Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Over the last two decades, there has been a considerable increase in the usage of chitosan nanoparticles (CSNPs) for drug delivery applications in cancer treatment. However, a comprehensive bibliometric analysis of this emerging field is lacking. The current analysis presents a detailed bibliometric assessment of the research evolution and trends in CSNPs for cancer targeted-drug delivery from 2000 to 2022. A total of 626 publications from the Web of Science Core Collection (WoSCC) database were evaluated using VOSviewer, Bibliometrix, and MS Excel. An in-depth exploration was carried out to find publication trends, the most productive authors, affiliations, countries, and journals as well as the highly cited publications within this particular research domain. Ick Chan Kwon was the most prominent author who made significant contributions to this field. China was the leading country in terms of research on CSNPs for cancer-targeted drug delivery, followed by India and Iran. Concerning the total number of publications, The International Journal of Biological Macromolecules excelled as the leading journal in this research area. Furthermore, the research trends and hotspots were also identified through the analysis of the most commonly used keywords by the authors. Our analysis highlights the growing research interest in CSNPs for cancer drug delivery, emphasizing the need for further exploration to unlock their full potential.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096330684240927094018
2024-11-06
2026-01-21
Loading full text...

Full text loading...

References

  1. ShanmuganathanR. EdisonT.N.J.I.; LewisOscar, F.; Kumar, P.; Shanmugam, S.; Pugazhendhi, A. Chitosan nanopolymers: An overview of drug delivery against cancer.Int. J. Biol. Macromol.201913072773610.1016/j.ijbiomac.2019.02.060 30771392
    [Google Scholar]
  2. WilsonB. AmbikaT.V. Dharmesh Kumar PatelR. JenitaJ.L. PriyadarshiniS.R.B. Nanoparticles based on albumin: Preparation, characterization and the use for 5-flurouracil delivery.Int. J. Biol. Macromol.201251587487810.1016/j.ijbiomac.2012.07.014 22820011
    [Google Scholar]
  3. FerlayJ. SoerjomataramI. DikshitR. EserS. MathersC. RebeloM. ParkinD.M. FormanD. BrayF. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.Int. J. Cancer20151365E359E38610.1002/ijc.29210 25220842
    [Google Scholar]
  4. PotdarD P. Chitosan nanoparticles: An emerging weapon against the cancer.MOJ Cell Science & Report201632394010.15406/mojcsr.2016.03.00049
    [Google Scholar]
  5. NarmaniA. JafariS.M. Chitosan-based nanodelivery systems for cancer therapy: Recent advances.Carbohydr. Polym.2021272May11846410.1016/j.carbpol.2021.118464 34420724
    [Google Scholar]
  6. Ghaz-JahanianM.A. Abbaspour-AghdamF. AnarjanN. BerenjianA. Jafarizadeh-MalmiriH. Application of chitosan-based nanocarriers in tumor-targeted drug delivery.Mol. Biotechnol.201557320121810.1007/s12033‑014‑9816‑3 25385004
    [Google Scholar]
  7. ChanA. OrmeR.P. FrickerR.A. RoachP. Remote and local control of stimuli responsive materials for therapeutic applications.Adv. Drug Deliv. Rev.201365449751410.1016/j.addr.2012.07.007 22820529
    [Google Scholar]
