Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Objective

The use of microwave digestion coupled with inductively coupled plasma mass spectrometry (ICP-MS) to measure the content of metal elements in L. var. from different regions serves as a reference for tracing its origin and provides a basis for quality control and safety assessment of its heavy metal content.

Methods

After microwave digestion of samples, metal element contents from different regions were determined using ICP-MS, with methodological investigations conducted. A diverse statistical analysis was performed to explore the relationship between geographical distribution of and metal element contents. Additionally, safety assessments were conducted using single factor pollution index and Nemerow comprehensive pollution index methods for several heavy metal elements.

Results

The contents of elements such as Mg, Fe, and Al are relatively high in . Characteristic differences in elements like Al, Ni, Mg, Cr, Sr, and Zn among samples from different regions are evident. Principal component analysis (PCA) indicates that samples from Sichuan Province can be clustered by origin. Elements including Ni, Co, Al, As, Cu, and Fe may contribute significantly to distinguishing from different regions. Pollution assessments for several heavy metals conclude that samples are safe and clean.

Conclusion

The ICP-MS method is rapid and accurate, capable of simultaneous measurement of multiple metal elements in . Combined with multivariate statistical analysis, it facilitates origin tracing studies of from various regions, particularly enabling effective differentiation of those from Sichuan Province.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110346909241021042543
2024-10-30
2026-02-02
Loading full text...

Full text loading...

