Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Immune checkpoint blockade (ICB) has fundamentally transformed cancer treatment by unlocking the potency of CD8+ T cells by targeting the suppression of the CTLA-4 and PD-1/PD-L1 pathways. Nevertheless, ICBs are associated with the risk of severe side effects and resistance in certain patients, driving the search for novel and safer immune checkpoint modulators. Monoamine Oxidase A (MAO-A) plays an unexpected role in the field of cancer. Recent research has unveiled its dual nature: in the brain, it breaks down neurotransmitters, impacting mood and behaviour, while in tumours, its role takes a more complex turn. The involvement of MAO-A in the tumour microenvironment is crucial, affecting oxidative stress, hypoxia, and immune cell behaviour. Specifically, the regulation of tumour-associated macrophages (TAMs) and their polarisation underscores their potential as targets for cancer immunotherapy. MAO-A inhibition reprograms TAMs, shifting them from an immunosuppressive to an immunostimulatory state, thereby enhancing the activity of tumour-infiltrating CD8+ T cells. Interestingly, the presence of MAO-A in CD8+ T cells suggests its potential as a target for novel ICB therapy. This review lays the groundwork for a deeper understanding of the therapeutic potential of MAO-A by examining the intricate landscape of its role in cancer immunology. We envision a future in which harnessing the power of CD8+ T cells through optimised MAO-A targeting might lead to safer and more effective cancer treatments, offering hope for countless patients.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096330994241003094738
2025-01-01
2026-01-21
Loading full text...

Full text loading...

References

  1. RoyP.S. SaikiaB.J. Cancer and cure: A critical analysis.Indian J. Cancer201653344144210.4103/0019‑509X.200658 28244479
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  4. KumarB.V. ConnorsT.J. FarberD.L. HumanT. Human T cell development, localization, and function throughout life.Immunity201848220221310.1016/j.immuni.2018.01.007 29466753
    [Google Scholar]
  5. LaugelB. ColeD.K. ClementM. WooldridgeL. PriceD.A. SewellA.K. The multiple roles of the CD8 coreceptor in T cell biology: opportunities for the selective modulation of self-reactive cytotoxic T cells.J. Leukoc. Biol.20119061089109910.1189/jlb.0611316 21954283
    [Google Scholar]
  6. WherryE.J. MasopustD. Chapter 5 Adaptive immunity: Neutralizing, eliminating, and remembering for the next time.In: Viral Pathogenesis.3rd edAcademic Press2016576910.1016/B978‑0‑12‑800964‑2.00005‑7
    [Google Scholar]
  7. BevilacquaA. LiZ. HoP.C. Metabolic dynamics instruct CD8 + T‐cell differentiation and functions.Eur. J. Immunol.202252454154910.1002/eji.202149486 35253907
    [Google Scholar]
  8. GerritsenB. PanditA. The memory of a killer T cell: Models of CD8 + T cell differentiation.Immunol. Cell Biol.201694323624110.1038/icb.2015.118 26700072
    [Google Scholar]
  9. ChangH.F. BzeihH. ChitiralaP. RavichandranK. SleimanM. KrauseE. HahnU. PattuV. RettigJ. Preparing the lethal hit: Interplay between exo- and endocytic pathways in cytotoxic T lymphocytes.Cell. Mol. Life Sci.201774339940810.1007/s00018‑016‑2350‑7 27585956
    [Google Scholar]
  10. WiederT. EigentlerT. BrennerE. RöckenM. Immune checkpoint blockade therapy.J. Allergy Clin. Immunol.201814251403141410.1016/j.jaci.2018.02.042 29596939
    [Google Scholar]
  11. WangX. LiB. KimY.J. WangY-C. LiZ. YuJ. ZengS. MaX. ChoiI.Y. BiaseS.D. Targeting monoamine oxidase A for T cell-based cancer immunotherapy.Sci. Immunol.2021659eabh238310.1126/sciimmunol.abh2383 33990379
