Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Aims

This study describes the development of methodologies for the isolation, identification, and quantification of betulinic, oleanolic, and ursolic acids in extracts from (Lamiaceae) and (Dilleniaceae).

Background

Betulinic, oleanolic, and ursolic acids are compounds with biological activities and commercial and technological uses. Developing methodologies for their separation from natural sources are relevant once their synthesis is not easy.

Objectives

Development of conventional methodology for quantifying and isolating pure betulinic acid in chloroform extracts of stems and developing methods for obtaining and quantifying oleanolic, ursolic, and betulinic acids from organic extracts.

Methods

A complete validation “in-house” for the chromatographic method was performed, and different techniques of extraction – maceration under heating . microwave-assisted extraction (MAE) conditions were compared. stems were employed as the source of pure betulinic acid, and this compound was obtained in a reasonable yield (~ 2.4 x 10-2% dry weight).

Results

Chromatographic analysis of the . extracts indicates betulinic acid occurs in higher concentrations in the leaves (5.53% dry weight), followed by lower concentrations in other plant parts, together with two other triterpene acids. HPLC analysis of extracts obtained by MAE extractions and maceration of indicated that MAE is more efficient than maceration under heating in relative yield. The HPLC-validated method was rightly selective and accurate, presenting good linearity ( = 0.9993), robustness, and recovery rate values with acceptable limits (LD = 5.9914; LQ = 18.1557; µg mL-1).

Conclusion

MAE was the most efficient methodology than maceration under similar conditions. Furthermore, different parts of and are affordable sources of bioactive betulinic acid.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110330170240929113311
2024-10-10
2026-02-03
Loading full text...

Full text loading...

