Current Analytical Chemistry - Volume 22, Issue 1, 2026
Volume 22, Issue 1, 2026
-
-
Bempedoic Acid's Chemistry, Pharmacological Characteristics and Bioanalytical Techniques: An Updated Review
More LessBackgroundElevated blood cholesterol has been established as a major risk factor for atherosclerotic cardiovascular disease (ASCVD). Adults with hyperlipidemia have a significantly increased risk of developing cardiovascular diseases (CVD). First-line treatments for hyperlipidemia include statins, which help raise HDL-C levels in cases of severe and familial hypercholesterolemia and decrease LDL-C and TG levels. Numerous adverse effects on muscles have been associated with statins, such as asymptomatic elevations in blood creatine kinase activity and potentially fatal rhabdomyolysis. Non-statin drugs are advised for people whose very high cardiovascular risk or heterozygous familial hypercholesterolemia make statin therapy insufficient. A novel lipid-lowering medication with a distinct mode of action is bempedoic acid.
Elevated blood cholesterol is a significant risk factor for atherosclerotic cardiovascular disease (ASCVD). Individuals with hyperlipidemia are at a higher risk for developing cardiovascular diseases. Statins are the primary treatment for hyperlipidemia, raising HDL-C levels and lowering LDL-C and TG levels. However, statins can adversely affect muscles, including muscle-related complications like increased blood creatine kinase activity and rhabdomyolysis. Therefore, non-statin drugs may be recommended for individuals. Bempedoic acid is a brand-new, first-in-class, oral small molecule that inhibits cholesterol manufacturing like statins, consequently reducing low-density lipoprotein cholesterol (LDL-C) through activating LDL receptors.
MethodsThis study offers helpful information on how to utilize bempedoic acid to decrease LDL-C, as well as recommendations for which individuals could benefit and safety monitoring tips during therapy. A novel family of drugs called bempedoic acid is identified as a prodrug that becomes bempedoyl-CoA in the liver via an enzyme called very longchain consisting of acyl-CoA synthetase 1. Bempedoic acid can control cholesterol metabolism. Low-density lipoprotein cholesterol levels appeared to be dramatically reduced by bempedoic acid, according to clinical investigations. The toleration of bempedoic acid was good.
ResultsA cardiovascular outcomes trial is now evaluating bempedoic acid to determine its impact on major cardiovascular events in patients with or at high risk for cardiovascular disease and statin intolerance.
ConclusionThis review describes the chemistry, mechanism of action, pharmacokinetics, analytical potential, and safety of bempedoic acid. Bempedoic acid is an effective and often well-tolerated drug used to further reduce LDL-C levels in patients taking the maximum dosage of tolerated statins or to control LDL-C levels in persons who can not take statins. The results of the CLEAR (Cholestrol Lowering via bempedoic acid, an ACL inhibitory Regimen) Outcomes research, which is looking into whether bempedoic acid might reduce the frequency of serious cardiovascular events, are expected in 2025.
-
-
-
Fabrication of Surface-Enhanced Raman Scattering (SERS) Substrates in Analytical Science by Natural-inspired Materials: A Review
More LessAuthors: Kai Li, Lan Zhang, Le Wang, Liqiang Guo and Yajing LiSurface-Enhanced Raman Scattering (SERS) spectroscopy, as a novel rapid detection technology, offers molecular fingerprinting capabilities that achieve trace-level detection. The key to optimizing SERS sensitivity and reliability lies in the precise control of the nanostructures of SERS substrates. Nature, through billions of years of evolution, has served as a masterful creator, developing organisms with remarkable abilities based on micro/nanostructures, such as the superhydrophobicity of lotus leaves and the strong adhesive forces of gecko feet. This review categorizes the recent developments in SERS substrates inspired by natural materials into three main types: plant-based, animal-based, and virus-based. Each category is explored in detail, describing how their unique nanoarchitectures inspire the development of highly sensitive SERS substrates, along with their fabrication methods and applications in analytical science. Additionally, the review identifies current challenges, such as the uniformity and scalability of naturally inspired SERS substrates and suggests future directions, including the integration of hybrid biomimetic structures and advanced manufacturing techniques. By fostering a deeper understanding of these nature-inspired materials, we aim to enhance the practical application of SERS in analytical science in the future.