  8. PulkkinenM. PikkarainenJ. WirthT. TarvainenT. HaapaahoV. KorhonenH. SeppäläJ. JärvinenK. Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin–biotin technology: Formulation development and in vitro anticancer activity.Eur. J. Pharm. Biopharm.2008701667410.1016/j.ejpb.2008.04.018 18555675
    [Google Scholar]
  9. FuS. XiaJ. WuJ. Functional chitosan nanoparticles in cancer treatment.J. Biomed. Nanotechnol.20161281585160310.1166/jbn.2016.2228 29341581
    [Google Scholar]
  10. PatelN.R. PattniB.S. AbouzeidA.H. TorchilinV.P. Nanopreparations to overcome multidrug resistance in cancer.Adv. Drug Deliv. Rev.20136513-141748176210.1016/j.addr.2013.08.004 23973912
    [Google Scholar]
  11. KamalyN. XiaoZ. ValenciaP.M. Radovic-MorenoA.F. FarokhzadO.C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation.Chem. Soc. Rev.20124172971301010.1039/c2cs15344k 22388185
    [Google Scholar]
  12. SechiM. SannaV. PalaN. Targeted therapy using nanotechnology: Focus on cancer.Int. J. Nanomedicine2014946748310.2147/IJN.S36654 24531078
    [Google Scholar]
  13. LowL.E. TanL.T.H. GohB.H. TeyB.T. OngB.H. TangS.Y. Magnetic cellulose nanocrystal stabilized Pickering emulsions for enhanced bioactive release and human colon cancer therapy.Int. J. Biol. Macromol.2019127768410.1016/j.ijbiomac.2019.01.037 30639596
    [Google Scholar]
  14. LuZ. YehT.K. TsaiM. AuJ.L.S. WientjesM.G. Paclitaxel loaded gelatin nanoparticles for intravesical bladder cancer therapy.Clin. Cancer Res.200410227677768410.1158/1078‑0432.CCR‑04‑1443 15570001
    [Google Scholar]
  15. KumarS. AliJ. BabootaS. Polysaccharide nanoconjugates for drug solubilization and targeted delivery.Polysaccharide Carriers for Drug Delivery.Woodhead Publishing201944347510.1016/B978‑0‑08‑102553‑6.00016‑7
    [Google Scholar]
  16. RománJ.V. GalánM.A. del ValleE.M.M. Preparation and preliminary evaluation of alginate crosslinked microcapsules as potential drug delivery system (DDS) for human lung cancer therapy.Biomed. Phys. Eng. Express20162303501510.1088/2057‑1976/2/3/035015
    [Google Scholar]
  17. SchneibleJ.D. DanieleM.A. MenegattiS. Natural and synthetic biopolymers in drug delivery and tissue engineering.Biopolymers for Biomedical and Biotechnological Applications202125635610.1002/9783527818310.ch9
    [Google Scholar]
  18. PoseyJ.A.III SaifM.W. CarlisleR. GoetzA. RizzoJ. StevensonS. RudoltzM.S. KwiatekJ. SimmonsP. RowinskyE.K. TakimotoC.H. TolcherA.W. Phase 1 study of weekly polyethylene glycol-camptothecin in patients with advanced solid tumors and lymphomas.Clin. Cancer Res.200511217866787110.1158/1078‑0432.CCR‑05‑0783 16278410
    [Google Scholar]
  19. HuangL. ChaurasiyaB. WuD. WangH. DuY. TuJ. WebsterT.J. SunC. Versatile redox-sensitive pullulan nanoparticles for enhanced liver targeting and efficient cancer therapy.Nanomedicine20181431005101710.1016/j.nano.2018.01.015 29409820
    [Google Scholar]
  20. SaurajS.U. KumarS.U. KumarV. PriyadarshiR. GopinathP. NegiY.S. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy.Carbohydr. Polym.201818825225910.1016/j.carbpol.2018.02.006 29525163
    [Google Scholar]
  21. MaZ. Garrido-MaestuA. JeongK.C. Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review.Carbohydr. Polym.2017176July25726510.1016/j.carbpol.2017.08.082 28927606
    [Google Scholar]
  22. DivyaK. VijayanS. GeorgeT.K. JishaM.S. Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity.Fibers Polym.201718222123010.1007/s12221‑017‑6690‑1
