Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Imipenem and meropenem are the carbapenem antibiotics most commonly used for the treatment of severe bacterial infections. Their stability behavior, which focuses on degradation products, has been continually reported. Strategies based on prediction have been explored as an additional tool that provides additional information about drug stability.

Methods

A comparison between experimental and predictive data, with a focus on stability and degradation products, was performed by examining the literature data and the results. The experimental data were obtained from the literature throughdatabase searches. The degradation prediction was performed through the software Zeneth 9.0, which strictly focused on degradation products. With a focus on stability, degraded samples of meropenem and imipenem were investigated in terms of biological safety, applying an cytotoxicity assay by MTT reduction and neutral red uptake.

Results

From the literature survey, it was found that 11 major degradation products for both carbapenems mainly formed from modifications on the b-lactam ring and dimerization. By using the Zeneth software, a large number of substances were predicted, considering the probability of occurring and the selected stressors. Even in low numbers, the comparative results indicated similarity in 4 degradation products, with high probability. About cytotoxicity, the cell viability by MTT assay was significantly reduced for imipenem samples degraded during 4 hours. For meropenem, applying neutral red uptake assay, a reduction of cell viability was observed in samples stored for 4 hours.

Conclusion

Drug stability assay includes different approaches, which can be used favorably from the interaction between all areas of interest, including experimental practice and predictive modelling assay.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110320902241101062635
2025-01-01
2026-02-02
Loading full text...

Full text loading...