-
-
-
Identification of Volatile Organic Compounds (Distinct Biomarkers) Emitted by Cancer Cells Using Gas Chromatography-mass Spectrometry – A Review
More LessAuthors: Surendar Balu and Ashok K. SundramoorthyThe utilization of Gas Chromatography-Mass Spectrometry (GC-MS) for the detection of Volatile Organic Compounds (VOCs) as potential biomarkers in cancer diagnostics is an evolving and promising field. This review outlines current exploratory and pilot studies that lay a fundamental groundwork for future research. Due to the complexity of the fecal and respiratory volatilome, influenced by a myriad of biological and environmental factors, it is crucial to expand research demographics to enhance data robustness and ensure the applicability of findings across diverse populations. We have also, herein, highlighted the dual capability of VOC analysis to detect cancer and differentiate between its stages, which is vital for customizing patient treatment plans and monitoring therapeutic efficacy. Furthermore, establishing quantifiable thresholds for VOC concentrations is essential for their clinical adoption as reliable indicators of cancer. The integration of GC-MS with machine learning and Artificial Intelligence (AI) could be useful for comprehensive metabolic profiles and facilitating the development of non-invasive and real-time diagnostic tools. The adoption of multi-omics approach promises a deeper understanding of cancer biology, potentially leading to personalized medicine and strategies finely tuned to individual molecular profiles. Hence, the research on VOCs as cancer biomarkers is set to offer transformative advancements in diagnostic technologies, ultimately improving patient outcomes through tailored therapeutic interventions.
-
-
-
Acoustic-assisted Fabrication, Characterization, and Photocatalytic Application of Ni2O3/NiO/rGO Nanocomposites
More LessAuthors: Islam Gomaa, Fatama Gamal, Maryam G. Elmahgary, Medhat A. Ibrahim and Nasser Mohammed HosnyIntroductionThis study introduces an innovative two-step approach to fabricate a high-performance Ni2O3/NiO/rGO nanocomposite photocatalyst. The process synergistically combines solvothermal precursor synthesis with calcination and high-energy ultrasonic irradiation, enabling the in-situ formation of a thin Ni2O3 layer on NiO quasi-sphere nanoparticles anchored to a reduced graphene oxide (rGO) matrix.
MethodsThe incorporation of rGO significantly enhances charge separation, resulting in a dramatic increase in active surface area from 17.1 m2/g to 131 m2/g, and a substantial improvement in the photocatalytic degradation of the resilient Fluorescein dye—achieving an 81% degradation rate under UV light, compared to 36% with pristine NiO.
ResultsComprehensive characterization, including FTIR, XRD, and XPS analyses, confirmed the NiO-Ni2O3 interface transformation, successful reduction of graphene oxide, and critical interactions between NiO and Ni2O3.
ConclusionThis study highlights the promising potential of the Ni2O3/NiO/rGO nanocomposite for environmental remediation, particularly in the degradation of persistent organic pollutants.
-
-
-
Isolation, Development and Validation of Chromatographic Methods for the Estimation of Linoleic Acid from Different Parts of Euphorbia neriifolia Linn.
More LessAuthors: Priya Chaudhary, Devendra Singh, Mukesh Meena and Pracheta JanmedaObjectivesThis is the first report on the development and validation of thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC)-densitometric methods for the identification of linoleic acid (LA) in petroleum ether extract (PEE) of Euphorbia neriifolia (EN) stem (ST), latex (LX), and bark (BA).
MethodologyChromatographic analyses were performed on silica gel-G and silica gel 60 F254 plates.
ResultsThe chromatographic analyses revealed better spots and well-separated peaks of LA with retention factor (Rf) values at 0.54 (ST), 0.40 (LX), and 0.64 (BA), respectively. The linearity of the calibration curve ranges from 10-50 ng/spot (ST), 10-100 ng/spot (LX), and 50-200 ng/spot (BA). The proposed method was characterized by better accuracy, better robustness, and good precision, ranging from 0.173 to 0.372% (intra-day) and 0.185 to 0.205% (inter-day). The value of the limit of detection and quantification equal to 1.04 and 3.16 ng/spot in ST, 0.87 and 2.64 ng/spot in LX, and 0.177 and 0.53 ng/spot in BA determined the sensitivity of the method. In the obtained chromatogram, no peak was observed other than the LA which determined the specificity of the method. The % RSD of < 2% after periods of 12, 24, 36, 48, and 72 h determined the stability of standard LA.
