Skip to content
2000
Volume 18, Issue 7
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Introduction

The medical field can utilize radiological images with deep learning techniques to diagnose disease more accurately, enabling the diagnosis and classification of a variety of illnesses. In the domain of learning and machine vision, identifying COVID-19 from X-ray images is a developing area. Since the onset of COVID-19, significant work has been performed, yet some issues remain in this field.

Methods

Firstly, there are limited X-ray scans readily available that are classified as COVID-19 positive, resulting in an unbalanced dataset. Secondly, there is no single set of data, classes, or evaluation protocols for all the work performed. This study proposes a three-class balanced dataset based on two validated publicly available datasets. Deep Convolutional neural networks have the potential to operate with both wide breadth and wide depth, which could raise computing complexity. Additionally, to deal with this issue, an attention-guided ensemble model (AGEM) is proposed to classify normal, pneumonia, and COVID-19 images. First, we propose an Attention Guided-Convolutional Neural Network (AG-CNN) architecture based on transfer learning. We used three pre-trained models , InceptionV3, DenseNet121, and MobileNetV2, as the basis for the proposed AG-CNN, resulting in three attention-guided network architectures , AG-InceptionV3, AG-DenseNet121, and AG-MobileNetV2. Then, we used entropy computation and an uncertainty-based weighting ensemble to classify the images into three classes.

Results

The performance was evaluated and compared with existing works and 7 pre-trained models , ResNet50, InceptionV3, VGG-16, VGG-19, Densenet-201, Xception, MobileNetV2, on our three-class dataset. An accuracy of 97.35%, recall of 97.35%, specificity of 98.67%, precision of 97.35%, and F1-score of 97.35% demonstrate the superiority of our proposed attention-guided ensemble model over pre-trained models and other existing studies.

Conclusion

It is noteworthy that for additional analysis, we utilized Grad-CAM or gradient-weighted Class Activation Mapping.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965334135241115064754
2025-01-06
2025-09-04
Loading full text...

Full text loading...

