Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Objectives

This is the first report on the development and validation of thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC)-densitometric methods for the identification of linoleic acid (LA) in petroleum ether extract (PEE) of (EN) stem (ST), latex (LX), and bark (BA).

Methodology

Chromatographic analyses were performed on silica gel-G and silica gel 60 F plates.

Results

The chromatographic analyses revealed better spots and well-separated peaks of LA with retention factor (R) values at 0.54 (ST), 0.40 (LX), and 0.64 (BA), respectively. The linearity of the calibration curve ranges from 10-50 ng/spot (ST), 10-100 ng/spot (LX), and 50-200 ng/spot (BA). The proposed method was characterized by better accuracy, better robustness, and good precision, ranging from 0.173 to 0.372% (intra-day) and 0.185 to 0.205% (inter-day). The value of the limit of detection and quantification equal to 1.04 and 3.16 ng/spot in ST, 0.87 and 2.64 ng/spot in LX, and 0.177 and 0.53 ng/spot in BA determined the sensitivity of the method. In the obtained chromatogram, no peak was observed other than the LA which determined the specificity of the method. The % RSD of < 2% after periods of 12, 24, 36, 48, and 72 h determined the stability of standard LA.

Conclusion

Thus, the fingerprinting method is valuable in determining the adulterants and in routine quality control of formulations and herbal drugs.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110337548241003080952
2024-10-11
2026-02-02
Loading full text...

Full text loading...