ConclusionThus, the fingerprinting method is valuable in determining the adulterants and in routine quality control of formulations and herbal drugs.
-
-
-
A Method to Determine Metoclopramide Hydrochloride in Oral Dosage Forms by Micellar Liquid Chromatography
More LessBackgroundMetoclopramide is a widely prescribed antiemetic drug. Its analysis in pharmaceutical formulations often involves procedures using high amounts of toxic chemicals.
ObjectiveA method based on micellar liquid chromatography to determine metoclopramide hydrochloride in several oral dosage forms has been developed.
MethodsThe drug was resolved from matrix compounds within 6 min using a C18 column with isocratic elution at 1 mL/min utilizing a solution of 0.10 mol/L sodium dodecyl sulfate – 6% 1-pentanol phosphate buffered at pH 7 as mobile phase, and detection by absorbance at 210 nm. Samples were dissolved or diluted in the mobile phase and directly injected; thus, only one solution had to be prepared for the entire procedure. Besides, it contained mainly harmless chemicals and a minimal amount of organic solvent.
ResultsThe procedure was validated by the International Council of Harmonization guidelines and the results were: specificity, calibration range (0.5 – 5.0 mg/L), linearity (r2 > 0.9990), trueness (98.1 – 100.3%), precision (< 0.7%), robustness, carry-over effect, and system suitability. It was used to analyze commercial samples. Otherwise, it was found the influence of the surfactant on elution strength was nearly three times stronger than that of 1-pentanol.
ConclusionThe procedure was reliable, easy-to-conduct, safe, eco-friendly, short-time, widely available and highly sample-throughput, and then useful for routine analysis of metoclopramide-based dosage forms in pharmaceutical quality control.
-
-
-
Spectrophotometric Determination of 4-n-butylresorcinol in Cosmetics by Decolorization of Oxidized 3,3',5,5'-tetramethylbenzidine
More LessAuthors: Si Chen, Yiming Nie, Qing Liu and Fang ChenBackground4-n-butylresorcinol (4nBR) was widely used in the treatment of chloasma and skin whitening cosmetics. As a decolorizing agent, it can effectively control the activity of tyrosinase. Market regulatory authorities require truthful labeling of ingredients in cosmetics. Therefore, the quantitative determination of 4nBR is of great practical significance.
HypothesisAt present, the main detection method of 4nBR reported in the literature is HPLC. Compared with the HPLC method, optical methods offer several advantages, including low cost, and simplicity, which make them suitable for on-field detection applications. A convenient spectrophotometric method was established for 4nBR detection.
MethodsFe3+ can oxidize the common colorless chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxTMB. Based on the fact that 4-n-butyl resorcinol (4nBR) can reduce oxTMB, a convenient and rapid spectrophotometric method for the determination of 4nBR was proposed.
ResultsUnder the optimum conditions, the absorbance at 652 nm has a good linear relationship with the concentration of 4nBR in the range of 1.2 - 16 μM. The linear equation for the detection of 4nBR was ΔA = 0.0546 c (μM) - 0.0026 (r2=0.9962), and the detection limit was 0.33 μM. The accuracy of this method is comparable to that of HPLC.
ConclusionThis method has good selectivity for 4nBR and good anti-interference ability for common additives in cosmetics. The proposed method can be applied to the determination of 4nBR in thereal samples.
-
-
-
Tetrafunctionalized Azocalix[4]resorcinarene Dye: A Chromogenic Supramolecule Used for the Selective Liquid-Liquid Extraction and Spectrophotometric Determination of Cu(II)
More LessAuthors: Parin H. Kanaiya and Vinod K. JainBackgroundThe detection and extraction of trace metal ions, particularly copper(II), are critical for environmental monitoring and industrial processes. Calixresorcinarene, with its unique cavity structure, offers excellent platforms for designing selective chemosensors and extractants. Functionalization of calixresorcinarene with azo groups can enhance their chromogenic properties, enabling both extraction and detection in a single step.
