.J. HeuerM.L. LarssonE. AntipinY. RevaB. GoldbergA.P. SanderC. SchultzN. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data.Cancer Discov.20122540140410.1158/2159‑8290.CD‑12‑0095 22588877
    [Google Scholar]
  59. LánczkyA. GyőrffyB. Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation.J. Med. Internet Res.2021237e2763310.2196/27633 34309564
    [Google Scholar]
  60. RuB. WongC.N. TongY. ZhongJ.Y. ZhongS.S.W. WuW.C. ChuK.C. WongC.Y. LauC.Y. ChenI. ChanN.W. ZhangJ. TISIDB: An integrated repository portal for tumor–immune system interactions.Bioinformatics201935204200420210.1093/bioinformatics/btz210 30903160
    [Google Scholar]
  61. YuanH. YanM. ZhangG. LiuW. DengC. LiaoG. XuL. LuoT. YanH. LongZ. ShiA. ZhaoT. XiaoY. LiX. CancerSEA: A cancer single-cell state atlas.Nucleic Acids Res.201947D1D900D90810.1093/nar/gky939 30329142
    [Google Scholar]
  62. HanY. WangY. DongX. SunD. LiuZ. YueJ. WangH. LiT. WangC. TISCH2: Expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment.Nucleic Acids Res.202351D1D1425D143110.1093/nar/gkac959 36321662
    [Google Scholar]
  63. ChangL. ZhouG. SoufanO. XiaJ. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology.Nucleic Acids Res.202048W1W244W25110.1093/nar/gkaa467 32484539
    [Google Scholar]
  64. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac194 35325185
    [Google Scholar]
  65. GaoH. XingF. A novel signature model based on mitochondrial-related genes for predicting survival of colon adenocarcinoma.BMC Med. Inform. Decis. Mak.202222127710.1186/s12911‑022‑02020‑3 36273131
    [Google Scholar]
  66. TongG. PengT. ChenY. ShaL. DaiH. XiangY. ZouZ. HeH. WangS. Effects of GLP-1 receptor agonists on biological behavior of colorectal cancer cells by regulating PI3K/AKT/mTOR signaling pathway.Front. Pharmacol.20221390155910.3389/fphar.2022.901559 36034798
    [Google Scholar]
  67. ZhouJ. Foroughi pour A. Deirawan H. Daaboul F. Aung T.N. Beydoun R. Ahmed F.S. Chuang J.H. Integrative deep learning analysis improves colon adenocarcinoma patient stratification at risk for mortality.EBioMedicine20239410472610472610.1016/j.ebiom.2023.104726 37499603
    [Google Scholar]
  68. DaiJ. GaoJ. DongH. Prognostic relevance and validation of ARPC1A in the progression of low-grade glioma.Aging20241614111621118410.18632/aging.205952 39012280
    [Google Scholar]
  69. GmeinerW.H. Recent advances in therapeutic strategies to improve colorectal cancer treatment.Cancers2024165102910.3390/cancers16051029 38473386
    [Google Scholar]
  70. YangL. ZhangW. FanN. CaoP. ChengY. ZhuL. LuoS. ZongH. BaiY. ZhouJ. DengY. BaY. LiuT. AiliM. YinX. GuK. DaiG. YingJ. ShiJ. GaoY. LiW. YuG. XieL. GaiW. WangY. MengP. ShiY. Efficacy, safety and genomic analysis of SCT200, an anti-EGFR monoclonal antibody, in patients with fluorouracil, irinotecan and oxaliplatin refractory RAS and BRAF wild-type metastatic colorectal cancer: A phase II study.EBioMedicine202410010496610496610.1016/j.ebiom.2024.104966
    [Google Scholar]
  71. ZhaoC. TangX. ChenX. JiangZ. Multifaceted carbonized metal–organic frameworks synergize with immune checkpoint inhibitors for precision and augmented cuproptosis cancer therapy.ACS Nano20241827178521786810.1021/acsnano.4c04022 38939981
    [Google Scholar]