    [Google Scholar]
  23. DivyaK. JishaM.S. Chitosan nanoparticles preparation and applications.Environ. Chem. Lett.201816110111210.1007/s10311‑017‑0670‑y
    [Google Scholar]
  24. KassemA. AyoubG.M. MalaebL. Antibacterial activity of chitosan nano-composites and carbon nanotubes: A review.Sci. Total Environ.201966856657610.1016/j.scitotenv.2019.02.446 30856567
    [Google Scholar]
  25. RozmanN.A.S. TongW.Y. LeongC.R. TanW.N. HasanolbasoriM.A. AbdullahS.Z. Potential antimicrobial applications of chitosan nanoparticles (ChNP).J. Microbiol. Biotechnol.20192971009101310.4014/jmb.1904.04065 31288302
    [Google Scholar]
  26. DashM. ChielliniF. OttenbriteR.M. ChielliniE. Chitosan—A versatile semi-synthetic polymer in biomedical applications.Prog. Polym. Sci.2011368981101410.1016/j.progpolymsci.2011.02.001
    [Google Scholar]
  27. GaoY. WuY. Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications.Int J Biol Macromol202220337938810.1016/j.ijbiomac.2022.01.162
    [Google Scholar]
  28. KhanM.M. MadniA. FilipczakN. PanJ. RehmanM. RaiN. AttiaS.A. TorchilinV.P. Folate targeted lipid chitosan hybrid nanoparticles for enhanced anti-tumor efficacy.Nanomedicine20202810222810.1016/j.nano.2020.102228 32485321
    [Google Scholar]
  29. SultanM.H. MoniS.S. MadkhaliO.A. BakkariM.A. AlshahraniS. AlqahtaniS.S. AlhakamyN.A. MohanS. GhazwaniM. BukharyH.A. AlmoshariY. SalawiA. AlshamraniM. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer.Sci. Rep.202212146810.1038/s41598‑021‑04427‑w 35013493
    [Google Scholar]
  30. DawoudM.H.S. MannaaI.S. Abdel-DaimA. SweedN.M. Integrating artificial intelligence with quality by design in the formulation of lecithin/chitosan nanoparticles of a poorly water-soluble drug.AAPS PharmSciTech202324616910.1208/s12249‑023‑02609‑5 37552427
    [Google Scholar]
  31. PathakR. BhattS. PunethaV.D. PunethaM. Chitosan nanoparticles and based composites as a biocompatible vehicle for drug delivery: A review.Int. J. Biol. Macromol.2023253Pt 712736910.1016/j.ijbiomac.2023.127369 37839608
    [Google Scholar]
  32. IskandarA. KimS.K. WongT.W. “Drug-Free” chitosan nanoparticles as therapeutic for cancer treatment.Polym. Rev. (Phila. Pa.)202464381887110.1080/15583724.2024.2323943
    [Google Scholar]
  33. ZaikiY. IskandarA. WongT.W. Functionalized chitosan for cancer nano drug delivery.Biotechnol. Adv.20236710820010.1016/j.biotechadv.2023.108200 37331671
    [Google Scholar]
  34. TianB. HuaS. LiuJ. Multi-functional chitosan-based nanoparticles for drug delivery: Recent advanced insight into cancer therapy.Carbohydr. Polym.202331512097210.1016/j.carbpol.2023.120972 37230614
    [Google Scholar]
  35. JhaR. MayanovicR.A. A review of the preparation, characterization, and applications of chitosan nanoparticles in nanomedicine.Nanomaterials (Basel)2023138130210.3390/nano13081302
    [Google Scholar]
  36. HerdianaY. WathoniN. GozaliD. ShamsuddinS. MuchtaridiM. Chitosan-based nano-smart drug delivery system in breast cancer therapy.Pharmaceutics202315387910.3390/pharmaceutics15030879 36986740
    [Google Scholar]
  37. KhalafE.M. AboodN.A. AttaR.Z. Ramírez-CoronelA.A. AlazragiR. ParraR.M.R. AbedO.H. AbosaoodaM. JalilA.T. MustafaY.F. NarmaniA. FarhoodB. Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review.Int. J. Biol. Macromol.202323112335410.1016/j.ijbiomac.2023.123354 36681228