References

  1. SofoworaA. OgunbodedeE. OnayadeA. The role and place of medicinal plants in the strategies for disease prevention.Afr. J. Tradit. Complement. Altern. Med.201310521022910.4314/ajtcam.v10i5.2 24311829
    [Google Scholar]
  2. JoshiB. PandaS.K. JouneghaniR.S. LiuM. ParajuliN. LeyssenP. NeytsJ. LuytenW. Antibacterial, antifungal, antiviral, and antihelmintic activities of medicinal plants of Nepal selected based on ethnobotanical evidence.Evid. Based Complement. Alternat. Med.202020201104347110.1155/2020/1043471 32382275
    [Google Scholar]
  3. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  4. Sokoła-WysoczańskaE. WysoczańskiT. WagnerJ. CzyżK. BodkowskiR. LochyńskiS. Patkowska-SokołaB. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorder-A review.Nutrients20181010156110.3390/nu10101561 30347877
    [Google Scholar]
  5. WhelanJ. FritscheK. Linoleic Acid.Adv. Nutr.20134331131210.3945/an.113.003772 23674797
    [Google Scholar]
  6. KanlayavattanakulM. LourithN. Therapeutic agents and herbs in topical application for acne treatment.Int. J. Cosmet. Sci.201133428929710.1111/j.1468‑2494.2011.00647.x 21401650
    [Google Scholar]
  7. ChaudharyP. SinghD. SwapnilP. MeenaM. JanmedaP. Euphorbia neriifolia (Indian Spurge Tree): A plant of multiple biological and pharmacological activities.Sustainability (Basel)2023152122510.3390/su15021225
    [Google Scholar]
  8. SharmaV. Pracheta. Microscopic studies and preliminary pharmacognostical evaluation of Euphorbia neriifolia L. leaves.IJNPR201344348357
    [Google Scholar]
  9. PriyaC. PrachetaJ. Quantification of phytochemicals and in vitro antioxidant activities from various parts of Euphorbia neriifolia Linn.J. Appl. Biol. Biotechnol.2022100213314510.7324/JABB.2022.100217
    [Google Scholar]
  10. MaliP.Y. GoyalS. HPTLC densitometric quantification of kaempferol from leaves of Euphorbia neriifolia.Indian J. Pharm. Educ. Res.2020543ss586s59210.5530/ijper.54.3s.158
    [Google Scholar]
  11. ChaudharyP. JanmedaP. Sehund: Poison or medicine. Agric. Food.E-Newsl.202134254256
    [Google Scholar]
  12. TilburtJ. KaptchukT.J. Herbal medicine research and global health: an ethical analysis.Bull. World Health Organ.200886859459910.2471/BLT.07.042820 18797616
    [Google Scholar]
  13. SisodiyaD. ShrivastavaP. Qualitative and quantitative estimation of bioactive compounds of Euphorbia thymifolia L.AJPER2017633443
    [Google Scholar]
  14. BhargavaA. ShrivastavaP. TilwariA. HPTLC analysis of Fumaria parviflora (Lam.) methanolic extract of whole plant.Future J. Pharm. Sci.202171110.1186/s43094‑020‑00150‑x
    [Google Scholar]
  15. JainD. MeenaM. SinghD. JanmedaP. Isolation, development and validation of HPTLC method for the estimation of β-carotene from Gymnosporia senegalensis (Lam.).Loes. Plant Physiol. Biochem.202320110784310.1016/j.plaphy.2023.107843 37354729
    [Google Scholar]
  16. SharmaV. JanmedaP. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves.Arab. J. Chem.201710450951410.1016/j.arabjc.2014.08.019
    [Google Scholar]
  17. ChaudharyP. JanmedaP. Comparative pharmacognostical standardization of different parts of Euphorbia neriifolia Linn.Vegetos202236121022110.1007/s42535‑022‑00508‑x
    [Google Scholar]
  18. HarborneJ.B. Phytochemistry.LondonAcademic Press199389131
    [Google Scholar]
  19. KhandelwalK. Practical pharmacognosy, techniques and experiments.17th edPune, IndiaNirali Prakashan2007
    [Google Scholar]
  20. JainD. UpadhyayR. JainS. PrakashA. JanmedaP. TLC and HPTLC finger printing of Cyperus rotundus (Linn.). Lett. App.NanoBiosci.20211133861387010.33263/LIANBS113.38613870
    [Google Scholar]
  21. JainP.K. JainS. ChakP. SwarnkarS.K. SharmaS. PaliwalS. High-performance thin-layer chromatographic investigation of rutin in the leaves of Phoenix sylvestris in sequence with pharmacognostical and phytochemical evaluation.J. Planar Chromatogr. Mod. TLC202032313910.1556/1006.2019.32.1.4
    [Google Scholar]
  22. TonioloC. NicolettiM. MaggiF. VendittiA. HPTLC determination of chemical composition variability in raw materials used in botanicals.Nat. Prod. Res.201428211912610.1080/14786419.2013.852546 24219430
    [Google Scholar]
  23. NileS.H. ParkS.W. HPTLC densitometry method for simultaneous determination of flavonoids in selected medicinal plants.Front. Life Sci.2015819710310.1080/21553769.2014.969387
    [Google Scholar]
  24. KhanA.D. SinghM.K. LavhaleP.M. KaushikR. Phytochemical screening and HPTLC analysis of bio-active markers of ethanol extract of Indian bay leaves.J. Herbs Spices Med. Plants202329215616710.1080/10496475.2022.2117253
    [Google Scholar]
  25. International Conference on Harmonization (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use, Harmonised Triplicate Guideline on Validation of Analytical Procedures: Text and Methodology Q2 (R1), Complementary Guideline on Methodology incorporated by the ICH Steering Committee, IFPMA, Geneva.2005
    [Google Scholar]
  26. AdinS.N. GuptaI. AhadA. AqilM. MujeebM. A developed high-performance thin-layer chromatography method for the determination of baicalin in Oroxylum indicum L. and its antioxidant activity.J. Planar Chromatogr. Mod. TLC202235438339310.1007/s00764‑022‑00182‑4
    [Google Scholar]
  27. PatelN.G. PatelK.G. PatelK.V. GandhiT.R. Validated HPTLC method for quantification of Luteolin and Apigenin in Premna mucronata Ropxb.Verbenaceae. Adv. Pharmacol. Sci.201520151710.1155/2015/682365 26421008
    [Google Scholar]
  28. KawishS.M. QadirA. SaadS. BegS. JainG.K. AqilM. AlanaziA.M. KhanA.A. RashidM.A. RabR.A. AlmalkiW.H. AhmadF.J. A validated, rapid and cost-efficient HPTLC method for the quantification of gamma-linoleic acid in borage oil and evaluation of antioxidant activity.J. Chromatogr. Sci.202260436437110.1093/chromsci/bmab059 34080615
    [Google Scholar]
  29. GogoiJ. NakhuruK.S. PolicegoudraR.S. ChattopadhyayP. RaiA.K. VeerV. Isolation and characterization of bioactive components from Mirabilis jalapa L. radix.J. Tradit. Complement. Med.201661414710.1016/j.jtcme.2014.11.028 26870679
    [Google Scholar]
  30. ZhunZ. Han-WenY. Cai-YunP. Yu-QingJ. Xu-DongZ. BinL. Wen-BingS. Li-MinG. Shu-JinH. WeiW. Chang-XiaoL. ’ Wei, W.; Chang-Xiao, L. Qualitative and quantitative analysis of linoleic acid in Polygonati rhizoma.Digit. Chin. Med.20203318018710.1016/j.dcmed.2020.09.004
    [Google Scholar]
  31. LuX. YuH. MaQ. ShenS. DasU.N. Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction.Lipids Health Dis.20109110610.1186/1476‑511X‑9‑106 20868498
    [Google Scholar]
  32. DołowyM. Pyka-PająkA. JampílekJ. Simple and accurate HPTLC-densitometric method for assay of nanodrolone decanoate in pharmaceutical formulation.Molecules201924343510.3390/molecules24030435 30691078
    [Google Scholar]
  33. MukherjeeD. KumarN.S. KhatuaT. MukherjeeP.K. Rapid validated HPTLC method for estimation of betulinic acid in Nelumbo nucifera (Nymphaeaceae) rhizome extract.Phytochem. Anal.201021655656010.1002/pca.1232 21043041
    [Google Scholar]
  34. ChakrabortyA. BhattacharjeeA. DasguptaP. MannaD. OhW.C. MukhopadhyayG. Simple method for standardization and quantification of linoleic acid in Solanum nigrum Berries by HPTLC.J. Chromatogr. Sep. Tech.20167634210.4172/2157‑7064.1000342
    [Google Scholar]
/content/journals/cac/10.2174/0115734110337548241003080952
Loading
/content/journals/cac/10.2174/0115734110337548241003080952
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publishers website along with the published article.


  • Article Type:
    Research Article
Keyword(s): densitometry; Derivization; Euphorbia neriifolia; HPTLC; linoleic acid; TLC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test