  72. MirandolaA. KudriavtsevA. Cofre MuñozC.I. NavarroR.C. MacagnoM. DaoudS. SanchezC. PastorB. PisarevaE. MarinM.S. RuizJ.G. PirisA. RodriguezA.G. GonzalezN.S. VivancosA. QuaràV. MellanoA. BorghiF. CortiG. MarchiòC. SapinoA. BartoliniA. CrisafulliG. BardelliA. Di MaioM. LossaintG. FrayssinouxF. CrapezE. YchouM. SolerR.S. FenocchioE. Fernandez CalottiP.X. MazardT. VivasC.S. ElezE. Di NicolantonioF. ThierryA.R. Post-surgery sequelae unrelated to disease progression and chemotherapy revealed in follow-up of patients with stage III colon cancer.EBioMedicine202410810535210535210.1016/j.ebiom.2024.105352 39303668
    [Google Scholar]
  73. RybinskiB. Franco-BarrazaJ. CukiermanE. The wound healing, chronic fibrosis, and cancer progression triad.Physiol. Genomics201446722324410.1152/physiolgenomics.00158.2013 24520152
    [Google Scholar]
  74. SaadhM.J. Ramírez-CoronelA.A. SainiR.S. Arias-GonzálesJ.L. AminA.H. GavilánJ.C.O. SârbuI. Advances in mesenchymal stem/stromal cell-based therapy and their extracellular vesicles for skin wound healing.Hum. Cell20233641253126410.1007/s13577‑023‑00904‑8 37067766
    [Google Scholar]
  75. MurrayN.P. The role of matrix metalloproteinase-2 in the metastatic cascade: A review.Oncologie2024261274010.1515/oncologie‑2023‑0368
    [Google Scholar]
  76. KwonM.J. Matrix metalloproteinases as therapeutic targets in breast cancer.Front. Oncol.202312110869510.3389/fonc.2022.1108695 36741729
    [Google Scholar]
  77. PengK. ZhangY. LiuD. ChenJ. MMP2 is a immunotherapy related biomarker and correlated with cancer-associated fibroblasts infiltrate in melanoma.Cancer Cell Int.20232312610.1186/s12935‑023‑02862‑5 36788565
    [Google Scholar]
  78. PapadopoulouS. ScorilasA. ArnogianakiN. PapapanayiotouB. TzimogianiA. AgnantisN. TalieriM. Expression of gelatinase-A (MMP-2) in human colon cancer and normal colon mucosa.Tumour Biol.200122638338910.1159/000050641 11786732
    [Google Scholar]
  79. GrieuF. LiW.Q. IacopettaB. Genetic polymorphisms in the MMP-2 and MMP-9 genes and breast cancer phenotype.Breast Cancer Res. Treat.200488319720410.1007/s10549‑004‑0595‑6 15609121
    [Google Scholar]
  80. DafraziA.A. MehrabiT. MalekinejadF. A bioinformatics study for recognition of hub genes and pathways in pancreatic ductal adenocarcinoma.arXiv:2303.144402023
    [Google Scholar]
  81. LiJ. ChenC. ChenB. GuoT. High FN1 expression correlates with gastric cancer progression.Pathol. Res. Pract.202223915417910.1016/j.prp.2022.154179 36274380
    [Google Scholar]
  82. ZhangX.X. LuoJ.H. WuL.Q. FN1 overexpression is correlated with unfavorable prognosis and immune infiltrates in breast cancer.Front. Genet.20221391365910.3389/fgene.2022.913659 36035176
    [Google Scholar]
  83. SunY. ZhaoC. YeY. WangZ. HeY. LiY. MaoH. High expression of fibronectin 1 indicates poor prognosis in gastric cancer.Oncol. Lett.202019193102 31897119
    [Google Scholar]
  84. GiraudJ.S. BiècheI. PasmantÉ. TlemsaniC. NF1 alterations in cancers: Therapeutic implications in precision medicine.Expert Opin. Investig. Drugs2023321094195710.1080/13543784.2023.2263836 37747491
    [Google Scholar]
  85. TangY. GutmannD.H. Neurofibromatosis Type 1-associated optic pathway gliomas: Current challenges and future prospects.Cancer Manag. Res.20231566768110.2147/CMAR.S362678 37465080
