Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Over 50% of lung adenocarcinoma patients have high levels of complement factor H (CFH) expression. Previous studies have reported that CFH inhibits the migration of endothelial cells. In this study, we investigated the mechanism by which CFH affects lung adenocarcinoma development phosphorylation of STAT3.

Methods

Adenovirus expressing mice gene was used to infect C57 mice for two weeks, and then Lewis Lung Carcinoma (LLC) was injected to develop a subcutaneous tumor. The effect of CFH on human A549 cells was also detected. Moreover, we collected CFH over-expressed conditional medium from HepG-2 cells infected with adenovirus expressing human CFH gene. A549 cells were incubated with the conditional medium, and the effect of the CFH-conditional medium on cell proliferation and migration was detected.

Results

It was found that CFH promoted lung adenocarcinoma growth , and CFH-conditional medium treatment significantly increased the viability and migration area of A549 cells. CFH-conditional medium increased the phosphorylation of JAK2 and STAT3 in A549 cells. While using STATTIC to block STAT3 phosphorylation, CFH-conditional medium treatment did not affect A549 cell viability or migration compared to the control group.

Conclusion

These data suggested that CFH promoted the proliferation and migration of A549 cells by increasing the phosphorylation level of the JAK2/STAT3 signaling pathway. Furthermore, CFH has the potential to be a target for antitumor therapy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096339892241202092052
2025-01-02
2026-01-21
Loading full text...

Full text loading...

References

  1. SemenovaE.A. NagelR. BernsA. Origins, genetic landscape, and emerging therapies of small cell lung cancer.Genes Dev.201529141447146210.1101/gad.263145.115 26220992
    [Google Scholar]
  2. OserM.G. NiederstM.J. SequistL.V. EngelmanJ.A. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.Lancet Oncol.2015164e165e17210.1016/S1470‑2045(14)71180‑5 25846096
    [Google Scholar]
  3. SpellaM. StathopoulosG.T. Immune Resistance in Lung Adenocarcinoma.Cancers (Basel)202113338410.3390/cancers13030384 33494181
    [Google Scholar]
  4. HanahanD. WeinbergR.A. Hallmarks of cancer: the next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  5. VitaleI. ManicG. CoussensL.M. KroemerG. GalluzziL. Macrophages and Metabolism in the Tumor Microenvironment.Cell Metab.2019301365010.1016/j.cmet.2019.06.001 31269428
    [Google Scholar]
  6. Hernandez DominguezO. YilmazS. SteeleS.R. StageIV StageI.V. Colorectal Cancer Management and Treatment.J. Clin. Med.2023125207210.3390/jcm12052072 369028580
    [Google Scholar]
  7. DeVitaV.T.Jr ChuE. A history of cancer chemotherapy.Cancer Res.200868218643865310.1158/0008‑5472.CAN‑07‑6611 18974103
    [Google Scholar]
  8. DoboszP. DzieciątkowskiT. The Intriguing History of Cancer Immunotherapy.Front. Immunol.201910296510.3389/fimmu.2019.02965 31921205
    [Google Scholar]