References

  1. ColardynF. Appropriate and timely empirical antimicrobial treatment of icu infections--a role for carbapenems.Acta Clin. Belg.2005602516210.1179/acb.2005.011 16082989
    [Google Scholar]
  2. NicolauD.P. Carbapenems: a potent class of antibiotics.Expert Opin. Pharmacother.200891233710.1517/14656566.9.1.23 18076336
    [Google Scholar]
  3. VerwaestC. Meropenem versus imipenem/cilastatin as empirical monotherapy for serious bacterial infections in the intensive care unit.Clin. Microbiol. Infect.20006629430210.1046/j.1469‑0691.2000.00082.x 11168137
    [Google Scholar]
  4. MontiG. GalbiatiC. ToffolettoF. CalabròM.G. ColomboS. FerraraB. GiardinaG. LemboR. MarzaroliM. MoizoE. MucciM. PasculliN. PlumariV.P. ScandroglioA.M. TozziM. MomessoE. BoffaN. LobreglioR. MontrucchioG. GuarracinoF. BenedettoU. Biondi-ZoccaiG. D’AscenzoF. D’AndreaN. PaternosterG. AnaniadouS. BallestraM. De SioA. PotaV. CotoiaA. Della SelvaA. BruniA. IapichinoG. BradićN. CorradiF. GemmaM. NogtevP. PetrovaM. AgròF.E. CabriniL. ForforiF. LikhvantsevV. BoveT. FincoG. LandoniG. ZangrilloA. AjelloS. CappellettiA.M. FominskiyE. NisiF.G. PazzaneseV. PieriM. CanavosioF. PalmesinoF. BernasconiM. GallioliG. MarinoG. VetrugnoL. MillinC. MissioD. GallicchioF. AzzaliB. BozzettiM. CristadoroD. PeroneR. CantatoreL.P. CurciG. PabonI.M. GarofaloE. MainettiM. CalamaiI. MaraggiaD. MatteiA. YavorovskiyA. Continuous infusion versus intermittent administration of meropenem in critically ill patients (MERCY): A multicenter randomized double-blind trial. Rationale and design.Contemp. Clin. Trials202110410634610.1016/j.cct.2021.106346 33684595
    [Google Scholar]
  5. EisertA. LanckohrC. FreyJ. FreyO. WichaS.G. HornD. EllgerB. SchuerholzT. MarxG. SimonT.P. Comparison of two empirical prolonged infusion dosing regimens for meropenem in patients with septic shock: A two-center pilot study.Int. J. Antimicrob. Agents202157310628910.1016/j.ijantimicag.2021.106289 33515688
    [Google Scholar]
  6. PericàsJ.M. MorenoA. AlmelaM. García-de-la-MàriaC. MarcoF. MuñozP. PeñaC. de AlarcónA. del RíoA. EworoA. CrucetaA. ParéJ.C. MestresC.A. MiróJ.M. MiróJ.M. MorenoA. PericàsJ.M. AmbrosioniJ. TellezA. Hernandez-MenesesM. RíoA. CerveraC. MarcoF. Garcia de la MàriaC. ArmeroY. AlmelaM. MestresC.A. ParéJ.C. FusterD. CartañáR. NinotS. AzquetaM. SitgesM. RamírezJ. BrunetM. SoyD. LlopisJ. PeñaC. GaschO. SuarezC. PujolM. ArizaJ. CarratalàJ. GudiolF. MuñozP. EworoA. BouzaE. de AlarcónA. GurguiM. BenitoN. Losa-GarciaJ.E. NavasE. Paño-PardoJ.R. LoechesB. ArribasJ.R. MontejoM. GalvezJ. Efficacy and safety of fosfomycin plus imipenem versus vancomycin for complicated bacteraemia and endocarditis due to methicillin-resistant Staphylococcus aureus: a randomized clinical trial.Clin. Microbiol. Infect.201824667367610.1016/j.cmi.2018.01.010 29408610
    [Google Scholar]
  7. HagiharaM. KatoH. SuganoT. OkadeH. SatoN. ShibataY. SakanashiD. AsaiN. KoizumiY. SuematsuH. YamagishiY. MikamoH. Pharmacodynamic evaluation of meropenem, cefepime, or aztreonam combined with a novel β-lactamase inhibitor, nacubactam, against carbapenem-resistant and/or carbapenemase-producing Klebsiella pneumoniae and Escherichia coli using a murine thigh-infection model.Int. J. Antimicrob. Agents202157510633010.1016/j.ijantimicag.2021.106330 33789129
    [Google Scholar]
  8. HagiharaM. KatoH. YamashitaR. SodaM. WatanabeH. SakanashiD. ShiotaA. AsaiN. KoizumiY. SuematsuH. YamagishiY. KitaichiK. MikamoH. In vivo study assessed meropenem and amikacin combination therapy against carbapenem-resistant and carbapenemase-producing Enterobacteriaceae strains.J. Infect. Chemother.20202611710.1016/j.jiac.2019.10.014 31735629
    [Google Scholar]
  9. TselepisL. LangleyG.W. AboklaishA.F. WidlakeE. JacksonD.E. WalshT.R. SchofieldC.J. BremJ. TyrrellJ.M. In vitro efficacy of imipenem-relebactam and cefepime-AAI101 against a global collection of ESBL-positive and carbapenemase-producing Enterobacteriaceae.Int. J. Antimicrob. Agents202056110592510.1016/j.ijantimicag.2020.105925 32084512
    [Google Scholar]
  10. ICH Q1A (R2) Stability testing of new drug substances and drug products - Scientific guideline. 2003. Available from: https://www. ema.europa.eu/en/ich-q1a-r2-stability-testing-new-drug-substances-drug-products-scientific-guideline (accessed on 2-10-2024)
  11. Q1B photostability testing of new drug substances and products. 2003. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q1b-photostability-testing-new-drugsubstances-and-products (accessed on 2-10-2024)
