Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Reactive oxygen species (ROS) in biological systems can damage cells by oxidizing membrane lipids, proteins, DNA, and enzymes. Antioxidants are essential in mitigating these effects and are extensively used in nutraceuticals, functional foods, and dietary supplements. They play a crucial role in the neutralization of reactive oxygen species (ROS), thereby preventing cellular damage, DNA mutations, and the development of diseases such as cancer, diabetes, and coronary heart disease. To effectively mitigate these diseases, it is essential to develop rapid and efficient methodologies for assessing antioxidant activity.

Methods

The smartphone colorimetric biosensor system and DPPH radical scavenging assay were developed and employed to determine the antioxidant activity of various beverages.

Results

A comparative analysis of the DPPH radical scavenging assay for beverages was conducted using a UV-Vis spectrophotometer (=0.9907) and a smartphone-based colorimetric biosensor application (=0.9929). The results demonstrated a strong correlation between the two methods across all beverages tested. Specifically, the antioxidant capacities were 15% for orange juice, 21% for Miero Fiber, and 12% for Coca-Cola. The linear correlation across different concentrations for all beverages showed an value of 0.9929, validating the accuracy and effectiveness of the smartphone-based detection system.

Conclusion

This study highlights the practicality of using smartphone-based technology for detecting antioxidants and opens avenues for more accessible and faster health diagnostics. By utilizing smartphone biosensor technology, the accessibility of antioxidant assessments is enhanced, further promoting the adoption of preventative health strategies.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110356112241119073154
2024-12-27
2026-02-02
Loading full text...

Full text loading...