  9. SocinskiM.A. JotteR.M. CappuzzoF. OrlandiF. StroyakovskiyD. NogamiN. Rodríguez-AbreuD. Moro-SibilotD. ThomasC.A. BarlesiF. FinleyG. KelschC. LeeA. ColemanS. DengY. ShenY. KowanetzM. Lopez-ChavezA. SandlerA. ReckM. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC.N. Engl. J. Med.2018378242288230110.1056/NEJMoa1716948 29863955
    [Google Scholar]
  10. HerbstR.S. GiacconeG. de MarinisF. ReinmuthN. VergnenegreA. BarriosC.H. MoriseM. FelipE. AndricZ. GeaterS. ÖzgüroğluM. ZouW. SandlerA. EnquistI. KomatsubaraK. DengY. KurikiH. WenX. McClelandM. MocciS. JassemJ. SpigelD.R. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC.N. Engl. J. Med.2020383141328133910.1056/NEJMoa1917346 32997907
    [Google Scholar]
  11. Paz-AresL. CiuleanuT.E. CoboM. SchenkerM. ZurawskiB. MenezesJ. RichardetE. BennounaJ. FelipE. Juan-VidalO. AlexandruA. SakaiH. LinguaA. SalmanP. SouquetP.J. De MarchiP. MartinC. PérolM. ScherpereelA. LuS. JohnT. CarboneD.P. Meadows-ShropshireS. AgrawalS. OukessouA. YanJ. ReckM. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial.Lancet Oncol.202122219821110.1016/S1470‑2045(20)30641‑0 33476593
    [Google Scholar]
  12. ReckM. Rodríguez-AbreuD. RobinsonA.G. HuiR. CsősziT. FülöpA. GottfriedM. PeledN. TafreshiA. CuffeS. O’BrienM. RaoS. HottaK. LealT.A. RiessJ.W. JensenE. ZhaoB. PietanzaM.C. BrahmerJ.R. Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 Tumor Proportion Score ≥ 50%.J. Clin. Oncol.202139212339234910.1200/JCO.21.00174 33872070
    [Google Scholar]
  13. HellmannM.D. Paz-AresL. Bernabe CaroR. ZurawskiB. KimS.W. Carcereny CostaE. ParkK. AlexandruA. LupinacciL. de la Mora JimenezE. SakaiH. AlbertI. VergnenegreA. PetersS. SyrigosK. BarlesiF. ReckM. BorghaeiH. BrahmerJ.R. O’ByrneK.J. GeeseW.J. BhagavatheeswaranP. RabindranS.K. KasinathanR.S. NathanF.E. RamalingamS.S. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer.N. Engl. J. Med.2019381212020203110.1056/NEJMoa1910231 31562796
    [Google Scholar]
  14. GandhiL. Rodríguez-AbreuD. GadgeelS. EstebanE. FelipE. De AngelisF. DomineM. ClinganP. HochmairM.J. PowellS.F. ChengS.Y.S. BischoffH.G. PeledN. GrossiF. JennensR.R. ReckM. HuiR. GaronE.B. BoyerM. Rubio-ViqueiraB. NovelloS. KurataT. GrayJ.E. VidaJ. WeiZ. YangJ. RaftopoulosH. PietanzaM.C. GarassinoM.C. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer.N. Engl. J. Med.2018378222078209210.1056/NEJMoa1801005 29658856
    [Google Scholar]
  15. ReckM. Rodríguez-AbreuD. RobinsonA.G. HuiR. CsősziT. FülöpA. GottfriedM. PeledN. TafreshiA. CuffeS. O’BrienM. RaoS. HottaK. LeibyM.A. LubinieckiG.M. ShentuY. RangwalaR. BrahmerJ.R. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer.N. Engl. J. Med.2016375191823183310.1056/NEJMoa1606774 27718847
    [Google Scholar]
  16. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: the MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  17. LapehnS. HoughtalingS. AhunaK. KadamL. MacDonaldJ.W. BammlerT.K. LeWinnK.Z. MyattL. SathyanarayanaS. PaquetteA.G. Mono(2-ethylhexyl) phthalate induces transcriptomic changes in placental cells based on concentration, fetal sex, and trophoblast cell type.Arch. Toxicol.202397383184710.1007/s00204‑023‑03444‑0 36695872