    [Google Scholar]
  38. JafernikK. ŁadniakA. BlicharskaE. CzarnekK. EkiertH. WiącekA.E. SzopaA. Chitosan-based nanoparticles as effective drug delivery systems—A review.Molecules2023284196310.3390/molecules28041963 36838951
    [Google Scholar]
  39. KurczewskaJ. Chitosan-based nanoparticles with optimized parameters for targeted delivery of a specific anticancer drug-A comprehensive review.Pharmaceutics202315250310.3390/pharmaceutics15020503 36839824
    [Google Scholar]
  40. AtmacaH. OguzF. IlhanS. Chitosan in cancer therapy: A dual role as a therapeutic agent and drug delivery system.Z. Naturforsch. C J. Biosci.2024795-69510510.1515/znc‑2023‑0148
    [Google Scholar]
  41. KazmiI. ShaikhM.A.J. AfzalO. Alfawaz AltamimiA.S. AlmalkiW.H. AlzareaS.I. Al-AbbasiF.A. PandeyM. DurejaH. SinghS.K. DuaK. GuptaG. Chitosan-based nano drug delivery system for lung cancer.J. Drug Deliv. Sci. Technol.20238110419610.1016/j.jddst.2023.104196
    [Google Scholar]
  42. AliD.S. OthmanH.O. AnwerE.T. The advances in chitosan-based drug delivery systems for colorectal cancer: A narrative review.Curr. Pharm. Biotechnol.202324121554155910.2174/1389201024666230202160504 36733239
    [Google Scholar]
  43. DanaP.M. HallajzadehJ. AsemiZ. MansourniaM.A. YousefiB. Advances in chitosan-based drug delivery systems in Melanoma: A narrative review.Curr. Med. Chem.202310.2174/0929867330666230518143654 37202890
    [Google Scholar]
  44. SachdevaB. SachdevaP. NegiA. GhoshS. HanS. DewanjeeS. JhaS.K. BhaskarR. SinhaJ.K. Paiva-SantosA.C. JhaN.K. KesariK.K. Chitosan nanoparticles-based cancer drug delivery: Application and challenges.Mar. Drugs202321421110.3390/md21040211 37103352
    [Google Scholar]
  45. RostamiE. Progresses in targeted drug delivery systems using chitosan nanoparticles in cancer therapy: A mini-review.J. Drug Deliv. Sci. Technol.202058March10181310.1016/j.jddst.2020.101813
    [Google Scholar]
  46. ZengZ. ZengZ.W. XiaoR.Z. XieT. ZhouG.L. ZhanX.R. WangS.L. Recent advances of chitosan nanoparticles as drug carriers.Int. J. Nanomedicine2011676577410.2147/IJN.S17296 21589644
    [Google Scholar]
  47. JeeJ.P. NaJ.H. LeeS. KimS.H. ChoiK. YeoY. KwonI.C. Cancer targeting strategies in nanomedicine: Design and application of chitosan nanoparticles.Curr. Opin. Solid State Mater. Sci.201216633334210.1016/j.cossms.2013.01.002
    [Google Scholar]
  48. RizeqB.R. YounesN.N. RasoolK. NasrallahG.K. Synthesis, bioapplications, and toxicity evaluation of chitosan-based nanoparticles.Int. J. Mol. Sci.20192022577610.3390/ijms20225776
    [Google Scholar]
  49. BashirS.M. Ahmed RatherG. PatrícioA. HaqZ. SheikhA.A. ShahM.Z.H. SinghH. KhanA.A. ImtiyazS. AhmadS.B. NabiS. RakhshanR. HassanS. FonteP. Chitosan nanoparticles: A versatile platform for biomedical applications.Materials (Basel)20221519652110.3390/ma15196521 36233864
    [Google Scholar]
  50. ChandrasekaranM. KimK. ChunS. Antibacterial activity of chitosan nanoparticles: A review.Processes (Basel)202089117310.3390/pr8091173
    [Google Scholar]
  51. DubeyS.K. BhattT. AgrawalM. SahaR.N. SarafS. SarafS. AlexanderA. Application of chitosan modified nanocarriers in breast cancer.Int. J. Biol. Macromol.202219452153810.1016/j.ijbiomac.2021.11.095 34822820
    [Google Scholar]