References

  1. LouH. LiH. ZhangS. LuH. ChenQ. A Review on Preparation of Betulinic Acid and Its Biological Activities.Molecules20212618558310.3390/molecules26185583 34577056
    [Google Scholar]
  2. FarzanM. FarzanM. ShahraniM. NavabiS.P. VardanjaniH.R. Amini-KhoeiH. ShabaniS. Neuroprotective properties of Betulin, Betulinic acid, and Ursolic acid as triterpenoids derivatives: A comprehensive review of mechanistic studies.Nutr. Neurosci.202427322324010.1080/1028415X.2023.2180865 36821092
    [Google Scholar]
  3. ŻwawiakJ. PawełczykA. OlenderD. ZaprutkoL. Structure and activity of pentacyclic triterpenes codrugs. A review.Mini Rev. Med. Chem.202121121509152610.2174/1389557521666210105110848 33402080
    [Google Scholar]
  4. TarvainenM. SuomelaJ-P. KallioH. YangB. Triterpene Acids in Plantago major: Identification, Quantification and Comparison of Different Extraction Methods.Chromatographia2010713-427928410.1365/s10337‑009‑1439‑7
    [Google Scholar]
  5. MandalV. MandalS.C. Design and performance evaluation of a microwave based low carbon yielding extraction technique for naturally occurring bioactive triterpenoid: Oleanolic acid.Biochem. Eng. J.2010501-2637010.1016/j.bej.2010.03.005
    [Google Scholar]
  6. XuZ-Q. KoohangA. MarA.A. MajewskiN.D. EiznhamerD.A. FlavinM.T. Synthetic Pentacyclic Triterpenoids and Derivatives of Betulinic Acid and Betulin.U.S. Patent 20070232577A12007
    [Google Scholar]
  7. ChoS.H. GottliebK. SanthanamU. Cosmetic compositions containing betulinic acid.U.S. Patent 5,529,7691996
  8. LeeK-H. KashiwadaY. HashimotoF. CosentinoL.M. ManakM. Betulinic Acid and Dihydrobetulinic Acid Derivatives and Uses Therefor.U.S. Patent 5,679,8281997
  9. SchefflerA. JäegerS. BeffertM. HoppeK. Method for Preparing an Aqueous Solution Containing Triterpenic Acid, Aqueous Solution Containing Triterpenic Acid, and use thereof.U.S. Patent 20100104669A12010
  10. FrighettoN. WelendorfR.M. da SilvaA.M.P. NakamuraM.J. SianiA.C. Purication of betulinic acid from Eugenia florida (Myrtaceae) by high‐speed counter‐current chromatography.Phytochem. Anal.200516641141410.1002/pca.860 16315484
    [Google Scholar]
  11. RazboršekM.I. VončinaD.B. DolečekV. VončinaE. Determination of Oleanolic, Betulinic and Ursolic Acid in Lamiaceae and Mass Spectral Fragmentation of Their Trimethylsilylated Derivatives.Chromatographia2008675-643344010.1365/s10337‑008‑0533‑6
    [Google Scholar]
  12. SousaA.F. PintoP.C.R.O. SilvestreA.J.D. Pascoal NetoC. Triterpenic and other lipophilic components from industrial cork byproducts.J. Agric. Food Chem.200654186888689310.1021/jf060987+ 16939354
    [Google Scholar]
  13. DominguesR.M.A. SousaG.D.A. SilvaC.M. FreireC.S.R. SilvestreA.J.D. NetoC.P. High value triterpenic compounds from the outer barks of several Eucalyptus species cultivated in Brazil and in Portugal.Ind. Crops Prod.201133115816410.1016/j.indcrop.2010.10.006
    [Google Scholar]
  14. DavidJ.P. SilvaE.F. MouraD.L. GuedesM.L.S. AssunçãoR.J. DavidJ.M. Lignanas e triterpenos do extrato citotóxico de Eriope blanchetii.Quim. Nova200124673073310.1590/S0100‑40422001000600004
    [Google Scholar]
  15. DavidJ.M. SouzaJ.C. GuedesM.L.S. DavidJ.P. Estudo fitoquímico de Davilla rugosa: flavonóides e terpenóides.Rev. Bras. Farmacogn.200616110510810.1590/S0102‑695X2006000100019
    [Google Scholar]
  16. PavanasasivamG. SultanbawaM.U.S. Betulinic acid in the dilleniaceae and a review of its natural distribution.Phytochemistry19741392002200610.1016/0031‑9422(74)85143‑5
    [Google Scholar]
  17. HarleyR. FrançaF. SantosE.P. SantosJ.S. Lamiaceae in List of Species of the Flora of Brazil, Rio de Janeiro Botanical Garden. Rio de Janeiro Botanical Garden. Available from: http://floradobrasil.jbrj.gov.br (Accessed on September 13, 2023).
  18. VianaB.F. KleinertA.D.M.P. SilvaF.O.D. Ecology of Xylocopa (Neoxylocopa) cearensis (Hymenoptera, Anthophoridae) in the Abaeté Coastal Dunes, Salvador, Bahia. Iheringia – Zoological Series,2002924757
    [Google Scholar]
  19. BrandãoH.N. MedradoH.H.S. DavidJ.P. DavidJ.M. PastoreJ.F.B. MeiraM. Determination of podophyllotoxin and related aryltetralin lignans by HPLC/DAD/MS from Lamiaceae species.Microchem. J.201713017918410.1016/j.microc.2016.09.002
    [Google Scholar]
  20. CorrêaM.P. Dictionary of Useful Plants of Brazil; da Agricultura, M., Ed.; Instituto Brasileiro de Desenvolvimento Florestal: Brasília, DF,1984266
    [Google Scholar]
  21. ConnollyJ.D. HillR.A. Triterpenoids.Nat. Prod. Rep.200825479483010.1039/b718038c 18663395
    [Google Scholar]
  22. HuangM-T. HoC.T. WangZ.Y. FerraroT. LouY-R. StauberK. MaW. GeorgiadisC. LaskinJ.D. ConneyA.H. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid.Cancer Res.1994543701708 8306331
    [Google Scholar]
  23. VechiaL.D. GnoattoS.C.B. GosmannG. Oleanane and ursane derivatives and their importance on the discovery of potential antitumour, anti-inflammatory and antioxidant drugs.Quim. Nova2009321245125210.1590/S0100‑40422009000500031
    [Google Scholar]
  24. MaiaJ.L. Lima-JúniorR.C.P. DavidJ.P. DavidJ.M. SantosF.A. RaoV.S. Oleanolic Acid, a pentacyclic triterpene attenuates the mustard oil-induced colonic nociception in mice.Biol. Pharm. Bull.2006291828510.1248/bpb.29.82 16394515
    [Google Scholar]
  25. KimJ.H. ByunJ.C. BandiA.K. HyunC.G. LeeN.H. Compounds with elastase inhibition and free radical scavenging activities from Callistemon lanceolatus.J. Med. Plants Res.20093914920
    [Google Scholar]