    [Google Scholar]
  18. GuvenD.C. ErulE. KaygusuzY. AkagunduzB. KilickapS. De LucaR. RizzoA. Immune checkpoint inhibitor-related hearing loss: a systematic review and analysis of individual patient data.Support. Care Cancer2023311162410.1007/s00520‑023‑08083‑w 37819422
    [Google Scholar]
  19. RizzoA. Identifying optimal first-line treatment for advanced non-small cell lung carcinoma with high PD-L1 expression: a matter of debate.Br. J. Cancer202212781381138210.1038/s41416‑022‑01929‑w 36064585
    [Google Scholar]
  20. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic Significance of the Royal Marsden Hospital (RMH) Score in Patients with Cancer: A Systematic Review and Meta-Analysis.Cancers (Basel)20241610183510.3390/cancers16101835 38791914
    [Google Scholar]
  21. ZhangR. LiuQ. LiT. LiaoQ. ZhaoY. Role of the complement system in the tumor microenvironment.Cancer Cell Int.201919130010.1186/s12935‑019‑1027‑3 31787848
    [Google Scholar]
  22. BjørgeL. HakulinenJ. VintermyrO.K. JarvaH. JensenT.S. IversenO.E. MeriS. Ascitic complement system in ovarian cancer.Br. J. Cancer200592589590510.1038/sj.bjc.6602334 15726105
    [Google Scholar]
  23. KolevM. TownerL. DonevR. Complement in cancer and cancer immunotherapy.Arch. Immunol. Ther. Exp. (Warsz.)201159640741910.1007/s00005‑011‑0146‑x 21960413
    [Google Scholar]
  24. ParenteR. ClarkS.J. InforzatoA. DayA.J. Complement factor H in host defense and immune evasion.Cell. Mol. Life Sci.20177491605162410.1007/s00018‑016‑2418‑4 27942748
    [Google Scholar]
  25. CossS.L. ZhouD. ChuaG.T. AzizR.A. HoffmanR.P. WuY.L. ArdoinS.P. AtkinsonJ.P. YuC.Y. The complement system and human autoimmune diseases.J. Autoimmun.202313710297910.1016/j.jaut.2022.102979 36535812
    [Google Scholar]
  26. SmythM.J. DunnG.P. SchreiberR.D. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity.Adv. Immunol.20069015010.1016/S0065‑2776(06)90001‑7 16730260
    [Google Scholar]
  27. RutkowskiM.J. SughrueM.E. KaneA.J. MillsS.A. ParsaA.T. Cancer and the complement cascade.Mol. Cancer Res.20108111453146510.1158/1541‑7786.MCR‑10‑0225 20870736
    [Google Scholar]
  28. AjonaD. HsuY.F. CorralesL. MontuengaL.M. PioR. Down-regulation of human complement factor H sensitizes non-small cell lung cancer cells to complement attack and reduces in vivo tumor growth.J. Immunol.200717895991599810.4049/jimmunol.178.9.5991 17442984
    [Google Scholar]
  29. SeolH.S. LeeS.E. SongJ.S. RheeJ.K. SinghS.R. ChangS. JangS.J. Complement proteins C7 and CFH control the stemness of liver cancer cells via LSF-1.Cancer Lett.20163721243510.1016/j.canlet.2015.12.005 26723877
    [Google Scholar]
  30. PetersenI. ChenY. KnöselT. YangL. ZöllerK. GallerK. BerndtA. MihlanM. ZipfelP.F. PetersenI. Human complement factor H is a novel diagnostic marker for lung adenocarcinoma.Int. J. Oncol.201139116116810.3892/ijo.2011.1010 21503575
    [Google Scholar]
  31. Magalhães FilhoM. Aguiar JuniorP.N. AdashekJ.J. De MelloR.A. How complement activation via a C3a receptor pathway alters CD4+ T lymphocytes and mediates lung cancer progression?—future perspectives.J. Thorac. Dis.201911S3Suppl. 3S210S21110.21037/jtd.2019.02.21 30997178