References

  1. TayM.Z. PohC.M. RéniaL. MacAryP.A. NgL.F.P. The trinity of COVID-19: immunity, inflammation and intervention.Nat. Rev. Immunol.202020636337410.1038/s41577‑020‑0311‑832346093
    [Google Scholar]
  2. LauerS.A. GrantzK.H. BiQ. JonesF.K. ZhengQ. MeredithH.R. AzmanA.S. ReichN.G. LesslerJ. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application.Ann. Intern. Med.2020172957758210.7326/M20‑050432150748
    [Google Scholar]
  3. AlimadadiA. AryalS. ManandharI. MunroeP.B. JoeB. ChengX. Artificial intelligence and machine learning to fight COVID-19.Physiol. Genomics202052420020210.1152/physiolgenomics.00029.202032216577
    [Google Scholar]
  4. SanchesJ.M. LaineA.F. SuriJ.S. Ultrasound Imaging.Cham, SwitzerlandSpringer201210.1007/978‑1‑4614‑1180‑2
    [Google Scholar]
  5. DaleB.M. BrownM.A. SemelkaR.C. MRI: Basic Principles and Applications.Hoboken, NJ, USAJohn Wiley & Sons201510.1002/9781119013068
    [Google Scholar]
  6. SabaL. SuriJ.S. Multi-Detector CT Imaging: Abdomen, Pelvis, and CAD Applications.Boca Raton, FL, USACRC Press2013
    [Google Scholar]
  7. BickelhauptS. LaunF.B. TesdorffJ. LedererW. DanielH. StieberA. DelormeS. SchlemmerH.P. Fast and Noninvasive Characterization of Suspicious Lesions Detected at Breast Cancer X-Ray Screening: Capability of Diffusion-weighted MR Imaging with MIPs.Radiology2016278368969710.1148/radiol.201515042526418516
    [Google Scholar]
  8. SelfW.H. CourtneyD.M. McNaughtonC.D. WunderinkR.G. KlineJ.A. High discordance of chest x-ray and computed tomography for detection of pulmonary opacities in ED patients: implications for diagnosing pneumonia.Am. J. Emerg. Med.201331240140510.1016/j.ajem.2012.08.04123083885
    [Google Scholar]
  9. SabaL. BiswasM. KuppiliV. Cuadrado GodiaE. SuriH.S. EdlaD.R. OmerzuT. LairdJ.R. KhannaN.N. MavrogeniS. ProtogerouA. SfikakisP.P. ViswanathanV. KitasG.D. NicolaidesA. GuptaA. SuriJ.S. The present and future of deep learning in radiology.Eur. J. Radiol.2019114142410.1016/j.ejrad.2019.02.03831005165
    [Google Scholar]
  10. BiswasM. KuppiliV. SabaL. EdlaD.R. SuriH.S. Cuadrado-GodiaE. LairdJ.R. MarinhoeR.T. SanchesJ. NicolaidesA. State-of-the-art review on deep learning in medical imaging. Front. Biosci.-.Landmark201924380406
    [Google Scholar]
  11. KaissisG.A. MakowskiM.R. RückertD. BrarenR.F. Secure, privacy-preserving and federated machine learning in medical imaging.Nat. Mach. Intell.20202630531110.1038/s42256‑020‑0186‑1
    [Google Scholar]
  12. LundervoldA.S. LundervoldA. An overview of deep learning in medical imaging focusing on MRI.Z. Med. Phys.201929210212710.1016/j.zemedi.2018.11.00230553609
    [Google Scholar]
  13. BiswasM. KuppiliV. ArakiT. EdlaD.R. GodiaE.C. SabaL. SuriH.S. OmerzuT. LairdJ.R. KhannaN.N. NicolaidesA. SuriJ.S. Deep learning strategy for accurate carotid intima-media thickness measurement: An ultrasound study on Japanese diabetic cohort.Comput. Biol. Med.20189810011710.1016/j.compbiomed.2018.05.01429778925
    [Google Scholar]
  14. TandelG.S. BiswasM. KakdeO.G. TiwariA. SuriH.S. TurkM. LairdJ. AsareC. AnkrahA.A. KhannaN.N. MadhusudhanB.K. SabaL. SuriJ.S. A Review on a Deep Learning Perspective in Brain Cancer Classification.Cancers (Basel)201911111110.3390/cancers1101011130669406
    [Google Scholar]
  15. SuriJ.S. RangayyanR.M. Breast Imaging, Mammography, and Computer-Aided Diagnosis of Breast Cancer.Bellingham, WA, USASPIE200610.1117/3.651880
    [Google Scholar]
  16. SetarehdanS.K. SinghS. Advanced Algorithmic Approaches to Medical Image Segmentation: State-of-the-Art Applications in Cardiology, Neurology, Mammography and Pathology.Berlin, GermanySpringer Science & Business Media2001
    [Google Scholar]
  17. AgarwalM. SabaL. GuptaS.K. CarrieroA. FalaschiZ. PaschèA. DannaP. El-BazA. NaiduS. SuriJ.S. A novel bloc imaging technique using nine artificial intelligence models for COVID-19 disease classification, characterization and severity measurement in lung computed tomography scans on an Italian cohort.J. Med. Syst.20214532810.1007/s10916‑021‑01707‑w33496876
    [Google Scholar]