ObjectiveThis study aimed to evaluate its (Azocalix[4]resorcinaren) efficacy as a selective chemosensor for the liquid-liquid extraction and spectrophotometric determination of Cu(II) ions.
Methods: Application in Extraction and DetectionThe ability of the dye to selectively extract Cu(II) ions from aqueous solutions was investigated via liquid-liquid extraction experiments. The dye-Cu(II) complex formation was monitored by UV-Vis spectrophotometry, with systematic optimization of experimental conditions, including pH, solvent system, and extraction duration.
ResultsThe synthesized azocalix[4]resorcinarene dye exhibited a pronounced selectivity towards Cu(II) ions, forming a stable, colored complex. The complexation induced a distinct bathochromic shift in the absorption spectrum, allowing for precise spectrophotometric detection. Optimal extraction was achieved at a specific pH and solvent combination, with the method demonstrating a low detection limit and high sensitivity. The dye showed minimal interference from other metal ions, confirming its selectivity for Cu(II).
ConclusionThe tetrafunctionalized azocalix[4]resorcinarene dye is a highly effective chromogenic agent for the selective extraction and detection of Cu(II) ions. Its robust performance in both extraction efficiency and spectrophotometric detection underscores its potential utility in environmental analysis and industrial applications where trace metal detection is crucial.
-
-
-
Effective Classification of Citrus medica L. Var. Sarcodactylis from Different Origins by ICP-MS
More LessAuthors: Siyu Zhao, Shirong Xiang, Runyu Tian, Xiaobin Zhang, Maojun Ni, Guobiao Dai, Weizhen Fang and Hezhong JiangObjectiveThe use of microwave digestion coupled with inductively coupled plasma mass spectrometry (ICP-MS) to measure the content of metal elements in Citrus medica L. var. Sarcodactylis from different regions serves as a reference for tracing its origin and provides a basis for quality control and safety assessment of its heavy metal content.
MethodsAfter microwave digestion of Citrus medica samples, metal element contents from different regions were determined using ICP-MS, with methodological investigations conducted. A diverse statistical analysis was performed to explore the relationship between geographical distribution of Citrus medica and metal element contents. Additionally, safety assessments were conducted using single factor pollution index and Nemerow comprehensive pollution index methods for several heavy metal elements.
ResultsThe contents of elements such as Mg, Fe, and Al are relatively high in Citrus medica. Characteristic differences in elements like Al, Ni, Mg, Cr, Sr, and Zn among samples from different regions are evident. Principal component analysis (PCA) indicates that samples from Sichuan Province can be clustered by origin. Elements including Ni, Co, Al, As, Cu, and Fe may contribute significantly to distinguishing Citrus medica from different regions. Pollution assessments for several heavy metals conclude that Citrus medica samples are safe and clean.
ConclusionThe ICP-MS method is rapid and accurate, capable of simultaneous measurement of multiple metal elements in Citrus medica. Combined with multivariate statistical analysis, it facilitates origin tracing studies of Citrus medica from various regions, particularly enabling effective differentiation of those from Sichuan Province.
-
-
-
Development of a Smartphone-based Method for Measuring the Antioxidant Efficacy of Commercial Beverages
More LessAuthors: Gyeong Hee Kim, Chang Soon Huh and Moon-Moo KimBackgroundReactive oxygen species (ROS) in biological systems can damage cells by oxidizing membrane lipids, proteins, DNA, and enzymes. Antioxidants are essential in mitigating these effects and are extensively used in nutraceuticals, functional foods, and dietary supplements. They play a crucial role in the neutralization of reactive oxygen species (ROS), thereby preventing cellular damage, DNA mutations, and the development of diseases such as cancer, diabetes, and coronary heart disease. To effectively mitigate these diseases, it is essential to develop rapid and efficient methodologies for assessing antioxidant activity.
MethodsThe smartphone colorimetric biosensor system and DPPH radical scavenging assay were developed and employed to determine the antioxidant activity of various beverages.
ResultsA comparative analysis of the DPPH radical scavenging assay for beverages was conducted using a UV-Vis spectrophotometer (R2=0.9907) and a smartphone-based colorimetric biosensor application (R2=0.9929). The results demonstrated a strong correlation between the two methods across all beverages tested. Specifically, the antioxidant capacities were 15% for orange juice, 21% for Miero Fiber, and 12% for Coca-Cola. The linear correlation across different concentrations for all beverages showed an R2 value of 0.9929, validating the accuracy and effectiveness of the smartphone-based detection system.