  52. MitraS. GaurU. GhoshP.C. MaitraA.N. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier.J. Control. Release2001741-331732310.1016/S0168‑3659(01)00342‑X 11489513
    [Google Scholar]
  53. NamH.Y. KwonS.M. ChungH. LeeS.Y. KwonS.H. JeonH. KimY. ParkJ.H. KimJ. HerS. OhY.K. KwonI.C. KimK. JeongS.Y. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles.J. Control. Release2009135325926710.1016/j.jconrel.2009.01.018 19331853
    [Google Scholar]
  54. AnithaA. DeepaganV.G. Divya RaniV.V. MenonD. NairS.V. JayakumarR. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles.Carbohydr. Polym.20118431158116410.1016/j.carbpol.2011.01.005
    [Google Scholar]
  55. MinK.H. ParkK. KimY.S. BaeS.M. LeeS. JoH.G. ParkR.W. KimI.S. JeongS.Y. KimK. KwonI.C. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy.J. Control. Release2008127320821810.1016/j.jconrel.2008.01.013 18336946
    [Google Scholar]
  56. KimJ.H. KimY.S. ParkK. LeeS. NamH.Y. MinK.H. JoH.G. ParkJ.H. ChoiK. JeongS.Y. ParkR.W. KimI.S. KimK. KwonI.C. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice.J. Control. Release20081271414910.1016/j.jconrel.2007.12.014 18234388
    [Google Scholar]
  57. KimK. KimJ.H. ParkH. KimY.S. ParkK. NamH. LeeS. ParkJ.H. ParkR.W. KimI.S. ChoiK. KimS.Y. ParkK. KwonI.C. Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring.J. Control. Release2010146221922710.1016/j.jconrel.2010.04.004 20403397
    [Google Scholar]
  58. LiuZ. LvD. LiuS. GongJ. WangD. XiongM. ChenX. XiangR. TanX. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: Effect against breast cancer in mice.PLoS One201384e6019010.1371/journal.pone.0060190 23577091
    [Google Scholar]
  59. UnsoyG. YalcinS. KhodadustR. GunduzG. GunduzU. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications.J. Nanopart. Res.2012141196410.1007/s11051‑012‑0964‑8
    [Google Scholar]
  60. HwangH.Y. KimI.S. KwonI.C. KimY.H. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles.J. Control. Release20081281233110.1016/j.jconrel.2008.02.003 18374444
    [Google Scholar]
  61. UnsoyG. KhodadustR. YalcinS. MutluP. GunduzU. Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for ph responsive targeted drug delivery.Eur. J. Pharm. Sci.20146224325010.1016/j.ejps.2014.05.021 24931189
    [Google Scholar]
  62. AfshariA.R. SanatiM. MollazadehH. KesharwaniP. JohnstonT.P. SahebkarA. Nanoparticle-based drug delivery systems in cancer: A focus on inflammatory pathways.Semin. Cancer Biol.202286Pt 286087210.1016/j.semcancer.2022.01.008 35115226
    [Google Scholar]
  63. FerreiraN.N. GranjaS. BoniF.I. FerreiraL.M.B. ReisR.M. BaltazarF. GremiãoM.P.D. A novel strategy for glioblastoma treatment combining alpha-cyano-4-hydroxycinnamic acid with cetuximab using nanotechnology-based delivery systems.Drug Deliv. Transl. Res.202010359460910.1007/s13346‑020‑00713‑8 31981140
    [Google Scholar]
  64. SarvariP. SarvariP. Advances in nanoparticle-based drug delivery in cancer treatment.Glob. Transl. Med.202322039410.36922/gtm.0394
    [Google Scholar]
  65. ElumalaiK. SrinivasanS. ShanmugamA. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.Biomed Technol2024510912210.1016/j.bmt.2023.09.001
    [Google Scholar]
  66. LiuH. ZhuX. WeiY. SongC. WangY. Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems.Biomed. Pharmacother.202315711406510.1016/j.biopha.2022.114065 36481408