    [Google Scholar]
  32. GottlinE.B. CampaM.J. GandhiR. BusheyR.T.; Herndon nd, J.E.; Patz, E.F., Jr Prognostic significance of a complement factor H autoantibody in early stage NSCLC.Cancer Biomark.202234338539210.3233/CBM‑210355 35068447
    [Google Scholar]
  33. ZipfelP.F. Complement factor H: physiology and pathophysiology.Semin. Thromb. Hemost.200127319120010.1055/s‑2001‑15248 11446652
    [Google Scholar]
  34. HuX.; li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: from bench to clinic.Signal Transduct. Target. Ther.20216140210.1038/s41392‑021‑00791‑1 34824210
    [Google Scholar]
  35. JohnsonD.E. O’KeefeR.A. GrandisJ.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer.Nat. Rev. Clin. Oncol.201815423424810.1038/nrclinonc.2018.8 29405201
    [Google Scholar]
  36. ShenY. WangX. LiuY. SinghalM. GürkaşlarC. VallsA.F. LeiY. HuW. SchermannG. AdlerH. YuF.X. FischerT. ZhuY. AugustinH.G. SchmidtT. de AlmodóvarC.R. STAT3-YAP/TAZ signaling in endothelial cells promotes tumor angiogenesis.Sci. Signal.202114712eabj839310.1126/scisignal.abj8393 34874746
    [Google Scholar]
  37. SongD. LanJ. ChenY. LiuA. WuQ. ZhaoC. FengY. WangJ. LuoX. CaoZ. CaoX. HuJ. WangG. NSD2 promotes tumor angiogenesis through methylating and activating STAT3 protein.Oncogene202140162952296710.1038/s41388‑021‑01747‑z 33742125
    [Google Scholar]
  38. ChenL. LinL. XianN. ZhengZ. Annexin A2 regulates glioma cell proliferation through the STAT3 cyclin D1 pathway.Oncol. Rep.201942139941310.3892/or.2019.7155 31115554
    [Google Scholar]
  39. HoJ.N. KangG.Y. LeeS.S. KimJ. BaeI.H. HwangS.G. UmH.D. Bcl‐X L and STAT3 mediate malignant actions of γ‐irradiation in lung cancer cells.Cancer Sci.201010161417142310.1111/j.1349‑7006.2010.01552.x 20331635
    [Google Scholar]
  40. KimJ.S. KimH.A. SeongM.K. SeolH. OhJ.S. KimE.K. ChangJ.W. HwangS.G. NohW.C. STAT3-survivin signaling mediates a poor response to radiotherapy in HER2-positive breast cancers.Oncotarget2016767055706510.18632/oncotarget.6855 26755645
    [Google Scholar]
  41. AmayaM.L. InguvaA. PeiS. JonesC. KrugA. YeH. MinhajuddinM. WintersA. FurtekS.L. GamboniF. StevensB. D’AlessandroA. PollyeaD.A. ReiganP. JordanC.T. The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation.Blood2022139458459610.1182/blood.2021013201 34525179
    [Google Scholar]
  42. GaoP. NiuN. WeiT. TozawaH. ChenX. ZhangC. ZhangJ. WadaY. KapronC.M. LiuJ. The roles of signal transducer and activator of transcription factor 3 in tumor angiogenesis.Oncotarget2017840691396916110.18632/oncotarget.19932 28978186
    [Google Scholar]
  43. YuanK. YeJ. LiuZ. RenY. HeW. XuJ. HeY. YuanY. Complement C3 overexpression activates JAK2/STAT3 pathway and correlates with gastric cancer progression.J. Exp. Clin. Cancer Res.2020391910.1186/s13046‑019‑1514‑3 31928530
    [Google Scholar]
  44. MaoX. ZhouL. TeyS.K. MaA.P.Y. YeungC.L.S. NgT.H. WongS.W.K. LiuB.H.M. FungY.M.E. PatzE.F.Jr CaoP. GaoY. YamJ.W.P. Tumour extracellular vesicle‐derived Complement Factor H promotes tumorigenesis and metastasis by inhibiting complement‐dependent cytotoxicity of tumour cells.J. Extracell. Vesicles2020101e1203110.1002/jev2.12031 33708358