    [Google Scholar]
  12. ManshM. Ipilimumab and cancer immunotherapy: A new hope for advanced stage melanoma.Yale J. Biol. Med.2011844381389 22180676
    [Google Scholar]
  13. RobertC. A decade of immune-checkpoint inhibitors in cancer therapy.Nat. Commun.2020111380110.1038/s41467‑020‑17670‑y 32732879
    [Google Scholar]
  14. KormanA.J. Garrett-ThomsonS.C. LonbergN. The foundations of immune checkpoint blockade and the ipilimumab approval decennial.Nat. Rev. Drug Discov.,202121750952810.1038/s41573‑021‑00345‑834937915
    [Google Scholar]
  15. Marin-AcevedoJ.A. KimbroughE.O. LouY. Next generation of immune checkpoint inhibitors and beyond.J. Hematol. Oncol.20211414510.1186/s13045‑021‑01056‑8 33741032
    [Google Scholar]
  16. JenkinsR.W. BarbieD.A. FlahertyK.T. Mechanisms of resistance to immune checkpoint inhibitors.Br. J. Cancer2018118191610.1038/bjc.2017.434 29319049
    [Google Scholar]
  17. YeungA.W.K. GeorgievaM.G. AtanasovA.G. TzvetkovN.T. Monoamine oxidases (MAOs) as privileged molecular targets in neuroscience: Research literature analysis.Front. Mol. Neurosci.20191214310.3389/fnmol.2019.00143 31191248
    [Google Scholar]
  18. MentisA.F.A. DardiotisE. KatsouniE. ChrousosG.P. From warrior genes to translational solutions: Novel insights into monoamine oxidases (MAOs) and aggression.Transl. Psychiatry202111113010.1038/s41398‑021‑01257‑2 33602896
    [Google Scholar]
  19. BehlT. KaurD. SehgalA. SinghS. SharmaN. ZenginG. Andronie-CioaraF.L. TomaM.M. BungauS. BumbuA.G. Role of monoamine oxidase activity in Alzheimer’s disease: An insight into the therapeutic potential of inhibitors.Molecules20212612372410.3390/molecules26123724 34207264
    [Google Scholar]
  20. ReifA. RichterJ. StraubeB. HöflerM. LuekenU. GlosterA.T. WeberH. DomschkeK. FehmL. StröhleA. MAOA and mechanisms of panic disorder revisited: From bench to molecular psychotherapy.Mol. Psychiatry201319112212810.1038/mp.2012.172 23319006
    [Google Scholar]
  21. ZhangJ. TerreniL. De SimoniM.G. DunnA.J. Peripheral interleukin-6 administration increases extracellular concentrations of serotonin and the evoked release of serotonin in the rat striatum.Neurochem. Int.200138430330810.1016/S0197‑0186(00)00099‑1 11137624
    [Google Scholar]
  22. FinocchiaroL.M. ArztE.S. Fernández-CasteloS. CriscuoloM. FinkielmanS. NahmodV.E. Serotonin and melatonin synthesis in peripheral blood mononuclear cells: Stimulation by interferon-7 as part of an immunomodulatory pathway.J. Interferon Res.19888670571610.1089/jir.1988.8.705 3148005
    [Google Scholar]
  23. SarkarC. BasuB. ChakrobortyD. DasguptaP.S. BasuS. The immunoregulatory role of dopamine: An update.Brain Behav. Immun.201024452552810.1016/j.bbi.2009.10.015 19896530
    [Google Scholar]
  24. Sandoval-TalamantesA.K. Gómez-GonzálezB.A. Uriarte-MayorgaD.F. Martínez-GuzmanM.A. Wheber-HidalgoK.A. Alvarado-NavarroA. Neurotransmitters, neuropeptides and their receptors interact with immune response in healthy and psoriatic skin.Neuropeptides20207910200410.1016/j.npep.2019.102004 31902596
    [Google Scholar]
  25. Levite, Nerve-driven immunity. The direct effects of neurotransmitters on T-cell function.Ann. N. Y. Acad. Sci.2000917130732110.1111/j.1749‑6632.2000.tb05397.x 11268358
    [Google Scholar]
  26. LeviteM. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors.Curr. Opin. Pharmacol.20088446047110.1016/j.coph.2008.05.001 18579442
    [Google Scholar]
  27. ErtaM. QuintanaA. HidalgoJ. Interleukin-6, a major cytokine in the central nervous system.Int. J. Biol. Sci.2012891254126610.7150/ijbs.4679 23136554
    [Google Scholar]