ConclusionThis study highlights the practicality of using smartphone-based technology for detecting antioxidants and opens avenues for more accessible and faster health diagnostics. By utilizing smartphone biosensor technology, the accessibility of antioxidant assessments is enhanced, further promoting the adoption of preventative health strategies.
-
-
-
Identification, Isolation, Structure Characterization, and Chromatographic Separation of a New Highly Analogous Impurity of the Ubrogepant
More LessAuthors: Kumarswamy Ummiti and Nagavardhana Reddy VangaBackgroundUbrogepant is a regulated peptide receptor antagonist associated with the calcitonin gene, granted approval in the United States for the specific treatment of migraine headaches.
ObjectivesAn impurity found in the alkali hydrolysis of drug dosage forms has a structure very similar to that of ubrogepant. This research aims to characterize this analogous impurity utilizing NMR and LC-MS spectroscopy tools. Moreover, it is critical to develop an extremely sensitive and superior resolution analytical procedure for identifying and determining the amount of analogous impurity in pharmaceutical products.
MethodsThe ubrogepant impurity was identified using an optimized chromatographic method that relies on reversed-phase HPLC with UV detection. This technique utilized a charged surface hybrid (CSH) technology column operating in gradient elution mode. A mixture of A-channel (0.1% trifluoroacetic acid) and B-channel (acetonitrile and water, 80:20% v/v) constituted the eluent. The analogous impurity was isolated through fraction collection, purified using flash chromatography, and characterized using NMR (1D and 2D) and LC-MS.
ResultsThe analogous impurity was successfully separated from the ubrogepant peak with a resolution above 2.0. The concentration of the impurity was approximately 10% compared to the ubrogepant peak after alkaline stressing at room temperature for 30 minutes. NMR (1D 13C NMR and 1H NMR, 2D HMBC, HSQC, NOESY, and COSY) and LC-MS analysis characterized the ubrogepant impurity, revealing it to be an epimer of ubrogepant. The developed approach was highly sensitive, allowing for the quantification of the ubrogepant impurity even at a concentration of 0.2 µg/mL.
ConclusionThe approach demonstrated a remarkable degree of precision, linearity, specificity, and accuracy. This new impurity deserves special attention because of its striking similarity to the active ingredient, ubrogepant.
-
-
-
In vitro and In silico Degradation Study Applied to the Carbapenems Meropenem and Imipenem
More LessBackgroundImipenem and meropenem are the carbapenem antibiotics most commonly used for the treatment of severe bacterial infections. Their stability behavior, which focuses on degradation products, has been continually reported. Strategies based on in silico prediction have been explored as an additional tool that provides additional information about drug stability.
MethodsA comparison between experimental and predictive data, with a focus on stability and degradation products, was performed by examining the literature data and the in silico results. The experimental data were obtained from the literature throughdatabase searches. The in silico degradation prediction was performed through the software Zeneth 9.0, which strictly focused on degradation products. With a focus on stability, degraded samples of meropenem and imipenem were investigated in terms of biological safety, applying an in vitro cytotoxicity assay by MTT reduction and neutral red uptake.
ResultsFrom the literature survey, it was found that 11 major degradation products for both carbapenems mainly formed from modifications on the b-lactam ring and dimerization. By using the Zeneth software, a large number of substances were predicted, considering the probability of occurring and the selected stressors. Even in low numbers, the comparative results indicated similarity in 4 degradation products, with high probability. About cytotoxicity, the cell viability by MTT assay was significantly reduced for imipenem samples degraded during 4 hours. For meropenem, applying neutral red uptake assay, a reduction of cell viability was observed in samples stored for 4 hours.
ConclusionDrug stability assay includes different approaches, which can be used favorably from the interaction between all areas of interest, including experimental practice and predictive modelling assay.