    [Google Scholar]
  67. AjithS. AlmomaniF. ElhissiA. HusseiniG.A. Nanoparticle-based materials in anticancer drug delivery: Current and future prospects.Heliyon2023911e2122710.1016/j.heliyon.2023.e21227 37954330
    [Google Scholar]
  68. ZhengY. LiZ. ChenH. GaoY. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy.Eur. J. Pharm. Sci.202014410521310.1016/j.ejps.2020.105213 31926941
    [Google Scholar]
  69. Al BostamiR.D. AbuwatfaW.H. HusseiniG.A. Recent advances in nanoparticle-based co-delivery systems for cancer therapy.Nanomaterials (Basel)20221215267210.3390/nano12152672 35957103
    [Google Scholar]
  70. AnithaA. DeepaN. ChennazhiK.P. LakshmananV.K. JayakumarR. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment.Biochim. Biophys. Acta, Gen. Subj.2014184092730274310.1016/j.bbagen.2014.06.004 24946270
    [Google Scholar]
  71. LiC.F. LiY.C. ChenL.B. WangY. SunL.B. Doxorubicin-loaded Eudragit-coated chitosan nanoparticles in the treatment of colon cancers.J. Nanosci. Nanotechnol.20161676773678010.1166/jnn.2016.11374
    [Google Scholar]
  72. BayatF. PourmadadiM. EshaghiM.M. YazdianF. RashediH. Improving release profile and anticancer activity of 5-fluorouracil for breast cancer therapy using a double drug delivery system: chitosan/agarose/γ-alumina nanocomposite@double emulsion.J. Clust Sci.2023342565257710.1007/s10876‑023‑02405‑y
    [Google Scholar]
  73. RajaeiM. RashediH. YazdianF. Navaei-NigjehM. RahdarA. Díez-PascualA.M. Chitosan/agarose/graphene oxide nanohydrogel as drug delivery system of 5-fluorouracil in breast cancer therapy.J. Drug Deliv. Sci. Technol.20238210430710.1016/j.jddst.2023.104307
    [Google Scholar]
  74. UllahS. AzadA.K. NawazA. ShahK.U. IqbalM. AlbadraniG.M. Al-JoufiF.A. SayedA.A. Abdel-DaimM.M. 5-fluorouracil-loaded folic-acid-fabricated chitosan nanoparticles for site-targeted drug delivery cargo.Polymers (Basel)20221410201010.3390/polym14102010 35631891
    [Google Scholar]
  75. YusefiM. ChanH.Y. TeowS.Y. KiaP. Lee-Kiun SoonM. SidikN.A.B.C. ShameliK. 5-fluorouracil encapsulated chitosan-cellulose fiber bionanocomposites: Synthesis, characterization and in vitro analysis towards colorectal cancer cells.Nanomaterials (Basel)2021117169110.3390/nano11071691 34203241
    [Google Scholar]
  76. JainA. JainR. JainS. KhatikR. Veer KohliD. Minicapsules encapsulating nanoparticles for targeting, apoptosis induction and treatment of colon cancer.Artif. Cells Nanomed. Biotechnol.20194711085109310.1080/21691401.2019.1593848 30942626
    [Google Scholar]
  77. KaruppaiahA. BabuD. SelvarajD. NatrajanT. RajanR. GautamM. RanganathanH. SiramK. NesamonyJ. SankarV. Building and behavior of a pH-stimuli responsive chitosan nanoparticles loaded with folic acid conjugated gemcitabine silver colloids in MDA-MB-453 metastatic breast cancer cell line and pharmacokinetics in rats.Eur. J. Pharm. Sci.2021165June10593810.1016/j.ejps.2021.105938 34256103
    [Google Scholar]
  78. WangY. YuH. WangS. GaiC. CuiX. XuZ. LiW. ZhangW. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel.Mater Sci Eng C Mater Biol Appl202111911144210.1016/j.msec.2020.111442
    [Google Scholar]
  79. SmithaK.T. AnithaA. FuruikeT. TamuraH. NairS.V. JayakumarR. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery.Colloids Surf. B Biointerfaces201310424525310.1016/j.colsurfb.2012.11.031 23337120