  18. SabaL. AgarwalM. PatrickA. PuvvulaA. GuptaS.K. CarrieroA. LairdJ.R. KitasG.D. JohriA.M. BalestrieriA. FalaschiZ. PaschèA. ViswanathanV. El-BazA. AlamI. JainA. NaiduS. OberleitnerR. KhannaN.N. BitA. FatemiM. AlizadA. SuriJ.S. Six artificial intelligence paradigms for tissue characterisation and classification of non-COVID-19 pneumonia against COVID-19 pneumonia in computed tomography lungs.Int. J. CARS202116342343410.1007/s11548‑021‑02317‑033532975
    [Google Scholar]
  19. KhanA.I. ShahJ.L. BhatM.M. CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images.Comput. Methods Programs Biomed.202019610558110.1016/j.cmpb.2020.10558132534344
    [Google Scholar]
  20. HussainE. HasanM. RahmanM.A. LeeI. TamannaT. ParvezM.Z. CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images.Chaos Solitons Fractals202114211049510.1016/j.chaos.2020.11049533250589
    [Google Scholar]
  21. JainR. GuptaM. TanejaS. HemanthD.J. Deep learning based detection and analysis of COVID-19 on chest X-ray images.Appl. Intell.20215131690170010.1007/s10489‑020‑01902‑134764553
    [Google Scholar]
  22. NayakS.R. NayakD.R. SinhaU. AroraV. PachoriR.B. Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study.Biomed. Signal Process. Control20216410236510.1016/j.bspc.2020.10236533230398
    [Google Scholar]
  23. AlomM.Z. RahmanM.M. NasrinM.S. TahaT.M. AsariV.K. COVID_MTNet: COVID-19 detection with multi-task deep learning approaches.arXiv:2004.037472020
    [Google Scholar]
  24. WehbeR.M. ShengJ. DuttaS. ChaiS. DravidA. BarutcuS. WuY. CantrellD.R. XiaoN. AllenB.D. MacNealyG.A. SavasH. AgrawalR. ParekhN. KatsaggelosA.K. DeepCOVIDXR: An artificial intelligence algorithm to detect COVID-19 on chest radiographs trained and tested on a large US clinical data set.Radiology20212991E167E17610.1148/radiol.202020351133231531
    [Google Scholar]
  25. SuriJ. AgarwalS. ChabertG. CarrieroA. PaschèA. DannaP. SabaL. MehmedovićA. FaaG. SinghI. TurkM. ChadhaP. JohriA. KhannaN. MavrogeniS. LairdJ. PareekG. MinerM. SobelD. BalestrieriA. SfikakisP. TsoulfasG. ProtogerouA. MisraD. AgarwalV. KitasG. TejiJ. Al-MainiM. DhanjilS. NicolaidesA. SharmaA. RathoreV. FatemiM. AlizadA. KrishnanP. NagyF. RuzsaZ. FoudaM. NaiduS. ViskovicK. KalraM. COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans.Diagnostics (Basel)2022126148210.3390/diagnostics1206148235741292
    [Google Scholar]
  26. ShrivastavaV.K. LondheN.D. SonawaneR.S. SuriJ.S. A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification.Comput. Methods Programs Biomed.201715092210.1016/j.cmpb.2017.07.01128859832
    [Google Scholar]
  27. ShiF. WangJ. ShiJ. WuZ. WangQ. TangZ. HeK. ShiY. ShenD. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19.IEEE Rev. Biomed. Eng.20211441510.1109/RBME.2020.298797532305937
    [Google Scholar]
  28. IslamM.M. KarrayF. AlhajjR. ZengJ. A review on deep learning techniques for the diagnosis of novel coronavirus (COVID-19).IEEE Access20219305513057210.1109/ACCESS.2021.305853734976571
    [Google Scholar]
  29. BhattacharyaS. Reddy MaddikuntaP.K. PhamQ.V. GadekalluT.R. Krishnan SS.R. ChowdharyC.L. AlazabM. Jalil PiranM. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey.Sustain Cities Soc.20216510258910.1016/j.scs.2020.10258933169099
    [Google Scholar]
  30. Garcia Santa CruzB. BossaM.N. SölterJ. HuschA.D. Public Covid-19 X-ray datasets and their impact on model bias – A systematic review of a significant problem.Med. Image Anal.20217410222510.1016/j.media.2021.10222534597937
    [Google Scholar]
  31. RobertsM. DriggsD. ThorpeM. GilbeyJ. YeungM. UrsprungS. Aviles-RiveroA.I. EtmannC. McCagueC. BeerL. Weir-McCallJ.R. TengZ. Gkrania-KlotsasE. RuggieroA. KorhonenA. JeffersonE. AkoE. LangsG. GozaliaslG. YangG. ProschH. PrellerJ. StanczukJ. TangJ. HofmanningerJ. BabarJ. SánchezL.E. ThillaiM. GonzalezP.M. TeareP. ZhuX. PatelM. CafollaC. AzadbakhtH. JacobJ. LoweJ. ZhangK. BradleyK. WassinM. HolzerM. JiK. OrtetM.D. AiT. WaltonN. LioP. StranksS. ShadbahrT. LinW. ZhaY. NiuZ. RuddJ.H.F. SalaE. SchönliebC-B. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans.Nat. Mach. Intell.20213319921710.1038/s42256‑021‑00307‑0