-
-
-
Prediction of Chemistry of Cocrystallization and its Realistic Impact on the Enhancement of Solubility and Dissolution of Telmisartan: Molecular mechanics, ab initio and Descriptor Analysis
More LessAuthors: Santanu Chakraborty, Manami Dhibar, Souvik Basak and Mohammad A.S. AbourehabBackgroundCocrystal engineering of Telmisartan (TEL, a poorly soluble antihypertensive agent) has been undertaken to improve its solubility for the last few years. However, apart from a few handpicked attempts, none of the attempts have been able to improve its solubility by more than 3-5 fold and augment its dissolution by more than 80%.
MethodsAddressing these shortcomings, herein, we have designed a novel Telmisartan-maleic acid (TM) cocrystal first by rational modelling with solvent-induced molecular mechanics (SIMM), ab initio based system optimization, descriptor analysis, and finally translating to cocrystals by wet grinding-gradient solvent evaporation method.
ResultsModelling revealed that binary solvent compared to single solvent imparted critical dynamics to seeding the co-crystallite and its structural archipelago. From single solvent to binary solvent, hydrogen bonding to nucleophilic addition of the coformer/s to the central ring revealed a crucial role in assigning the system geometry. The molecular descriptor plot of the generated subsystems (optimized by HF-SCF/def2-SVP method) showed that telmisartan: maleic acid molar ratio <=1:2 under ionizable conditions bear optimum hydrophilicity/hydrophobicity balance. Tonto-guided energy calculation revealed O--H and H--H as the predominant interactions for the crystal packing.
ConclusionIn translational research, our designed TM cocrystal (molar ratio 1:1.5 to 1:2, binary solvent dynamics) exhibited solubility improvement by more than 9 fold in water and showed to release about 92.19% of drugs within 2h (120 min), which superseded the previous reports in this field so far.
-
-
-
Microwave-assisted Extraction and Quantification of Triterpene Acids from Davilla rugosa and Eriope blanchetii
More LessAuthors: André B. Cunha, Jorge M. David, Silvio Cunha and Rauldenis A. F. SantosAimsThis study describes the development of methodologies for the isolation, identification, and quantification of betulinic, oleanolic, and ursolic acids in extracts from Eriope blanchetii (Lamiaceae) and Davilla rugosa (Dilleniaceae).
BackgroundBetulinic, oleanolic, and ursolic acids are compounds with biological activities and commercial and technological uses. Developing methodologies for their separation from natural sources are relevant once their synthesis is not easy.
ObjectivesDevelopment of conventional methodology for quantifying and isolating pure betulinic acid in chloroform extracts of D. rugosa stems and developing methods for obtaining and quantifying oleanolic, ursolic, and betulinic acids from organic extracts.
MethodsA complete validation “in-house” for the chromatographic method was performed, and different techniques of extraction – maceration under heating vs. microwave-assisted extraction (MAE) conditions were compared. Davilla rugosa stems were employed as the source of pure betulinic acid, and this compound was obtained in a reasonable yield (~ 2.4 x 10-2% dry weight).
ResultsChromatographic analysis of the E. blanchetii extracts indicates betulinic acid occurs in higher concentrations in the leaves (5.53% dry weight), followed by lower concentrations in other plant parts, together with two other triterpene acids. HPLC analysis of extracts obtained by MAE extractions and maceration of E. blanchetti indicated that MAE is more efficient than maceration under heating in relative yield. The HPLC-validated method was rightly selective and accurate, presenting good linearity (R2 = 0.9993), robustness, and recovery rate values with acceptable limits (LD = 5.9914; LQ = 18.1557; µg mL-1).
ConclusionMAE was the most efficient methodology than maceration under similar conditions. Furthermore, different parts of E. blanchetii and D. rugosa are affordable sources of bioactive betulinic acid.
-
Volumes & issues
-
Volume 22 (2026)
-
Volume 21 (2025)
-
Volume 20 (2024)
-
Volume 19 (2023)
-
Volume 18 (2022)
-
Volume 17 (2021)
-
Volume 16 (2020)
-
Volume 15 (2019)
-
Volume 14 (2018)
-
Volume 13 (2017)
-
Volume 12 (2016)
-
Volume 11 (2015)
-
Volume 10 (2014)
-
Volume 9 (2013)
-
Volume 8 (2012)
-
Volume 7 (2011)
-
Volume 6 (2010)
-
Volume 5 (2009)
-
Volume 4 (2008)
-
Volume 3 (2007)
-
Volume 2 (2006)
-
Volume 1 (2005)
Most Read This Month