  28. SpoorenA. KolmusK. LaureysG. ClinckersR. De KeyserJ. HaegemanG. GerloS. Interleukin-6, a mental cytokine.Brain Res. Brain Res. Rev.2011671-215718310.1016/j.brainresrev.2011.01.002 21238488
    [Google Scholar]
  29. BrownJ. LiB. YangL. MAOI antidepressants: Could they be a next-generation ICB therapy?Front. Immunol.20221385362410.3389/fimmu.2022.853624 35359979
    [Google Scholar]
  30. MolgoraM. ColonnaM. Turning enemies into allies—reprogramming tumor-associated macrophages for cancer therapy.Med (N. Y.)20212666668110.1016/j.medj.2021.05.001 34189494
    [Google Scholar]
  31. FrancoR. PachecoR. LluisC. AhernG.P. O’ConnellP.J. The emergence of neurotransmitters as immune modulators.Trends Immunol.200728940040710.1016/j.it.2007.07.005 17689291
    [Google Scholar]
  32. GiraldoN.A. Sanchez-SalasR. PeskeJ.D. VanoY. BechtE. PetitprezF. ValidireP. IngelsA. CathelineauX. FridmanW.H. The clinical role of the TME in solid cancer.Br. J. Cancer20181201455310.1038/s41416‑018‑0327‑z 30413828
    [Google Scholar]
  33. GrandisJ.R. DrenningS.D. ZengQ. WatkinsS.C. MelhemM.F. EndoS. JohnsonD.E. HuangL. HeY. KimJ.D. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo.Proc. Natl. Acad. Sci. USA20009784227423210.1073/pnas.97.8.4227 10760290
    [Google Scholar]
  34. WhitesideT.L. Tumor-infiltrating lymphocytes and their role in solid tumor progression.Exp. Suppl.20221138910610.1007/978‑3‑030‑91311‑3_3 35165861
    [Google Scholar]
  35. Reina-CamposM. ScharpingN.E. GoldrathA.W. CD8+ T cell metabolism in infection and cancer.Nat. Rev. Immunol.2021211171873810.1038/s41577‑021‑00537‑8 33981085
    [Google Scholar]
  36. Eskandari-MalayeriF. RezaeiM. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review.Front. Immunol.20221399614510.3389/fimmu.2022.996145 36275750
    [Google Scholar]
  37. LisiL. LacalP.M. MartireM. NavarraP. GrazianiG. Clinical experience with CTLA-4 blockade for cancer immunotherapy: From the monospecific monoclonal antibody ipilimumab to probodies and bispecific molecules targeting the tumor microenvironment.Pharmacol. Res.202217510599710.1016/j.phrs.2021.105997 34826600
    [Google Scholar]
  38. MathieuL. ShahS. Pai-ScherfL. LarkinsE. VallejoJ. LiX. RodriguezL. Mishra-KalyaniP. GoldbergK.B. KluetzP.G. TheoretM.R. BeaverJ.A. PazdurR. SinghH. FDA approval summary: Atezolizumab and durvalumab in combination with platinum-based chemotherapy in extensive stage small cell lung cancer.Oncologist202126543343810.1002/onco.13752 33687763
    [Google Scholar]
  39. BenjaminD.J. PrasadV. LythgoeM.P. FDA decisions on new oncological drugs.Lancet Oncol.202223558558610.1016/S1470‑2045(22)00135‑8 35489341
    [Google Scholar]
  40. ZappasodiR. CookG.P. TaylorA. Editorial: Factors determining long term anti-tumor responses to immune checkpoint blockade therapy.Front. Immunol.202213112020710.3389/fimmu.2022.1120207 36618416
    [Google Scholar]
  41. HanH. LiH. MaY. ZhaoZ. AnQ. ZhaoJ. ShiC. Monoamine oxidase A (MAOA): A promising target for prostate cancer therapy.Cancer Lett.202356321618810.1016/j.canlet.2023.216188 37076041
    [Google Scholar]
  42. ZengS Investigating methods to enhance T cell antitumor immunity and reduce graft-versus-host diseaseDoctor of Philosophy University of California
    [Google Scholar]
  43. ZhengY. ChangX. HuangY. HeD. The application of antidepressant drugs in cancer treatment.Biomed. Pharmacother.202315711398510.1016/j.biopha.2022.113985 36402031
    [Google Scholar]
  44. CeciC. AtzoriM.G. LacalP.M. GrazianiG. Targeting tumor-associated macrophages to increase the efficacy of immune checkpoint inhibitors: A glimpse into novel therapeutic approaches for metastatic melanoma.Cancers (Basel)20201211340110.3390/cancers12113401 33212945