  12. Ministry of Health - MS National Health Surveillance Agency – ANVISA. 2015. Available from: https://antigo.anvisa.gov.br/documents/10181/3295768/%281%29RDC_53_2015_COMP.pdf/d38f507d-745c-4f6b-a0a6-bd250f2e9892 (accessed on 2-10-2024)
  13. KleinmanM.H. ElderD. TeasdaleA. MoweryM.D. McKeownA.P. BaertschiS.W. Strategies to address mutagenic impurities derived from degradation in drug substances and drug products.Org. Process Res. Dev.201519111447145710.1021/acs.oprd.5b00091
    [Google Scholar]
  14. KiefferJ. BrémondÉ. LienardP. BoccardiG. In silico assessment of drug substances chemical stability.J. Mol. Struct. THEOCHEM20109541-3757910.1016/j.theochem.2010.03.032
    [Google Scholar]
  15. ParentyA.D.C. ButtonW.G. OttM.A. An expert system to predict the forced degradation of organic molecules.Mol. Pharm.20131082962297410.1021/mp400083h 23822517
    [Google Scholar]
  16. BarbosaF. de S. PezziL.C. PaulaF.R. EllerS. SchapovalE.E.S. de OliveiraT.F. MendezA.S.L. Stability study of doripenem antibiotic applying LC-ESI-Q-TOF method and in silico prediction: An analytical investigation focused on degradation products.Microchem. J.202116610623010.1016/j.microc.2021.106230
    [Google Scholar]
  17. GiordaniA. KobelW. GallyH.U. Overall impact of the regulatory requirements for genotoxic impurities on the drug development process.Eur. J. Pharm. Sci.2011431-211510.1016/j.ejps.2011.03.004 21420491
    [Google Scholar]
  18. BouderF. Regulating impurities in pharmaceutical products: A tolerability of risk approach?Expert Rev. Clin. Pharmacol.20081224125010.1586/17512433.1.2.241 24422649
    [Google Scholar]
  19. BarbosaF.S. Stability and degradation products of imipenem applying high-resolution mass spectrometry: An analytical study focused on solutions for infusion.Biomed. Chromatogr.20193310.1002/bmc.4471
    [Google Scholar]
  20. ZhangM. LiuC.F. ChenX.Y. YangL.N. ZhuC.M. TengJ.H. WuH.X. ZhangF.L. Effect of Oxygen and Water on the Stability of Imipenem and Cilastatin Sodium for Injection.Pharm. Fr.202242e78e8810.1055/s‑0042‑1750043
    [Google Scholar]
  21. BarbosaF. de S. J. Pharm. Biomed. Anal.202017910.1016/j.jpba.2019.112973
    [Google Scholar]
  22. MendezA. ChagastellesP. PalmaE. NardiN. SchapovalE. Thermal and alkaline stability of meropenem: Degradation products and cytotoxicity.Int. J. Pharm.20083501-29510210.1016/j.ijpharm.2007.08.023 17904314
    [Google Scholar]
  23. CaiS.Y. HuC.Q. Chromatographic determination of polymerized impurities in meropenem.J. Pharm. Biomed. Anal.200537358558910.1016/j.jpba.2004.11.023 15740920
    [Google Scholar]
  24. TakeuchiY. SunagawaM. HamazumeY. NoguchiT. Stability of a 1 beta-methylcarbapenem antibiotic, meropenem (SM-7338) in aqueous solution.Chem. Pharm. Bull.199543468969210.1248/cpb.43.689 7600618
    [Google Scholar]
  25. TakeuchiY. InoueT. SunagawaM. Studies on the structures of meropenem(SM-7338) and it’s primary metabolite.J. Antibiot. (Tokyo)199346582783210.7164/antibiotics.46.827 8514637
    [Google Scholar]
  26. AliM.A. HemingwayR. OttM.A. Methods in Pharmacology and Toxicology.Humana Press Inc.2018537310.1007/978‑1‑4939‑7686‑7_3
    [Google Scholar]
  27. Japanese Pharmacopoeia, 18th ed;Yakuji Nippo Ltd.2021
    [Google Scholar]
  28. GrigoriK. LoukasY.L. MalenovićA. SamaraV. KalaskaniA. DimovasiliE. KalovidouriM. DotsikasY. Chemometrically assisted development and validation of LC–MS/MS method for the analysis of potential genotoxic impurities in meropenem active pharmaceutical ingredient.J. Pharm. Biomed. Anal.201714530731410.1016/j.jpba.2017.06.061 28709127
    [Google Scholar]
  29. ICH M7 Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk - Scientific guideline. 2015. Available from: https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-mutagenicimpurities-pharmaceuticals-limit-potential-carcinogenic-riskscientific-guideline (accessed on 2-10-2024)
  30. HemingwayR. BaertschiS.T. In silico prediction of pharmaceutical degradation pathways: A benchmarking study using the software program zeneth.Org. Process Res. Dev.28367469210.1021/acs.oprd.3c00344
    [Google Scholar]
  31. PohjalaL. TammelaP. Assessing the data quality in predictive toxicology using a panel of cell lines and cytotoxicity assays. 200736222122810.1016/j.ab.2006.12.038
    [Google Scholar]
/content/journals/cac/10.2174/0115734110320902241101062635
Loading
/content/journals/cac/10.2174/0115734110320902241101062635
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cytotoxicity; degradation products; Imipenem; in silico prediction; meropenem; stability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test