    [Google Scholar]
  45. ChenX. LiL. LiuF. HohJ. KapronC.M. LiuJ. Cadmium Induces Glomerular Endothelial Cell-Specific Expression of Complement Factor H via the −1635 AP-1 Binding Site.J. Immunol.201920241210121810.4049/jimmunol.1800081 30642982
    [Google Scholar]
  46. CasiraghiF. OrdonezP.Y.R. AzzolliniN. TodeschiniM. RottoliD. DonadelliR. GramignoliR. BenigniA. NorisM. RemuzziG. Amnion epithelial cells are an effective source of factor H and prevent kidney complement deposition in factor H-deficient mice.Stem Cell Res. Ther.202112133210.1186/s13287‑021‑02386‑7 34112227
    [Google Scholar]
  47. YoshimuraA. YamadaT. SerizawaM. UeharaH. TanimuraK. OkumaY. FukudaA. WatanabeS. NishiokaN. TakedaT. ChiharaY. TakemotoS. HaradaT. HiranumaO. ShiraiY. ShukuyaT. NishiyamaA. GotoY. ShiotsuS. KunimasaK. MorimotoK. KatayamaY. SudaK. MitsudomiT. YanoS. KenmotsuH. TakahashiT. TakayamaK. High levels of AXL expression in untreatedEGFR ‐mutated non‐small cell lung cancer negatively impacts the use of osimertinib.Cancer Sci.2023114260661810.1111/cas.15608 36169649
    [Google Scholar]
  48. ZhaiL. BellA. LadomerskyE. LauingK.L. BolluL. NguyenB. GenetM. KimM. ChenP. MiX. WuJ.D. SchipmaM.J. WrayB. GriffithsJ. UnwinR.D. ClarkS.J. AcharyaR. BaoR. HorbinskiC. LukasR.V. SchiltzG.E. WainwrightD.A. Tumor Cell IDO Enhances Immune Suppression and Decreases Survival Independent of Tryptophan Metabolism in Glioblastoma.Clin. Cancer Res.202127236514652810.1158/1078‑0432.CCR‑21‑1392 34479957
    [Google Scholar]
  49. KindersR. JonesT. RootR. BruceC. MurchisonH. CoreyM. WilliamsL. EnfieldD. HassG.M. Complement factor H or a related protein is a marker for transitional cell cancer of the bladder.Clin. Cancer Res.199841025112520 9796985
    [Google Scholar]
  50. SørupS. DarvalicsB. KnudsenJ.S. RasmussenA.S. HjorthC.F. VestergaardS.V. KhalilA.A. RussoL. OksenD. BoutmyE. VerpillatP. RørthM. Cronin-FentonD. Identifying Valid Algorithms for Number of Lines of Anti-Neoplastic Therapy in the Danish National Patient Registry Among Patients with Advanced Ovarian, Gastric, Renal Cell, Urothelial, and Non-Small Cell Lung Cancer Attending a Danish University Hospital.Clin. Epidemiol.20221415917110.2147/CLEP.S342238 35177936
    [Google Scholar]
  51. LiJ. WangK. StarodubtsevaM.N. NadyrovE. KapronC.M. HohJ. LiuJ. Complement factor H in molecular regulation of angiogenesis.Medical Review202410.1515/mr‑2023‑0048
    [Google Scholar]
  52. ChenZ. DuJ. YangC. SiG. ChenY. circ-CFH promotes the development of HCC by regulating cell proliferation, apoptosis, migration, invasion, and glycolysis through the miR-377-3p/RNF38 axis.Open Life Sci.202217124826010.1515/biol‑2022‑0029 35415236
    [Google Scholar]
  53. KleczkoE.K. PoczobuttJ.M. NavarroA.C. LaskowskiJ. JohnsonA.M. KorpelaS.P. GuruleN.J. HeasleyL.E. HoppK. Weiser-EvansM.C.M. GottlinE.B. BusheyR.T. CampaM.J. PatzE.F.Jr ThurmanJ.M. NemenoffR.A. Upregulation of complement proteins in lung cancer cells mediates tumor progression.Front. Oncol.202312104569010.3389/fonc.2022.1045690 36686777