    [Google Scholar]
  45. GochevaV. WangH.W. GadeaB.B. ShreeT. HunterK.E. GarfallA.L. BermanT. JoyceJ.A. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion.Genes Dev.201024324125510.1101/gad.1874010 20080943
    [Google Scholar]
  46. BoutilierA.J. ElsawaS.F. KzhyshkowskaJ. SupuranC.T. Macrophage polarization states in the tumor microenvironment.Int. J. Mol. Sci.20212213699510.3390/ijms22136995 34209703
    [Google Scholar]
  47. ChaterjeeO. SurD. Artificially induced in situ macrophage polarization: An emerging cellular therapy for immuno-inflammatory diseases.Eur. J. Pharmacol.202395717600610.1016/j.ejphar.2023.176006 37611840
    [Google Scholar]
  48. BilottaM.T. AntignaniA. FitzgeraldD.J. Managing the TME to improve the efficacy of cancer therapy.Front. Immunol.20221395499210.3389/fimmu.2022.954992 36341428
    [Google Scholar]
  49. GoliwasK.F. DeshaneJ.S. ElmetsC.A. AtharM. Moving immune therapy forward targeting tme.Physiol. Rev.2021101241742510.1152/physrev.00008.2020 32790578
    [Google Scholar]
  50. KondoY. OhnoT. NishiiN. HaradaK. YagitaH. AzumaM. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma.Oral Oncol.201657546010.1016/j.oraloncology.2016.04.005 27208845
    [Google Scholar]
  51. WangY.C. WangX. YuJ. MaF. LiZ. ZhouY. ZengS. MaX. LiY.R. NealA. HuangJ. ToA. ClarkeN. MemarzadehS. PellegriniM. YangL. Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy.Nat. Commun.2021121353010.1038/s41467‑021‑23164‑2 34112755
    [Google Scholar]
  52. MaY. ChenH. LiH. ZhaoZ. AnQ. ShiC. Targeting monoamine oxidase A: A strategy for inhibiting tumor growth with both immune checkpoint inhibitors and immune modulators.Cancer Immunol. Immunother.20247334810.1007/s00262‑023‑03622‑0 38349393
    [Google Scholar]
  53. AntonucciS. Di SanteM. TonoloF. PontarolloL. ScalconV. AlanovaP. MenabòR. CarpiA. BindoliA. RigobelloM.P. The determining role of mitochondrial reactive oxygen species generation and monoamine oxidase activity in doxorubicin-induced cardiotoxicity.Antioxid. Redox. Signal.202134753155010.1089/ars.2019.7929 32524823
    [Google Scholar]
  54. IreyE.A. LassiterC.M. BradyN.J. ChuntovaP. WangY. KnutsonT.P. HenzlerC. ChaffeeT.S. VogelR.I. NelsonA.C. FarrarM.A. SchwertfegerK.L. JAK/STAT inhibition in macrophages promotes therapeutic resistance by inducing expression of protumorigenic factors.Proc. Natl. Acad. Sci. USA201911625124421245110.1073/pnas.1816410116 31147469
    [Google Scholar]
  55. KajiwaraI. SanoM. IchimaruY. OshimaY. KitajimaO. HaoH. MasamuneA. KimJ. IshiiY. IjichiH. SuzukiT. Duloxetine improves cancer-associated pain in a mouse model of pancreatic cancer through stimulation of noradrenaline pathway and its antitumor effects.Pain2020161122909291910.1097/j.pain.0000000000001997 32694385
    [Google Scholar]
  56. JägerE. ChenY.T. DrijfhoutJ.W. KarbachJ. RinghofferM. JägerD. ArandM. WadaH. NoguchiY. StockertE. OldL.J. KnuthA. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: Definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes.J. Exp. Med.1998187226527010.1084/jem.187.2.265 9432985
    [Google Scholar]
  57. LiY.R. YuY. KramerA. HonR. WilsonM. BrownJ. YangL. An ex vivo 3D tumor microenvironment-mimicry culture to study TAM modulation of cancer immunotherapy.Cells2022119158310.3390/cells11091583 35563889
    [Google Scholar]
  58. JenkinsR.W. ThummalapalliR. CarterJ. CañadasI. BarbieD.A. Molecular and genomic determinants of response to immune checkpoint inhibition in cancer.Annu. Rev. Med.201869133334710.1146/annurev‑med‑060116‑022926 29099676
    [Google Scholar]