References

  1. NakaiK. TsurutaD. What are reactive oxygen species, free radicals, and oxidative stress in skin diseases?Int. J. Mol. Sci.202122191079910.3390/ijms221910799 34639139
    [Google Scholar]
  2. JuanC.A. Pérez de la LastraJ.M. PlouF.J. Pérez-LebeñaE. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms22094642 33924958
    [Google Scholar]
  3. ManninoR.G. MyersD.R. TyburskiE.A. CarusoC. BoudreauxJ. LeongT. CliffordG.D. LamW.A. Smartphone app for non-invasive detection of anemia using only patient-sourced photos.Nat. Commun.201891492410.1038/s41467‑018‑07262‑2 30514831
    [Google Scholar]
  4. DamiánM.R. Cortes-PerezN.G. QuintanaE.T. Ortiz-MorenoA. Garfias NoguezC. Cruceño-CasarrubiasC.E. Sánchez PardoM.E. Bermúdez-HumaránL.G. Functional Foods, Nutraceuticals and Probiotics: A Focus on Human Health.Microorganisms2022105106510.3390/microorganisms10051065 35630507
    [Google Scholar]
  5. RoncaC.L. MarquesS.S. RitieniA. Giménez-MartínezR. BarreirosL. SegundoM.A. Olive oil waste as a source of functional food ingredients: Assessing polyphenolic content and antioxidant activity in olive leaves.Foods202413218910.3390/foods13020189 38254490
    [Google Scholar]
  6. ZhouD-D. Antioxidant food components for the prevention and treatment of Cardiovascular Diseases: Effects, mechanisms, and clinical studies.Oxid. Med. Cell. Longev.20212021662735510.1155/2021/6627355
    [Google Scholar]
  7. Gulcinİ. AlwaselS.H. DPPH Radical Scavenging Assay.Processes (Basel)2023118224810.3390/pr11082248
    [Google Scholar]
  8. WuH. TatiyaborwornthamN. HajimohammadiM. DeckerE.A. RichardsM.P. UndelandI. Model systems for studying lipid oxidation associated with muscle foods: Methods, challenges, and prospects.Crit. Rev. Food Sci. Nutr.202464115317110.1080/10408398.2022.2105302 35916770
    [Google Scholar]
  9. TartillahB.A. The Power of Antioxidant: Tea Catechin and Body Oxidative Stress; intechopen202410.5772/intechopen.1004270
    [Google Scholar]
  10. JaganjacM. Sredoja TismaV. ZarkovicN. Short overview of some assays for the measurement of antioxidant activity of natural products and their relevance in dermatology.Molecules20212617530110.3390/molecules26175301 34500732
    [Google Scholar]
  11. ShahidiF. ZhongY. Measurement of antioxidant activity.J. Funct. Foods20151875778110.1016/j.jff.2015.01.047
    [Google Scholar]
  12. Santos-SánchezN.F. Salas-CoronadoR. Villanueva-CañongoC. Hernández-CarlosB. Antioxidant compounds and their antioxidant mechanism.In: Antioxidants; IntechOpen201910.5772/intechopen.85270
    [Google Scholar]
  13. Sundaram SanjayS. ShuklaA.K. Mechanism of antioxidant activity. In: Potential Therapeutic Applications of Nano-antioxidants.SingaporeSpringer202110.1007/978‑981‑16‑1143‑8_4
    [Google Scholar]
  14. LajisA. HamidM. AhmadS. AriffA. Lipase-catalyzed synthesis of kojic acid derivative in bioreactors and the analysis of its depigmenting and antioxidant activities.Cosmetics2017432210.3390/cosmetics4030022
    [Google Scholar]
  15. KharbachM. Alaoui MansouriM. TaabouzM. YuH. Current application of advancing spectroscopy techniques in food analysis: Data handling with chemometric approaches.Foods20231214275310.3390/foods12142753 37509845
    [Google Scholar]
  16. Sahin SolmazN. FarsiR. BoeroG. 200 GHz single chip microsystems for dynamic nuclear polarization enhanced NMR spectroscopy.Nat. Commun.2024151548510.1038/s41467‑024‑49767‑z 38942752
    [Google Scholar]
  17. LuoY. HaoY. ZhangP. ZhangY. ZengR. ChenS. XuM. Chemiluminescence‐driven photoelectrochemical sensor: A mini review.Electroanalysis2024361e20230025710.1002/elan.202300257
    [Google Scholar]
  18. RubabM. ChelliahR. OhD-H. Screening for Antioxidant Activity: Diphenylpicrylhydrazine (DPPH) Assay BT. In: Methods in Actinobacteriology. DharumaduraiD. New York, NYSpringer US202245345410.1007/978‑1‑0716‑1728‑1_61
    [Google Scholar]
  19. BanikS. MelanthotaS.K. Arbaaz VazJ.M. KadambalithayaV.M. HussainI. DuttaS. MazumderN. Recent trends in smartphone-based detection for biomedical applications: A review.Anal. Bioanal. Chem.202141392389240610.1007/s00216‑021‑03184‑z 33586007
    [Google Scholar]
  20. SingerE. CouperM.P. FagerlinA. FowlerF.J. LevinC.A. UbelP.A. Van HoewykJ. Zikmund-FisherB.J. The role of perceived benefits and costs in patients’ medical decisions.Health Expect.201417141410.1111/j.1369‑7625.2011.00739.x 22070416