    [Google Scholar]
  54. CampaM.J. GottlinE.B. BusheyR.T. PatzE.F., Jr Complement Factor H Antibodies from Lung Cancer Patients Induce Complement-Dependent Lysis of Tumor Cells, Suggesting a Novel Immunotherapeutic Strategy.Cancer Immunol. Res.20153121325133210.1158/2326‑6066.CIR‑15‑0122 26216416
    [Google Scholar]
  55. LiuF. WangB. LiL. DongF. ChenX. LiY. DongX. WadaY. KapronC. LiuJ. Low-Dose Cadmium Upregulates VEGF Expression in Lung Adenocarcinoma Cells.Int. J. Environ. Res. Public Health2015129105081052110.3390/ijerph120910508 26343694
    [Google Scholar]
  56. ZhouF. ZhuF. ZhuT. ZhaoZ. LiL. LinS. ZhaoH. YangL. ZhaoC. WangL. LiJ. HuangX. AT7519 against lung cancer via the IL6/STAT3 signaling pathway.Biochem. Biophys. Res. Commun.2022609313810.1016/j.bbrc.2022.03.147 35413537
    [Google Scholar]
  57. HuangQ. HanJ. FanJ. DuanL. GuoM. LvZ. HuG. ChenL. WuF. TaoX. XuJ. JinY. IL-17 induces EMT via Stat3 in lung adenocarcinoma.Am. J. Cancer Res.201662440451 27186414
    [Google Scholar]
  58. SongL. TurksonJ. KarrasJ.G. JoveR. HauraE.B. Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells.Oncogene200322274150416510.1038/sj.onc.1206479 12833138
    [Google Scholar]
  59. ChengX. LiangD. LiX. DengC. YeM. YangJ. LiuY. WuK. WuJ. TianP. Hypoxia Potentiated Lung Cancer Cell Migration and Invasion by up-regulating HIF1α/JAK2/STAT3 Axis and Activating MMP13 Transcription.Cell Biochem. Biophys.202482125927010.1007/s12013‑023‑01205‑5 38129709
    [Google Scholar]
  60. CaoL. RenY. GuoX. WangL. ZhangQ. LiX. WuX. MengZ. XuK. Downregulation of SETD7 promotes migration and invasion of lung cancer cells via JAK2/STAT3 pathway.Int. J. Mol. Med.20204551616162610.3892/ijmm.2020.4523 32323737
    [Google Scholar]
  61. LiuJ. HohJ. Loss of Complement Factor H in Plasma Increases Endothelial Cell Migration.J. Cancer20178122184219010.7150/jca.19452 28819420
    [Google Scholar]
  62. LiJ. HuangH. XuS. FanM. WangK. WangX. ZhangJ. HuangS. GattA. LiuJ. Complement factor H inhibits endothelial cell migration through suppression of STAT3 signaling.Exp. Ther. Med.202326240810.3892/etm.2023.12107 37522066
    [Google Scholar]
  63. XiangM. ZhangH. KouL. ChenJ. XuZ. HeJ. Low level of complement factor H increases the risk of cancer-related death in patients with small-cell lung cancer.Postgrad. Med. J.202298116691992410.1136/postgradmedj‑2021‑141186 37063027
    [Google Scholar]
  64. KeirL.S. FirthR. AponikL. FeitelbergD. SakimotoS. AguilarE. WelshG.I. RichardsA. UsuiY. SatchellS.C. KuzmukV. CowardR.J. GoultJ. BullK.R. SharmaR. BhartiK. WestenskowP.D. MichaelI.P. SaleemM.A. FriedlanderM. VEGF regulates local inhibitory complement proteins in the eye and kidney.J. Clin. Invest.2016127119921410.1172/JCI86418 27918307
    [Google Scholar]
  65. RipocheJ. MitchellJ.A. ErdeiA. MadinC. MoffattB. MokoenaT. GordonS. SimR.B. Interferon gamma induces synthesis of complement alternative pathway proteins by human endothelial cells in culture.J. Exp. Med.198816851917192210.1084/jem.168.5.1917 2972796