  59. BeyerM. MallmannM.R. XueJ. Staratschek-JoxA. VorholtD. KrebsW. SommerD. SanderJ. MertensC. Nino-CastroA. SchmidtS.V. SchultzeJ.L. High-resolution transcriptome of human macrophages.PLoS One201279e4546610.1371/journal.pone.0045466 23029029
    [Google Scholar]
  60. LiuF. HuL. MaY. HuangB. XiuZ. ZhangP. ZhouK. TangX. Increased expression of monoamine oxidase A is associated with epithelial to mesenchymal transition and clinicopathological features in non-small cell lung cancer.Oncol. Lett.20171533245325110.3892/ol.2017.7683 29435065
    [Google Scholar]
  61. WuJ.B. ShaoC. LiX. LiQ. HuP. ShiC. LiY. ChenY.T. YinF. LiaoC.P. StilesB.L. ZhauH.E. ShihJ.C. ChungL.W.K. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis.J. Clin. Invest.201412472891290810.1172/JCI70982 24865426
    [Google Scholar]
  62. ShihJ.C. Monoamine oxidase isoenzymes: Genes, functions and targets for behavior and cancer therapy.J. Neural Transm. (Vienna)2018125111553156610.1007/s00702‑018‑1927‑8 30259128
    [Google Scholar]
  63. ChenC.H. WuB.J. Monoamine oxidase A: An emerging therapeutic target in prostate cancer.Front. Oncol.202313113705010.3389/fonc.2023.1137050 36860320
    [Google Scholar]
  64. ThommenD.S. SchumacherT.N. T cell dysfunction in cancer.Cancer Cell201833454756210.1016/j.ccell.2018.03.012 29634943
    [Google Scholar]
  65. ChenL. HuangS. WuX. HeW. SongM. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities.Clin. Transl. Med.2024147e175010.1002/ctm2.1750 38943041
    [Google Scholar]
  66. MellorA.L. SivakumarJ. ChandlerP. SmithK. MolinaH. MaoD. MunnD.H. Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy.Nat. Immunol.200121646810.1038/83183 11135580
    [Google Scholar]
  67. McRitchieB.R. AkkayaB. Exhaust the exhausters: Targeting regulatory T cells in the tumor microenvironment.Front. Immunol.20221394005210.3389/fimmu.2022.940052 36248808
    [Google Scholar]
  68. WuH. HerrD. MacIverN.J. RathmellJ.C. GerrietsV.A. CD4 T cells differentially express cellular machinery for serotonin signaling, synthesis, and metabolism.Int. Immunopharmacol.20208810692210.1016/j.intimp.2020.106922 32866787
    [Google Scholar]
  69. BellaviaD. CampeseA.F. AlesseE. VaccaA. FelliM.P. BalestriA. StoppacciaroA. TiveronC. TatangeloL. GiovarelliM. Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice.EMBO J.200019133337334810.1093/emboj/19.13.3337 10880446
    [Google Scholar]
  70. LeeH.M. SiaA.P.E. LiL. SathasivamH.P. ChanM.S.A. RajaduraiP. TsaoS.W. MurrayP.G. TaoQ. PatersonI.C. Monoamine oxidase A is down-regulated in EBV-associated nasopharyngeal carcinoma.Sci. Rep.2020109611510.1038/s41598‑020‑63150‑0 32273550
    [Google Scholar]
  71. LiC. LeiS. DingL. XuY. WuX. WangH. ZhangZ. GaoT. ZhangY. LiL. Global burden and trends of lung cancer incidence and mortality.Chin. Med. J. (Engl.)2023136131583159010.1097/CM9.0000000000002529 37027426
    [Google Scholar]
  72. HuangB. ZhouZ. LiuJ. WuX. LiX. HeQ. ZhangP. TangX. The role of monoamine oxidase A in HPV-16 E7-induced epithelial-mesenchymal transition and HIF-1α protein accumulation in non-small cell lung cancer cells.Int. J. Biol. Sci.202016142692270310.7150/ijbs.46966 32792865
    [Google Scholar]
  73. LiJ. YuH. MaY-F. ZhaoM. TangJ. Identification of genes associated with lung cancer by bioinformatics analysis.Eur. Rev. Med. Pharmacol. Sci.2017211023972404 28617549
    [Google Scholar]
  74. FlamantL. NotteA. NinaneN. RaesM. MichielsC. Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia.Mol. Cancer20109119110.1186/1476‑4598‑9‑191 20626868
    [Google Scholar]
  75. KalluriR. WeinbergR.A. The basics of epithelial-mesenchymal transition.J. Clin. Invest.200911961420142810.1172/JCI39104 19487818
    [Google Scholar]