    [Google Scholar]
  21. MunteanuI.G. ApetreiC. Analytical Methods Used in Determining Antioxidant Activity: A Review.Int. J. Mol. Sci.2021227338010.3390/ijms22073380
    [Google Scholar]
  22. VucaneS. SabovicsM. LeitansL. CinkmanisI. Smartphone-based colorimetric determination of DPPH free radical scavenging activity in vegetable oils.Res. Rural Dev.20203510611110.22616/rrd.26.2020.016
    [Google Scholar]
  23. ElbashtiM. SumitaY. AswehleeA. SeelausR. Smartphone application as a low-cost alternative for digitizing facial defects: is it accurate enough for clinical application.Int. J. Prosthodont.201932654154310.11607/ijp.6347 31664272
    [Google Scholar]
  24. SharmaO.P. BhatT.K. DPPH antioxidant assay revisited.Food Chem.200911341202120510.1016/j.foodchem.2008.08.008
    [Google Scholar]
  25. YamauchiM. KitamuraY. NaganoH. KawatsuJ. GotohH. DPPH measurements and structure—activity relationship studies on the antioxidant capacity of phenols.Antioxidants202413330910.3390/antiox13030309 38539842
    [Google Scholar]
  26. ChenX. LiangL. HanC. Borate suppresses the scavenging activity of gallic acid and plant polyphenol extracts on DPPH radical: A potential interference to DPPH assay.Lebensm. Wiss. Technol.202013110976910.1016/j.lwt.2020.109769
    [Google Scholar]
  27. Bowen-forbesC. ArmstrongE. MosesA. FahlmanR. KooshaH. YagerJ.Y. Broccoli, kale, and radish sprouts: Key phytochemical constituents and DPPH free radical scavenging activity.Molecules20232811426610.3390/molecules28114266
    [Google Scholar]
  28. CelizG. RenfigeM. FinettiM. Spectral analysis allows using the DPPH* UV–Vis assay to estimate antioxidant activity of colored compounds.Chem. Pap.20207493101310910.1007/s11696‑020‑01110‑8
    [Google Scholar]
  29. ChristodoulouM.C. Orellana PalaciosJ.C. HesamiG. JafarzadehS. LorenzoJ.M. DomínguezR. MorenoA. HadidiM. Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals.Antioxidants20221111221310.3390/antiox11112213 36358583
    [Google Scholar]
  30. Brand-WilliamsW. CuvelierM.E. BersetC. Use of a free radical method to evaluate antioxidant activity.Lebensm. Wiss. Technol.1995281253010.1016/S0023‑6438(95)80008‑5
    [Google Scholar]
  31. SeifriedH.E. PilchS.M. Antioxidants in Health and Disease.3rd ed201231933910.1016/B978‑0‑12‑391884‑0.00018‑4
    [Google Scholar]
  32. FarbsteinD. Kozak-BlicksteinA. LevyA.P. Antioxidant vitamins and their use in preventing cardiovascular disease.Molecules201015118098811010.3390/molecules15118098 21063272
    [Google Scholar]
  33. MuhasinaK.M. Functional Food in Promoting Health: Global Perspective. In: Emerging Solutions in Sustainable Food and Nutrition Security.ChamSpringer202310.1007/978‑3‑031‑40908‑0_13
    [Google Scholar]
  34. ZuluetaA. EsteveM.J. FrasquetI. FrígolaA. Vitamin C, vitamin A, phenolic compounds and total antioxidant capacity of new fruit juice and skim milk mixture beverages marketed in Spain.Food Chem.200710341365137410.1016/j.foodchem.2006.10.052
    [Google Scholar]
  35. ShiZ. ChowC.W.K. FabrisR. LiuJ. JinB. Applications of online UV-Vis spectrophotometer for drinking water quality monitoring and process control: A review.Sensors (Basel)2022228298710.3390/s22082987 35458971
    [Google Scholar]
  36. BlascoA.J. González CrevillénA. GonzálezM.C. EscarpaA. Direct electrochemical sensing and detection of natural antioxidants and antioxidant capacity in vitro systems.Electroanalysis200719222275228610.1002/elan.200704004
    [Google Scholar]
  37. KongT. YouJ.B. ZhangB. NguyenB. TarlanF. JarviK. SintonD. Accessory-free quantitative smartphone imaging of colorimetric paper-based assays.Lab Chip201919111991199910.1039/C9LC00165D 31044203
    [Google Scholar]
  38. HeylandD.K. DhaliwalR. SuchnerU. BergerM.M. Antioxidant nutrients: A systematic review of trace elements and vitamins in the critically ill patient.Intensive Care Med.200531332733710.1007/s00134‑004‑2522‑z 15605227
    [Google Scholar]
  39. KanithiP.K. Medic: Towards a comprehensive framework for evaluating llms in clinical applications.arXiv20242024
    [Google Scholar]
/content/journals/cac/10.2174/0115734110356112241119073154
Loading
/content/journals/cac/10.2174/0115734110356112241119073154
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Antioxidant; colorimetric; detection; DPPH radical; ROS; smartphone
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test