  26. Elivera Group, London, UK. Available from: https://eliveragroup.com/search?q=betulinic+cream (Accessed on April 18, 2024).
  27. CunhaA.B. BatistaR. CastroM.Á. DavidJ.M. Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues.Molecules2021264108110.3390/molecules26041081 33670791
    [Google Scholar]
  28. PopovS.A. SheremetO.P. KornaukhovaL.M. GrazhdannikovA.E. ShultsE.E. An approach to effective green extraction of triterpenoids from outer birch bark using ethyl acetate with extractant recycle.Ind. Crops Prod.201710212213210.1016/j.indcrop.2017.03.020
    [Google Scholar]
  29. DingK. XiaoS. LuJ. YuanQ. Rapid large-scale purification of betulinic acid.J. Food Process Eng.201235688188610.1111/j.1745‑4530.2011.00637.x
    [Google Scholar]
  30. SowaI. Wójciak-KosiorM. RokickaK. KocjanR. SzymczakG. Application of solid phase extraction with the use of silica modified with polyaniline film for pretreatment of samples from plant material before HPLC determination of triterpenic acids.Talanta2014122515710.1016/j.talanta.2014.01.039 24720961
    [Google Scholar]
  31. ClaudeB. Viron-LamyC. HauptK. MorinP. Synthesis of a molecularly imprinted polymer for the solid‐phase extraction of betulin and betulinic acid from plane bark.Phytochem. Anal.201021218018510.1002/pca.1175 19866454
    [Google Scholar]
  32. BrancoA. FonsecaF.C.S. ReisL.C.B. dos SantosJ.D.G. BrancoC.R.C. FerreiraS.L.C. DavidJ.M. Betulinic acid from Zizyphus Joazeiro bark using focused microwave-assisted extraction and response surface methodology.Pharmacogn. Mag.2017135022622910.4103/0973‑1296.204565 28539712
    [Google Scholar]
  33. YangY. JianY. LiuB. Rapid Determination of Diverse Ganoderic Acids in Ganoderma Using UPLC–MS/MS.Curr. Anal. Chem.202420319120010.2174/0115734110289769240125115919
    [Google Scholar]
  34. NaumoskaK. SimonovskaB. AlbrehtA. VovkI. TLC and TLC-MS screening of ursolic, oleanolic and betulinic acids in plant extracts.J. Planar Chromatogr. Mod. TLC201326212513110.1556/JPC.26.2013.2.4
    [Google Scholar]
  35. KaurP. GuptaR.C. DeyA. Kumar PandeyD. Simultaneous quantification of oleanolic acid, ursolic acid, betulinic acid and lupeol in different populations of five Swertia species by using HPTLC-densitometry: Comparison of different extraction methods and solvent selection.Ind. Crops Prod.201913053754610.1016/j.indcrop.2018.12.089
    [Google Scholar]
  36. RezaeepourR. HeydariR. IsmailiA. Ultrasound and salt-assisted liquid–liquid extraction as an efficient method for natural product extraction.Anal. Methods2015773253325910.1039/C5AY00150A
    [Google Scholar]
  37. RashidipourM. HeydariR. FeizbakhshA. HashemiP. Rapid monitoring of carvacrol in plants and herbal medicines using matrix solid-phase dispersion and gas chromatography flame ionisation detector.Nat. Prod. Res.201529762162710.1080/14786419.2014.980247 25421885
    [Google Scholar]
  38. DasA. BasakS. ChakrabortyS. DhibarM. Microwave: An Ecologically Innovative, Green Extraction Technology.Curr. Anal. Chem.202218885886610.2174/1573411018666220527095408
    [Google Scholar]
  39. AlviT. AsifZ. Iqbal KhanM.K. Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique-A review.Food Biosci.20224610158010.1016/j.fbio.2022.101580
    [Google Scholar]
  40. RibaniM. BottoliC.B.G. CollinsC.C. JardimI.C.S.F. MeloL.F.C. Validation for chromatographic and electrophoretic methods.Quim. Nova2004
    [Google Scholar]
  41. DindayS. GhoshS. Recent advances in triterpenoid pathway elucidation and engineering.Biotechnol. Adv.20236810821410.1016/j.biotechadv.2023.108214 37478981
    [Google Scholar]
  42. MoldoveanuS.C. DavidV. Modern sample preparation for chromatography.Amsterdam, NetherlandsElsevier20213237
    [Google Scholar]
  43. BorgesA. JoséH. HomemV. SimõesM. Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea.Antibiotics (Basel)2020924810.3390/antibiotics9020048 32012935
    [Google Scholar]
  44. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_19 32801594
    [Google Scholar]
  45. GhassempourA. HeydariR. TalebpourZ. FakhariA.R. RassouliA. DaviesN. Aboul-EneinH.Y. Study of New Extraction Methods for Separation of Anthocyanins from Red Grape Skins: Analysis by HPLC and LC-MS/MS.J. Liq. Chromatogr. Relat. Technol.200831172686270310.1080/10826070802353247
    [Google Scholar]
  46. SrivariY. ChatterjeeP. Factors influencing the fabrication of albumin-bound drug nanoparticles (ABDns): part I. Albumin-bound betulinic acid nanoparticles (ABBns).J. Microencapsul.201633868970110.1080/02652048.2016.1222005 27707051
    [Google Scholar]
  47. Silva-NetoO.C. FelixC.S.A. de Oliveira AguiarL. dos SantosM.B. CunhaS. DavidJ.M. Microwave extraction and molecular imprinted polymer isolation of bergenin applied to the dendrochronological chemical study of Peltophorum dubium.BMC Chem.20241811310.1186/s13065‑024‑01112‑7 38218834
    [Google Scholar]
  48. CunhaS. de SantanaL. Eco-Friendly, Catalyst and Solvent-Free, Synthesis of Acetanilides and N-Benzothiazole-2-yl-acetamides.J. Braz. Chem. Soc.2016281137114410.21577/0103‑5053.20160265
    [Google Scholar]
  49. Luque-GarcíaJ. Luque de CastroM.D. Where is microwave-based analytical equipment for solid sample pre-treatment going?Trends Analyt. Chem.2003222909810.1016/S0165‑9936(03)00202‑4
    [Google Scholar]
/content/journals/cac/10.2174/0115734110330170240929113311
Loading
/content/journals/cac/10.2174/0115734110330170240929113311
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test