References

  1. Chinese Pharmacopoeia Commission Pharmacopoeia of the People’s Republic of China: Part I.BeijingChina Medical Science and Technology Press2020185188
    [Google Scholar]
  2. MaQ.G. TangY. SangZ.P. DongJ.H. WeiR.R. Structurally diverse biflavonoids from the fruits of Citrus medica L. var. Sarcodactylis Swingle and their hypolipidemic and immunosuppressive activities.Bioorg. Chem.202111710545010.1016/j.bioorg.2021.105450 34710667
    [Google Scholar]
  3. ChanY.Y. LiC.H. ShenY.C. WuT.S. Anti-inflammatory principles from the stem and root barks of Citrus medica.Chem. Pharm. Bull. (Tokyo)2010581616510.1248/cpb.58.61 20045968
    [Google Scholar]
  4. LuoB. LvJ. LiK. LiaoP. ChenP. Structural characterization and anti-inflammatory activity of a galactorhamnan polysaccharide From Citrus medica L. var. sarcodactylis.Front. Nutr.2022991697610.3389/fnut.2022.916976 35757248
    [Google Scholar]
  5. WuZ. LiH. YangY. ZhanY. TuD. Variation in the components and antioxidant activity of Citrus medica L. var. Sarcodactylis essential oils at different stages of maturity.Ind. Crops Prod.20134631131610.1016/j.indcrop.2013.02.015
    [Google Scholar]
  6. ChuJ. LiS.L. YinZ.Q. YeW.C. ZhangQ.W. Simultaneous quantification of coumarins, flavonoids and limonoids in Fructus Citri Sarcodactylis by high performance liquid chromatography coupled with diode array detector.J. Pharm. Biomed. Anal.20126617017510.1016/j.jpba.2012.03.041 22494516
    [Google Scholar]
  7. ZhouM. LiuY. CaoJ. DongS. HouY. YuY. ZhangQ. ZhangY. JiaX. ZhangB. XiaoG. LiG. WangW. Bergamottin, a bioactive component of bergamot, inhibits SARS-CoV-2 infection in golden Syrian hamsters.Antiviral Res.202220410536510.1016/j.antiviral.2022.105365 35732228
    [Google Scholar]
  8. ChenY. ZouJ. SunH. QinJ. YangJ. Metals in traditional Chinese medicinal materials (TCMM): A systematic review.Ecotoxicol. Environ. Saf.202120711131110.1016/j.ecoenv.2020.111311 32947212
    [Google Scholar]
  9. WeiX. LiC. ZhouR. ZhangG. FengH. LiY. JiaM. Research progress in relationship between inorganic elements and Chinese materia medica.Zhongguo Zhongyiyao Xinxi Zazhi202229140144
    [Google Scholar]
  10. DongW.J. NiY.N. KokotS. Quantitative analysis of two adulterants in Cynanchum stauntonii by near-infrared spectroscopy combined with multi-variate calibrations.Chem. Pap.201266121083109110.2478/s11696‑012‑0231‑6
    [Google Scholar]
  11. ShermaJ. RabelF. Advances in the thin layer chromatographic analysis of counterfeit pharmaceutical products: 2008–2019.J. Liq. Chromatogr. Relat. Technol.20194211-1236737910.1080/10826076.2019.1610772
    [Google Scholar]
  12. GörögS. Identification in drug quality control and drug research.Trends Analyt. Chem.20156911412210.1016/j.trac.2014.11.020
    [Google Scholar]
  13. FadeyiI. LalaniM. MailkN. Van WykA. KaurH. Quality of the antibiotics - Amoxicillin and co-trimoxazole from Ghana, Nigeria, and the United Kingdom.Am. J. Trop. Med. Hyg.201592Suppl. 6879410.4269/ajtmh.14‑0539 25897067
    [Google Scholar]
  14. CorreiaL.P. SantanaC.P. MedeirosA.C.D. MacêdoR.O. Sideroxylon obtusifolium herbal medicine characterization using pyrolysis GC/MS, SEM and different thermoanalytical techniques.J. Therm. Anal. Calorim.20161232993100110.1007/s10973‑015‑4986‑1
    [Google Scholar]
  15. JiangS.C. GeS.B. PengW. Molecules and functions of rosewood: Dalbergia stevenson.Arab. J. Chem.201811678279210.1016/j.arabjc.2017.12.032
    [Google Scholar]
  16. FanY. LiY. WuY. LiL. WangY. LiY. Identification of the chemical constituents in simiao wan and rat plasma after oral administration by GC‐MS and LC‐MS.Evid. Based Complement. Alternat. Med.201720171678159310.1155/2017/6781593 28626487
    [Google Scholar]
  17. LongQ. LiZ. HanB. Gholam HosseiniH. ZhouH. WangS. LuoD. Discrimination of two cultivars of Alpinia officinarum hance using an electronic nose and gas chromatography-mass spectrometry coupled with chemometrics.Sensors (Basel)201919357210.3390/s19030572 30704021
    [Google Scholar]
  18. HongM. MaH.Y. WuX.R. HuaY.Q. ZhuQ. FanH.W. A method of hepatocyte extraction conjugated with HPLC is established for screening potential active components in Chinese medicines - Probing herba Artemisiae scopariae as an exemplifying approach.Molecules20121721468148210.3390/molecules17021468 22310168
    [Google Scholar]
  19. XiangH. XuH. ZhanL. ZhangL. Fingerprint analysis and multi-component determination of Zibu Piyin recipe by HPLC with DAD and Q-TOF/MS method.Nat. Prod. Res.20163091081108410.1080/14786419.2015.1092147 26418623
    [Google Scholar]
  20. YinF.Z. YinW. ZhangX. LuT.L. CaiB.C. Development of an HPLC fingerprint for quality control and species differentiation of Fructus schisandrae.Acta Chromatogr.201022460962110.1556/AChrom.22.2010.4.10
    [Google Scholar]