  76. SchöningJ.P. MonteiroM. GuW. Drug resistance and cancer stem cells: The shared but distinct roles of hypoxia‐inducible factors HIF 1α and HIF 2α.Clin. Exp. Pharmacol. Physiol.201744215316110.1111/1440‑1681.12693 27809360
    [Google Scholar]
  77. ShihT.C. LiuR. WuC.T. LiX. XiaoW. DengX. KissS. WangT. ChenX.J. CarneyR. KungH.J. DuanY. GhoshP.M. LamK.S. Targeting galectin-1 impairs castration-resistant prostate cancer progression and invasion.Clin. Cancer Res.201824174319433110.1158/1078‑0432.CCR‑18‑0157 29666302
    [Google Scholar]
  78. YeJ. WuM. HeL. ChenP. LiuH. YangH. Glutathione-s-transferase p 1 gene promoter methylation in cell-free DNA as a diagnostic and prognostic tool for prostate cancer: A systematic review and meta-analysis.Int. J. Endocrinol.202320231910.1155/2023/7279243 36747996
    [Google Scholar]
  79. LeeH.T. ChoiM.R. DohM.S. JungK.H. ChaiY.G. Effects of the monoamine oxidase inhibitors pargyline and tranylcypromine on cellular proliferation in human prostate cancer cells.Oncol. Rep.20133041587159210.3892/or.2013.2635 23900512
    [Google Scholar]
  80. HodorováI. RybárováS. VecanováJ. SolárP. DomorákováI. AdamkovM. MihalikJ. Comparison of expression pattern of monoamine oxidase A with histopathologic subtypes and tumour grade of renal cell carcinoma.Med. Sci. Monit.20121812BR482BR48610.12659/msm.883592 23197227
    [Google Scholar]
  81. RodríguezM.J. SauraJ. BillettE.E. FinchC.C. MahyN. Cellular localization of monoamine oxidase A and B in human tissues outside of the central nervous system.Cell Tissue Res.2001304221522010.1007/s004410100361 11396715
    [Google Scholar]
  82. VindisC. SéguélasM.H. LanierS. PariniA. CambonC. Dopamine induces ERK activation in renal epithelial cells through H2O2 produced by monoamine oxidase.Kidney Int.2001591768610.1046/j.1523‑1755.2001.00468.x 11135060
    [Google Scholar]
  83. ChenL. GuoL. SunZ. YangG. GuoJ. ChenK. XiaoR. YangX. ShengL. Monoamine oxidase a is a major mediator of mitochondrial homeostasis and glycolysis in gastric cancer progression.Cancer Manag. Res.2020128023803510.2147/CMAR.S257848 32943935
    [Google Scholar]
  84. WangY.Y. ZhouY.Q. XieJ.X. ZhangX. WangS.C. LiQ. HuL.P. JiangS.H. YiS.Q. XuJ. CaoH. ZhaoE.H. LiJ. MAOA suppresses the growth of gastric cancer by interacting with NDRG1 and regulating the Warburg effect through the PI3K/AKT/mTOR pathway.Cell Oncol. (Dordr.)20234651429144410.1007/s13402‑023‑00821‑w 37249744
    [Google Scholar]
  85. AljanabiR. AlsousL. SabbahD.A. GulH.I. GulM. BardaweelS.K. Monoamine Oxidase (MAO) as a potential target for anticancer drug design and development.Molecules20212619601910.3390/molecules26196019 34641563
    [Google Scholar]
  86. HuangJ. PangW.S. LokV. ZhangL. Lucero-PrisnoD.E.III XuW. ZhengZ.J. ElcarteE. WithersM. WongM.C.S. Incidence, mortality, risk factors, and trends for Hodgkin lymphoma: A global data analysis.J. Hematol. Oncol.20221515710.1186/s13045‑022‑01281‑9 35546241
    [Google Scholar]
  87. LiP.C. ChenS.Y. XiangfeiD. MaoC. WuC.H. ShihJ.C. PAMs inhibits monoamine oxidase a activity and reduces glioma tumor growth, a potential adjuvant treatment for glioma.BMC Complement. Med. Ther.202020125210.1186/s12906‑020‑03041‑z 32799864
    [Google Scholar]
  88. JacobsM.R. OliveroJ.E. Ok ChoiH. LiaoC.P. KashemirovB.A. KatzJ.E. GrossM.E. McKennaC.E. Synthesis and anti-cancer potential of potent peripheral MAOA inhibitors designed to limit blood:brain penetration.Bioorg. Med. Chem.20239211742510.1016/j.bmc.2023.117425 37544256
    [Google Scholar]
  89. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  90. LeiS. ZhengR. ZhangS. WangS. ChenR. SunK. ZengH. ZhouJ. WeiW. Global patterns of breast cancer incidence and mortality: A population‐based cancer registry data analysis from 2000 to 2020.Cancer Commun. (Lond.)202141111183119410.1002/cac2.12207 34399040