    [Google Scholar]
  80. GrigolettoA. MartinezG. GabbiaD. TedeschiniT. ScaffidiM. MartinS.D. PasutG. Folic acid-targeted paclitaxel-polymer conjugates exert selective cytotoxicity and modulate invasiveness of colon cancer cells.Pharmaceutics202113792910.3390/pharmaceutics13070929 34201494
    [Google Scholar]
  81. BhaskaranN.A. JittaS.R.; Salwa,; Kumar, L.; Sharma, P.; Kulkarni, O.P.; Hari, G.; Gourishetti, K.; Verma, R.; Birangal, S.R.; Bhaskar, K.V. Folic acid-chitosan functionalized polymeric nanocarriers to treat colon cancer.Int. J. Biol. Macromol.2023253Pt 512714210.1016/j.ijbiomac.2023.127142 37797853
    [Google Scholar]
  82. JohnA.A. JaganathanS.K. AyyarM. KrishnasamyN.P. RajasekarR. SupriyantoE. Folic acid decorated chitosan nanoparticles and its derivatives for the delivery of drugs and genes to cancer cells.Curr. Sci.201710.18520/cs/v113/i08/1530‑1552
    [Google Scholar]
  83. ChenJ. HuangL. LaiH. LuC. FangM. ZhangQ. LuoX. Methotrexate-loaded PEGylated chitosan nanoparticles: Synthesis, characterization, and in vitro and in vivo antitumoral activity.Mol. Pharm.20141172213222310.1021/mp400269z 24164427
    [Google Scholar]
  84. TrapaniA. DenoraN. IacobellisG. SitterbergJ. BakowskyU. KisselT. Methotrexate-loaded chitosan- and glycol chitosan-based nanoparticles: A promising strategy for the administration of the anticancer drug to brain tumors.AAPS PharmSciTech20111241302131110.1208/s12249‑011‑9695‑x 21948322
    [Google Scholar]
  85. CiroY. RojasJ. Di VirgilioA.L. AlhajjM.J. CarabaliG.A. SalamancaC.H. Production, physicochemical characterization, and anticancer activity of methotrexate-loaded phytic acid-chitosan nanoparticles on HT-29 human colon adenocarcinoma cells.Carbohydr. Polym.202024311643610.1016/j.carbpol.2020.116436 32532389
    [Google Scholar]
  86. CaoX.X. LiuS-L. LuJ-S. ZhangZ-W. WangG. ChenQ. LinN. Chitosan coated biocompatible zeolitic imidazolate framework ZIF-90 for targeted delivery of anticancer drug methotrexate.J. Solid State Chem.202130012225910.1016/j.jssc.2021.122259
    [Google Scholar]
  87. NazariM. SafaeijavanR. Vaziri YazdiA. MoniriE. Investigation of the adsorption and release kinetics of the anticancer drug, methotrexate, from chitosan nanocapsules modified by caffeic acid and oleic acid.Inorg. Chem. Commun.202315311076910.1016/j.inoche.2023.110769
    [Google Scholar]
  88. EsimO. OztunaA. SarperM. HascicekC. Chitosan-coated bovine serum albumin nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics.J. Drug Deliv. Sci. Technol.20227710390610.1016/j.jddst.2022.103906
    [Google Scholar]
  89. SongW. SuX. GregoryD.A. LiW. CaiZ. ZhaoX. Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells.Nanomaterials (Basel)201881190710.3390/nano8110907 30400634
    [Google Scholar]
  90. WangJ. LiuL.G. JiaoW.Q. YangH. LiuJ. LiuD. Phenylboronic acid-conjugated chitosan nanoparticles for high loading and efficient delivery of curcumin.Carbohydr Polym202125611749710.1016/j.carbpol.2020.117497
    [Google Scholar]
  91. KandileN.G. MohamedH.M. NasrA.S. Novel hydrazinocurcumin derivative loaded chitosan, ZnO, and Au nanoparticles formulations for drug release and cell cytotoxicity.Int. J. Biol. Macromol.20201581216122610.1016/j.ijbiomac.2020.05.015 32387612
    [Google Scholar]