    [Google Scholar]
  86. AaltonenV. BoströmP.J. SöderströmK.O. HirvonenO. TuukkanenJ. NurmiM. LaatoM. PeltonenJ. Urinary bladder transitional cell carcinogenesis is associated with down-regulation of NF1 tumor suppressor gene in vivo and in vitro.Am. J. Pathol.1999154375576510.1016/S0002‑9440(10)65322‑9 10079253
    [Google Scholar]
  87. ZhangP. HuangL. MaP. NiuX. Altered expressions of Nf1 and Nf1-related micrornas as biomarkers in the diagnosis of undifferentiated pleomorphic sarcoma.Front. Genet.20221387019110.3389/fgene.2022.870191 35559021
    [Google Scholar]
  88. ChenR. KhatriP. MazurP.K. PolinM. ZhengY. VakaD. HoangC.D. ShragerJ. XuY. VicentS. ButteA.J. Sweet-CorderoE.A. A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma.Cancer Res.201474102892290210.1158/0008‑5472.CAN‑13‑2775 24654231
    [Google Scholar]
  89. KongC. PuJ. ZhaoQ. WengW. MaL. QianY. HuW. MengX. MengT. MTX-13, a novel ptk7-directed antibody–drug conjugate with widened therapeutic index shows sustained tumor regressions for a broader spectrum of PTK7-positive tumors.Mol. Cancer Ther.202322101128114310.1158/1535‑7163.MCT‑23‑0164 37352387
    [Google Scholar]
  90. KimJ.H. KwonJ. LeeH.W. KangM.C. YoonH.J. LeeS.T. ParkJ.H. Protein tyrosine kinase 7 plays a tumor suppressor role by inhibiting ERK and AKT phosphorylation in lung cancer.Oncol. Rep.20143162708271210.3892/or.2014.3164 24789704
    [Google Scholar]
  91. LhoumeauA.C. MartinezS. BoherJ.M. MongesG. CastellanoR. GoubardA. DoremusM. PoizatF. LelongB. de ChaisemartinC. BardinF. ViensP. RaoulJ.L. PrebetT. Aurrand-LionsM. BorgJ.P. GonçalvesA. Overexpression of the promigratory and prometastatic PTK7 receptor is associated with an adverse clinical outcome in colorectal cancer.PLoS One2015105e012376810.1371/journal.pone.0123768 25962058
    [Google Scholar]
  92. WenS. ZhaoY. TuerxunH. ZhaoY. Identification of potential biomarkers associated with prognosis and pathogenesis of pancreatic cancer.PREPRINT2023
    [Google Scholar]
  93. LeiX. ChenG. LiJ. WenW. GongJ. FuJ. Comprehensive analysis of abnormal expression, prognostic value and oncogenic role of the hub gene FN1 in pancreatic ductal adenocarcinoma via bioinformatic analysis and in vitro experiments.PeerJ202199e1214110.7717/peerj.12141 34567847
    [Google Scholar]
  94. DoganF. ForsythN.R. Telomerase regulation: A role for epigenetics.Cancers2021136121310.3390/cancers13061213 33802026
    [Google Scholar]
  95. ZhangH. ZhuJ.K. Epigenetic gene regulation in plants and its potential applications in crop improvement.Nat. Rev. Mol. Cell Biol.202411710.1038/s41580‑024‑00769‑1 39192154
    [Google Scholar]
  96. LiY. WangN. HuangY. HeS. BaoM. WenC. WuL. CircMYBL1 suppressed acquired resistance to osimertinib in non-small-cell lung cancer.Cancer Genet.2024284-285344210.1016/j.cancergen.2024.04.001 38626533
    [Google Scholar]
  97. EhrlichM. DNA hypomethylation in cancer cells.Epigenomics20091223925910.2217/epi.09.33 20495664
    [Google Scholar]
  98. SøesS. DaugaardI.L. SørensenB.S. CarusA. MattheisenM. AlsnerJ. OvergaardJ. HagerH. HansenL.L. KristensenL.S. Hypomethylation and increased expression of the putative oncogene ELMO3 are associated with lung cancer development and metastases formation.Oncoscience20141536737410.18632/oncoscience.42 25594031