  21. KristiantoS. WidyartiS. SantjojoD. SumitroS.B. Identification and characterization of shogaol and 6-gingerol complex from madurese herbal medicine.Egypt. J. Chem.202265323331
    [Google Scholar]
  22. DemiralpD. IgciN. OzturkY. BeyazitY. HaznedarogluI.C. The Fourier Transform Infrared (FTIR) spectroscopic and mass spectrometric metabolomics studies of ankaferd hemostat.UHOD Uluslar. Hematol. Onkol. Derg.201323317117710.4999/uhod.12059
    [Google Scholar]
  23. VeljkovićJ.N. PavlovićA.N. BrcanovićJ.M. MitićS.S. TošićS.B. Pecev-MarinkovićE.T. MitićM.N. Differentiation of black, green, herbal and fruit bagged teas based on multi-element analysis using inductively-coupled plasma atomic emission spectrometry.Chem. Pap.201670448849410.1515/chempap‑2015‑0215
    [Google Scholar]
  24. ChenH. FanC. ChangQ. PangG. HuX. LuM. WangW. Chemometric determination of the botanical origin for Chinese honeys on the basis of mineral elements determined by ICP-MS.J. Agric. Food Chem.201462112443244810.1021/jf405045q 24579819
    [Google Scholar]
  25. YükselB. UstaoğluF. YazmanM.M. ŞekerM.E. ÖncüT. Exposure to potentially toxic elements through ingestion of canned non-alcoholic drinks sold in Istanbul, Türkiye: A health risk assessment study.J. Food Compos. Anal.202312110536110.1016/j.jfca.2023.105361
    [Google Scholar]
  26. DghaimR. Al KhatibS. RasoolH. Ali KhanM. Determination of heavy metals concentration in traditional herbs commonly consumed in the United Arab Emirates.J. Environ. Public Health201520151610.1155/2015/973878 26000023
    [Google Scholar]
  27. ZhangJ. LiuZ. TianB. LiJ. LuoJ. WangX. AiS. WangX. Assessment of soil heavy metal pollution in provinces of China based on different soil types: From normalization to soil quality criteria and ecological risk assessment.J. Hazard. Mater.202344112989110.1016/j.jhazmat.2022.129891 36103763
    [Google Scholar]
  28. SintoriniM.M. WidyatmokoH. SinagaE. Effect of pH on metal mobility in the soil.IOP Conference Series: Earth and Environmental Science2021Jakarta, Indonesia, 5 Aug, 2020, pp. 012071.
    [Google Scholar]
  29. WeiJ.I.A. Analysis of heavy metals in Chinese herbal medicines and their absorption and enrichment characteristics.J. Guangzhou Univ. Tradit. Chin. Med.200919
    [Google Scholar]
  30. MazarakiotiE.C. ZotosA. ThomatouA.A. KontogeorgosA. PatakasA. LadavosA. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), a useful tool in authenticity of agricultural products’ and foods’ origin.Foods20221122370510.3390/foods11223705 36429296
    [Google Scholar]
  31. ChenW. YangY. FuK. ZhangD. WangZ. Progress in ICP-MS analysis of minerals and heavy metals in traditional medicine.Front. Pharmacol.20221389127310.3389/fphar.2022.891273 35837276
    [Google Scholar]
  32. SanwalN. MishraS. SharmaN. SahuJ.K. RautP.K. NaikS.N. Evaluation of the phytoconstituents and bioactivity potentials of Sea buckthorn (Hippophae sp.) leaves using GC-MS, HPLC-PDA and ICP-MS: A gender-based comprehensive metabolic profiling.J. Food Meas. Charact.20231732767278110.1007/s11694‑023‑01810‑1
    [Google Scholar]
  33. IaquintaF. Lopes FialhoL. NóbregaJ.A. PistónM. MachadoI. Determination of Cd, Pb and Se in beef samples using aerosol dilution by ICP-MS.J. Food Meas. Charact.20211554105411110.1007/s11694‑021‑00999‑3
    [Google Scholar]
  34. RuiY.K. GuoJ. HuangK-L. JinY.H. LuoY.B. Application of ICP-MS to the detection of heavy metals in transgenic cornGuangpuxue Yu Guangpu Fenxi2007274796798 17608202
    [Google Scholar]
  35. AlbalsD. Al-MomaniI.F. IssaR. YehyaA. Multi-element determination of essential and toxic metals in green and roasted coffee beans: A comparative study among different origins using ICP-MS.Sci. Prog.2021104210.1177/00368504211026162 34152891
    [Google Scholar]
  36. GaoF. HaoX. ZengG. GuanL. WuH. ZhangL. WeiR. WangH. LiH. Identification of the geographical origin of Ecolly (Vitis vinifera L.) grapes and wines from different Chinese regions by ICP-MS coupled with chemometrics.J. Food Compos. Anal.202210510424810.1016/j.jfca.2021.104248
    [Google Scholar]
  37. KwonY.K. BongY.S. LeeK.S. HwangG.S. An integrated analysis for determining the geographical origin of medicinal herbs using ICP-AES/ICP-MS and 1H NMR analysis.Food Chem.201416116817510.1016/j.foodchem.2014.03.124 24837936
    [Google Scholar]
  38. GajekM. PawlaczykA. JóźwikK. Szynkowska-JóźwikM.I. The elemental fingerprints of different types of whisky as determined by ICP-OES and ICP-MS techniques in relation to their type, age, and origin.Foods20221111161610.3390/foods11111616 35681370
    [Google Scholar]
  39. JiC. LiuJ. ZhangQ. LiJ. WuZ. WangX. XieY. ZhaoJ. ShiR. MaX. KhanM.R. BusquetsR. HeX. ZhuY. ZhuS. ZhengW. Multi-element analysis and origin discrimination of panax notoginseng based on inductively coupled plasma tandem mass spectrometry (ICP-MS/MS).Molecules2022279298210.3390/molecules27092982 35566332