    [Google Scholar]
  91. AlkhawaldehA. BardaweelS. Molecular investigation of the antitumor effects of monoamine oxidase inhibitors in breast cancer cells.BioMed Res. Int.202320231259269110.1155/2023/2592691 37841082
    [Google Scholar]
  92. BhartiR. DeyG. DasA.K. MandalM. Differential expression of IL-6/IL-6R and MAO-A regulates invasion/angiogenesis in breast cancer.Br. J. Cancer2018118111442145210.1038/s41416‑018‑0078‑x 29695771
    [Google Scholar]
  93. ChenG. FanX. LiY. HeL. WangS. DaiY. BinC. ZhouD. LinH. Promoter aberrant methylation status of ADRA1A is associated with hepatocellular carcinoma.Epigenetics2020156-768470110.1080/15592294.2019.1709267 31933413
    [Google Scholar]
  94. LiJ. YangX.M. WangY.H. FengM.X. LiuX.J. ZhangY.L. HuangS. WuZ. XueF. QinW.X. GuJ.R. XiaQ. ZhangZ.G. Monoamine oxidase A suppresses hepatocellular carcinoma metastasis by inhibiting the adrenergic system and its transactivation of EGFR signaling.J. Hepatol.20146061225123410.1016/j.jhep.2014.02.025 24607627
    [Google Scholar]
  95. LelouE. CorluA. NesselerN. RauchC. MallédantY. SeguinP. AninatC. The role of catecholamines in pathophysiological liver processes.Cells2022116102110.3390/cells11061021 35326472
    [Google Scholar]
  96. YangB. JiangJ. DuH. GengG. JiangZ. YaoC. ZhangQ. JinL. Decreased monoamine oxidase (MAO) activity and MAO-A expression as diagnostic indicators of human esophageal cancers.Biomarkers200914862462910.3109/13547500903207688 19740022
    [Google Scholar]
  97. MengX.L. LuJ.C. ZengH.Y. ChenZ. GuoX.J. GaoC. PeiY.Z. HuS.Y. YeM. SunQ.M. YangG.H. CaiJ.B. HuangP.X. YvL. ZhangL. ShiY.H. KeA.W. ZhouJ. FanJ. ChenY. HuangX.Y. ShiG.M. The clinical implications and molecular features of intrahepatic cholangiocarcinoma with perineural invasion.Hepatol. Int.2023171637610.1007/s12072‑022‑10445‑1 36418844
    [Google Scholar]
  98. SatoK. FrancisH. ZhouT. MengF. KennedyL. EkserB. BaiocchiL. OnoriP. MancinelliR. GaudioE. Neuroendocrine changes in cholangiocarcinoma growth.Cells20209243610.3390/cells9020436 32069926
    [Google Scholar]
  99. HuangL. FramptonG. RaoA. ZhangK.S. ChenW. LaiJ.M. YinX-Y. WalkerK. CulbreathB. Leyva-IlladesD. Monoamine oxidase A expression is suppressed in human cholangiocarcinoma via coordinated epigenetic and IL-6-driven events.Lab. Invest.201292101451146010.1038/labinvest.2012.110 22906985
    [Google Scholar]
  100. FinbergJ.P.M. GillmanK. Selective inhibitors of monoamine oxidase type B and the “cheese effect”.Int. Rev. Neurobiol.201110016919010.1016/B978‑0‑12‑386467‑3.00009‑1 21971008
    [Google Scholar]
  101. YeraganiV.K. RamachandraihC.T. SubramanyamN. BarK.J. BakerG. Antidepressants: From MAOIs to SSRIs and more.Indian J. Psychiatry201153218018210.4103/0019‑5545.82567 21772661
    [Google Scholar]
  102. ItoY. SadarM.D. Enzalutamide and blocking androgen receptor in advanced prostate cancer: Lessons learnt from the history of drug development of antiandrogens.Res. Rep. Urol.201810233210.2147/RRU.S157116 29497605
    [Google Scholar]
  103. WangM. LiuX. GuoJ. WengX. JiangG. WangZ. HeL. Inhibition of LSD1 by Pargyline inhibited process of EMT and delayed progression of prostate cancer in vivo.Biochem. Biophys. Res. Commun.2015467231031510.1016/j.bbrc.2015.09.164 26435505
    [Google Scholar]
  104. LeeH.T. JungK.H. KimS.K. ChoiM.R. ChaiY.G. Effects of pargyline on cellular proliferation in human breast cancer cells.Mol. Cell. Toxicol.20128439339910.1007/s13273‑012‑0048‑y
    [Google Scholar]