    [Google Scholar]
  66. MatsuyamaT. TomimatsuT. MimuraK. YagiK. KawanishiY. KakiganoA. NakamuraH. EndoM. KimuraT. Complement activation by an angiogenic imbalance leads to systemic vascular endothelial dysfunction: A new proposal for the pathophysiology of preeclampsia.J. Reprod. Immunol.202114510332210.1016/j.jri.2021.103322 33887508
    [Google Scholar]
  67. YoonY.H. HwangH.J. SungH.J. HeoS.H. KimD.S. HongS.H. LeeK.H. ChoJ.Y. Upregulation of Complement Factor H by SOCS-1/3-STAT4 in Lung Cancer.Cancers (Basel)201911447110.3390/cancers11040471 30987235
    [Google Scholar]
  68. EzzeldinN. El-LebedyD. DarwishA. El-BastawissyA. ShalabyA.E. Complement factor H polymorphism rs1061170 and the effect of cigarette smoking on the risk of lung cancer.Contemp. Oncol. (Pozn.)20156644144510.5114/wo.2015.56202 26843839
    [Google Scholar]
  69. NooreldeenR. BachH. Current and Future Development in Lung Cancer Diagnosis.Int. J. Mol. Sci.20212216866110.3390/ijms22168661 34445366
    [Google Scholar]
  70. HoyH. LynchT. BeckM. Surgical Treatment of Lung Cancer.Crit. Care Nurs. Clin. North Am.201931330331310.1016/j.cnc.2019.05.002 31351552
    [Google Scholar]
  71. ZhangJ. ZhaoT. HanF. HuY. LiY. Photothermal and gene therapy combined with immunotherapy to gastric cancer by the gold nanoshell-based system.J. Nanobiotechnology20191718010.1186/s12951‑019‑0515‑x 31277667
    [Google Scholar]
  72. LiY. YanB. HeS. Advances and challenges in the treatment of lung cancer.Biomed. Pharmacother.202316911589110.1016/j.biopha.2023.115891 37979378
    [Google Scholar]
  73. BordronA. BagaceanC. TempesculA. BerthouC. BettacchioliE. HillionS. RenaudineauY. Complement System: a Neglected Pathway in Immunotherapy.Clin. Rev. Allergy Immunol.202058215517110.1007/s12016‑019‑08741‑0 31144209
    [Google Scholar]
  74. KolevM. MarkiewskiM.M. Targeting complement-mediated immunoregulation for cancer immunotherapy.Semin. Immunol.201837859710.1016/j.smim.2018.02.003 29454575
    [Google Scholar]
  75. AmornsiripanitchN. HongS. CampaM.J. FrankM.M. GottlinE.B. PatzE.F., Jr Complement factor H autoantibodies are associated with early stage NSCLC.Clin. Cancer Res.201016123226323110.1158/1078‑0432.CCR‑10‑0321 20515868
    [Google Scholar]
  76. BusheyR.T. MoodyM.A. NicelyN.L. HaynesB.F. AlamS.M. KeirS.T. BentleyR.C. Roy ChoudhuryK. GottlinE.B. CampaM.J. LiaoH.X. PatzE.F., JrA Therapeutic Antibody for Cancer, Derived from Single Human B Cells.Cell Rep.20161571505151310.1016/j.celrep.2016.04.038 27160908
    [Google Scholar]
  77. BusheyR.T. SaxenaR. CampaM.J. GottlinE.B. HeY.W. PatzE.F., Jr Antitumor Immune Mechanisms of the Anti-Complement Factor H Antibody GT103.Mol. Cancer Ther.202322677878910.1158/1535‑7163.MCT‑22‑072336995981
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096339892241202092052
Loading
/content/journals/ccdt/10.2174/0115680096339892241202092052
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): A549 cells; CFH; JAK2/STAT3; lung adenocarcinoma; migration; proliferation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test