  92. SalehiR. Ebrahimi-HosseinzadehB. Hatamian-ZarmiA. SahraeianR. AlvandiH. Mokhtari-HosseiniZ.B. AnsariE. In situ forming thermosensitive vaginal hydrogels containing curcumin-loaded polymeric nanoparticles with their sustained release: Rheological measurements and cytotoxicity effect on cervix cancer cell.Iran. Polym. J.202231121495151010.1007/s13726‑022‑01093‑1
    [Google Scholar]
  93. PushpalathaR. SelvamuthukumarS. KilimozhiD. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity.J. Drug Deliv. Sci. Technol.201845455310.1016/j.jddst.2018.03.004
    [Google Scholar]
  94. PooresmaeilM. NamaziH. Facile preparation of pH-sensitive chitosan microspheres for delivery of curcumin; characterization, drug release kinetics and evaluation of anticancer activity.Int. J. Biol. Macromol.202016250151110.1016/j.ijbiomac.2020.06.183 32574741
    [Google Scholar]
  95. HaseliS. PourmadadiM. SamadiA. YazdianF. AbdoussM. RashediH. Navaei-NigjehM. A novel pH-responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan based nanocarrier: Emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction.Biotechnol. Prog.2022385e328010.1002/btpr.3280 35678755
    [Google Scholar]
  96. JardimK.V. SiqueiraJ.L.N. BáoS.N. SousaM.H. ParizeA.L. The role of the lecithin addition in the properties and cytotoxic activity of chitosan and chondroitin sulfate nanoparticles containing curcumin.Carbohydr. Polym.202022711535110.1016/j.carbpol.2019.115351 31590861
    [Google Scholar]
  97. HerdianaY. WathoniN. ShamsuddinS. JoniI.M. MuchtaridiM. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment.Polymers (Basel)20211311171710.3390/polym13111717 34074020
    [Google Scholar]
  98. Yee KuenC. MasarudinM.J. Chitosan nanoparticle-based system: A new insight into the promising controlled release system for lung cancer treatment.Molecules202227247310.3390/molecules27020473 35056788
    [Google Scholar]
  99. İnceİ. YıldırımY. GülerG. MedineE.İ. BallıcaG. KuşdemirB.C. GökerE. Synthesis and characterization of folic acid-chitosan nanoparticles loaded with thymoquinone to target ovarian cancer cells.J. Radioanal. Nucl. Chem.20203241718510.1007/s10967‑020‑07058‑z
    [Google Scholar]
  100. SahebM. FereydouniN. NematiS. BarretoG.E. JohnstonT.P. SahebkarA. Chitosan‐based delivery systems for curcumin: A review of pharmacodynamic and pharmacokinetic aspects.J. Cell. Physiol.20192348123251234010.1002/jcp.28024 30697728
    [Google Scholar]
  101. HassanH.A.F.M. AliA.I. ElDesawyE.M. ElShafeeyA.H. Pharmacokinetic and pharmacodynamic evaluation of gemifloxacin chitosan nanoparticles as an antibacterial ocular dosage form.J. Pharm. Sci.202211151497150810.1016/j.xphs.2021.12.016 34929155
    [Google Scholar]
  102. PuluhulawaL.E. JoniI.M. ElaminK.M. MohammedA.F.A. MuchtaridiM. WathoniN. Chitosan–hyaluronic acid nanoparticles for active targeting in cancer therapy.Polymers (Basel)20221416341010.3390/polym14163410 36015667
    [Google Scholar]
  103. XiaD. WangF. PanS. YuanS. LiuY. XuY. Redox/ph-responsive biodegradable thiol-hyaluronic acid/chitosan charge-reversal nanocarriers for triggered drug release.Polymers (Basel)20211321378510.3390/polym13213785 34771342
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096330684240927094018
Loading
/content/journals/ccdt/10.2174/0115680096330684240927094018
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test