  105. BrownJ. LiZ. WangX. KimY.J. WangY.C. ZuoY. HongW. WangP. LiB. YangL. Nanoformulation improves antitumor efficacy of MAOI immune checkpoint blockade therapy without causing aggression-related side effects.Front. Pharmacol.20221397032410.3389/fphar.2022.970324 36120311
    [Google Scholar]
  106. OsmaniyeD. LeventS. SağlıkB.N. KaradumanA.B. ÖzkayY. KaplancıklıZ.A. Novel imidazole derivatives as potential aromatase and monoamine oxidase-B inhibitors against breast cancer.New J. Chem.202246167442745110.1039/D2NJ00424K
    [Google Scholar]
  107. FlamandV. ZhaoH. PeehlD.M. Targeting monoamine oxidase A in advanced prostate cancer.J. Cancer Res. Clin. Oncol.2010136111761177110.1007/s00432‑010‑0835‑6 20204405
    [Google Scholar]
  108. YangX.G. LiY.Y. ZhaoD.X. CuiW. LiH. LiX.Y. LiY.X. WangD. Repurposing of a monoamine oxidase A inhibitor-heptamethine carbocyanine dye conjugate for paclitaxel-resistant non-small cell lung cancer.Oncol. Rep.20214531306131410.3892/or.2021.7950 33650669
    [Google Scholar]
  109. GaurS. GrossM.E. LiaoC.P. QianB. ShihJ.C. Effect of Monoamine oxidase A (MAOA) inhibitors on androgen‐sensitive and castration‐resistant prostate cancer cells.Prostate201979666767710.1002/pros.23774 30693539
    [Google Scholar]
  110. SonB. JunS.Y. SeoH. YounH. YangH.J. KimW. KimH.K. KangC. YounB. Inhibitory effect of traditional oriental medicine-derived monoamine oxidase B inhibitor on radioresistance of non-small cell lung cancer.Sci. Rep.2016612198610.1038/srep21986 26906215
    [Google Scholar]
  111. Satram-MaharajT. NyarkoJ.N.K. KuskiK. FehrK. PenningtonP.R. TruittL. FreywaldA. LukongK.E. AndersonD.H. MousseauD.D. The monoamine oxidase-A inhibitor clorgyline promotes a mesenchymal-to-epithelial transition in the MDA-MB-231 breast cancer cell line.Cell. Signal.201426122621263210.1016/j.cellsig.2014.08.005 25152370
    [Google Scholar]
  112. KushalS. WangW. VaikariV.P. KotaR. ChenK. YehT.S. JhaveriN. GroshenS.L. OlenyukB.Z. ChenT.C. HofmanF.M. ShihJ.C. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression.Oncotarget2016712138421385310.18632/oncotarget.7283 26871599
    [Google Scholar]
  113. RestaJ. SantinY. RoumiguiéM. RiantE. LucasA. CoudercB. BindaC. LluelP. PariniA. Mialet-PerezJ. Monoamine oxidase inhibitors prevent glucose-dependent energy production, proliferation and migration of bladder carcinoma cells.Int. J. Mol. Sci.202223191174710.3390/ijms231911747 36233054
    [Google Scholar]
  114. TarpleyM. OladapoH.O. StrepayD. CaliganT.B. ChdidL. ShehataH. RoquesJ.R. ThomasR. LaudemanC.P. OnyenwokeR.U. DarrD.B. WilliamsK.P. Identification of harmine and β-carboline analogs from a high-throughput screen of an approved drug collection; Profiling as differential inhibitors of DYRK1A and monoamine oxidase A and for in vitro and in vivo anti-cancer studies.Eur. J. Pharm. Sci.202116210582110.1016/j.ejps.2021.105821 33781856
    [Google Scholar]
  115. El-ZeftawyM. GhareebD. Pharmacological bioactivity of Ceratonia siliqua pulp extract: In vitro screening and molecular docking analysis, implication of Keap-1/Nrf2/NF-ĸB pathway.Sci. Rep.20231311220910.1038/s41598‑023‑39034‑4 37500735
    [Google Scholar]
  116. TsengH.J. BanerjeeS. QianB. LaiM.J. WuT.Y. HsuT.I. LinT.E. HsuK.C. ChuangK.H. LiouJ.P. ShihJ.C. Design, synthesis, and biological activity of dual monoamine oxidase A and heat shock protein 90 inhibitors, N-Methylpropargylamine-conjugated 4-isopropylresorcinol for glioblastoma.Eur. J. Med. Chem.202325611545910.1016/j.ejmech.2023.115459 37172473
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096330994241003094738
Loading
/content/journals/ccdt/10.2174/0115680096330994241003094738
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test