    [Google Scholar]
  40. ZuoT. JinH. YuK. KangS. MaS. Holistic strategy of study on authenticity and safety evaluation of Chinese wolfberry by ICP-MS combined with chemometrics.Yaowu Fenxi Zazhi202141394401
    [Google Scholar]
  41. LiL. ZhouR. CaoS. MaoX. HuQ. JiS. Method System in Different Pharmacopoeias and Application Progress in Study of Inorganic Components of Traditional Chinese Medicine of ICP-MS.Phys. Testing Chem. Anal. Part B: Chem. Anal.202157665672
    [Google Scholar]
  42. LiuY. GuoM. DuX. XuF. Determination of eight inorganic elements in ten chinese medicinal materials by ICP-MS and its statistical analysis.Zhongguo Shiyan Fangjixue Zazhi2018243844
    [Google Scholar]
  43. MaraA. DeiddaS. CareddaM. CiuluM. DeromaM. FarininiE. FlorisI. LangascoI. LeardiR. PiloM.I. SpanoN. SannaG. Multi-Elemental analysis as a tool to ascertain the safety and the origin of beehive products: Development, validation, and application of an ICP-MS method on four unifloral honeys produced in Sardinia, Italy.Molecules2022276200910.3390/molecules27062009 35335374
    [Google Scholar]
  44. YuanM. GongS. LiuY. LiX. LiM. ZengD. LiJ. GuoY. GuoL. Rapid discrimination of the authenticity and geographical origin of bear bile powder using stable isotope ratio and elemental analysis.Anal. Bioanal. Chem.2023415234535610.1007/s00216‑022‑04413‑9 36350342
    [Google Scholar]
  45. WangJ. WangS. GeX. ZhangM. Authentication of American ginseng (Panax quinquefolius L.) from different origins by linear discriminant analysis of multi-elements.Eur. Food Res. Technol.2021247102657266610.1007/s00217‑021‑03816‑9
    [Google Scholar]
  46. XuH. CaramanisC. MannorS. Outlier-robust PCA: The high-dimensional case.IEEE Trans. Inf. Theory201359154657210.1109/TIT.2012.2212415
    [Google Scholar]
  47. Wen-Hui Yang, ; Dao-Qing Dai; Hong Yan, Feature extraction and uncorrelated discriminant analysis for high-dimensional data.IEEE Trans. Knowl. Data Eng.200820560161410.1109/TKDE.2007.190720
    [Google Scholar]
  48. TayC.K. HayfordE. HodgsonI.O. KortatsiB.K. Hydrochemical appraisal of groundwater evolution within the Lower Pra Basin, Ghana: A hierarchical cluster analysis (HCA) approach.Environ. Earth Sci.20157373579359110.1007/s12665‑014‑3644‑4
    [Google Scholar]
  49. SarkerA. KimJ.E. IslamA.R.M.T. BilalM. RakibM.R.J. NandiR. RahmanM.M. IslamT. Heavy metals contamination and associated health risks in food webs - A review focuses on food safety and environmental sustainability in Bangladesh.Environ. Sci. Pollut. Res. Int.20222933230324510.1007/s11356‑021‑17153‑7 34739668
    [Google Scholar]
  50. QinG. NiuZ. YuJ. LiZ. MaJ. XiangP. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology.Chemosphere202126712920510.1016/j.chemosphere.2020.129205 33338709
    [Google Scholar]
  51. SanaeiF. AminM.M. AlavijehZ.P. EsfahaniR.A. SadeghiM. BandarrigN.S. FatehizadehA. TaheriE. RezakazemiM. Health risk assessment of potentially toxic elements intake via food crops consumption: Monte Carlo simulation-based probabilistic and heavy metal pollution index.Environ. Sci. Pollut. Res. Int.20212821479149010.1007/s11356‑020‑10450‑7 32840749
    [Google Scholar]
  52. Green standards of medicinal plants and preparations for foreign trade and economy.Standards Press of China2005
    [Google Scholar]
  53. ChienL.C. HungT.C. ChoangK.Y. YehC.Y. MengP.J. ShiehM.J. HanB-C. Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan.Sci. Total Environ.20022851-317718510.1016/S0048‑9697(01)00916‑0 11874040
    [Google Scholar]
  54. U.S. Environmental Protection Agency. 2006 Edition of the Drinking Water Standards and Health Advisories; U.S. Environmental Protection Agency: Washington, DC, 2006. Available at https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1004X78.txt
  55. LiZ. LiW. LeiJ. LiQ. LiuL. ZhouL. Effect and Hazard of Common Metal Elements on Human Body.Mater. Chin.202039934944
    [Google Scholar]
  56. MengC. WangP. HaoZ. GaoZ. LiQ. GaoH. LiuY. LiQ. WangQ. FengF. Ecological and health risk assessment of heavy metals in soil and Chinese herbal medicines.Environ. Geochem. Health202244381782810.1007/s10653‑021‑00978‑z 34075510
    [Google Scholar]
  57. LiuQ.R. DuZ.W. LiJ.Z. WangY.S. GuX. CuiX.M. Analysis and evaluation of inorganic elements in Salvia miltiorrhiza and rhizosphere soils from different areas.Guangpuxue Yu Guangpu Fenxi20214136183624
    [Google Scholar]
  58. OuyangZ. ZhaoM. WeiY. PengH. WangQ. GuoL. ZhangW. The influences of inorganic elements in soil on the development of famous - Region Atractylodes lancea (Thunb.) DC.Pharmacogn. Mag.2015114233734410.4103/0973‑1296.153087 25829773
    [Google Scholar]
/content/journals/cac/10.2174/0115734110346909241021042543
Loading
/content/journals/cac/10.2174/0115734110346909241021042543
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test