    [Google Scholar]
  99. van OijenM.G. SlootwegP.J. Gain-of-function mutations in the tumor suppressor gene p53.Clin. Cancer Res.20006621382145 10873062
    [Google Scholar]
  100. RinaldiB. BayatA. ZachariassenL.G. SunJ.H. GeY.H. ZhaoD. BondeK. MadsenL.H. AwadI.A.A. BagiranD. SbeihA. ShahS.M. El-SayedS. LyngbyS.M. PedersenM.G. Stenum-BergC. WalkerL.C. KreyI. Delahaye-DuriezA. EmrickL.T. SullyK. MuraliC.N. BurrageL.C. Plaud GonzalezJ.A. ParnesM. FriedmanJ. IsidorB. LefrancJ. RedonS. HeronD. MignotC. KerenB. FradinM. DubourgC. MercierS. BesnardT. CogneB. DebW. RivierC. MilaniD. BedeschiM.F. Di NapoliC. GrilliF. MarchisioP. KoudijsS. VeenmaD. ArgilliE. LynchS.A. AuP.Y.B. Ayala ValenzuelaF.E. BrownC. Masser-FryeD. JonesM. Patron RomeroL. LiW.L. ThorpeE. HecherL. JohannsenJ. DeneckeJ. McNivenV. SzutoA. WakelingE. CruzV. SencyV. WangH. PiardJ. KortümF. HergetT. BierhalsT. CondellA. Ben-ZeevB. KaurS. ChristodoulouJ. PitonA. ZweierC. KrausC. MicalizziA. TrivisanoM. SpecchioN. LescaG. MøllerR.S. TümerZ. MusgaardM. GerardB. LemkeJ.R. ShiY.S. KristensenA.S. Gain-of-function and loss-of-function variants in GRIA3 lead to distinct neurodevelopmental phenotypes.Brain202414751837185510.1093/brain/awad403 38038360
    [Google Scholar]
  101. LeL.Q. ParadaL.F. Tumor microenvironment and neurofibromatosis type I: Connecting the GAPs.Oncogene200726324609461610.1038/sj.onc.1210261 17297459
    [Google Scholar]
  102. Muniz-BongersL.R. McClainC.B. SaxenaM. BongersG. MeradM. BhardwajN. MMP2 and TLRs modulate immune responses in the tumor microenvironment.JCI Insight2021612e14491310.1172/jci.insight.144913 34032639
    [Google Scholar]
  103. MunnD.H. BronteV. Immune suppressive mechanisms in the tumor microenvironment.Curr. Opin. Immunol.2016391610.1016/j.coi.2015.10.009 26609943
    [Google Scholar]
  104. MezheyeuskiA. BackmanM. MattssonJ. Martín-BernabéA. LarssonC. HrynchykI. HammarströmK. StrömS. EkströmJ. MauchanskiS. KhelashviliS. LindbergA. AgnarsdóttirM. EdqvistP.H. HuvilaJ. SegerstenU. MalmströmP.U. BotlingJ. NodinB. HednerC. BorgD. BrändstedtJ. SartorH. LeanderssonK. GlimeliusB. PortyankoA. PontenF. JirströmK. MickeP. SjöblomT. An immune score reflecting pro- and anti-tumoural balance of tumour microenvironment has major prognostic impact and predicts immunotherapy response in solid cancers.EBioMedicine20238810445210445210.1016/j.ebiom.2023.104452 36724681
    [Google Scholar]
  105. OtmaniK. LewalleP. Tumor suppressor miRNA in cancer cells and the tumor microenvironment: Mechanism of deregulation and clinical implications.Front. Oncol.20211170876570876510.3389/fonc.2021.708765 34722255
    [Google Scholar]
  106. XingY. RuanG. NiH. QinH. ChenS. GuX. ShangJ. ZhouY. TaoX. ZhengL. Tumor immune microenvironment and its related mirnas in tumor progression.Front. Immunol.20211262472562472510.3389/fimmu.2021.624725 34084160
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096346279241203053210
Loading
/content/journals/ccdt/10.2174/0115680096346279241203053210
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biomarker; COAD; MMP2; prognosis; tumor; Wound healing genes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test