    [Google Scholar]
  32. BruneseL. MercaldoF. ReginelliA. SantoneA. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays.Comput. Methods Programs Biomed.202019610560810.1016/j.cmpb.2020.10560832599338
    [Google Scholar]
  33. RahmanT. KhandakarA. QiblaweyY. TahirA. KiranyazS. Abul KashemS.B. IslamM.T. Al MaadeedS. ZughaierS.M. KhanM.S. ChowdhuryM.E.H. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.Comput. Biol. Med.202113210431910.1016/j.compbiomed.2021.10431933799220
    [Google Scholar]
  34. KonarD. PanigrahiB.K. BhattacharyyaS. DeyN. JiangR. Auto-diagnosis of COVID-19 using lung CT images with semi-supervised shallow learning network.IEEE Access20219287162872810.1109/ACCESS.2021.3058854
    [Google Scholar]
  35. VaidS. KalantarR. BhandariM. Deep learning COVID-19 detection bias: accuracy through artificial intelligence.Int. Orthop.20204481539154210.1007/s00264‑020‑04609‑732462314
    [Google Scholar]
  36. OzturkT. TaloM. YildirimE.A. BalogluU.B. YildirimO. AcharyaU.R. Automated detection of COVID-19 cases using deep neural networks with Xray images.Comput Biol Med.2020121103792
    [Google Scholar]
  37. PanwarH. GuptaP.K. SiddiquiM.K. Morales-MenendezR. SinghV. Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet.Chaos Solitons Fractals202013810994410.1016/j.chaos.2020.10994432536759
    [Google Scholar]
  38. AhujaS. PanigrahiB.K. DeyN. RajinikanthV. GandhiT.K. Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices.Appl. Intell.202151157158510.1007/s10489‑020‑01826‑w34764547
    [Google Scholar]
  39. SharifraziD. AlizadehsaniR. RoshanzamirM. JoloudariJ.H. ShoeibiA. JafariM. HussainS. SaniZ.A. HasanzadehF. KhozeimehF. KhosraviA. NahavandiS. PanahiazarM. ZareA. IslamS.M.S. AcharyaU.R. Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images.Biomed. Signal Process. Control20216810262210.1016/j.bspc.2021.10262233846685
    [Google Scholar]
  40. KhozeimehF. SharifraziD. IzadiN.H. JoloudariJ.H. ShoeibiA. AlizadehsaniR. GorrizJ.M. HussainS. SaniZ.A. MoosaeiH. KhosraviA. NahavandiS. IslamS.M.S. Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients.Sci. Rep.20211111534310.1038/s41598‑021‑93543‑834321491
    [Google Scholar]
  41. Al RahhalM.M. BaziY. JomaaR.M. AlShibliA. AlajlanN. MekhalfiM.L. MelganiF. Covid-19 detection in ct/x-ray imagery using vision transformers.J. Pers. Med.202212231010.3390/jpm1202031035207797
    [Google Scholar]
  42. MondalA.K. BhattacharjeeA. SinglaP. PrathoshA.P. xViTCOS: explainable vision transformer based COVID-19 screening using radiography.IEEE J. Transl. Eng. Health Med.20221011010.1109/JTEHM.2021.313409634956741
    [Google Scholar]
  43. KrishnanK.S. KrishnanK.S. Vision transformer based COVID-19 detection using chest X-rays.2021 6th International Conference on Signal Processing, Computing and Control (ISPCC)07-09 Oct, 2021, Solan, India, 2021, pp. 644-648.10.1109/ISPCC53510.2021.9609375
    [Google Scholar]
  44. KumarA. TripathiA.R. SatapathyS.C. ZhangY.D. SARS-Net: COVID-19 detection from chest x-rays by combining graph convolutional network and convolutional neural network.Pattern Recognit.202212210825510.1016/j.patcog.2021.10825534456369
    [Google Scholar]
  45. EsmiN. GolshanY. AsadiS. ShahbahramiA. GaydadjievG. A fuzzy fine-tuned model for COVID-19 diagnosis.Comput. Biol. Med.202315310648310.1016/j.compbiomed.2022.10648336621192
    [Google Scholar]
  46. NarinA. KayaC. PamukZ. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks.Pattern Anal. Appl.20212431207122010.1007/s10044‑021‑00984‑y33994847
    [Google Scholar]
  47. SethyP.K. BeheraS.K. RathaP.K. BiswasP. Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. International Journal of Mathematical.Int. J. Mathemat. Engin. Manag.Sci.20205464365110.33889/IJMEMS.2020.5.4.052
    [Google Scholar]
  48. HemdanE.E.D. ShoumanM.A. KararM.E. Covidx-net: A framework of deep learning classifiers to diagnose COVID-19 in x-ray images.Arvix abs/2003.110552020
    [Google Scholar]
  49. KumarR. Accurate prediction of COVID-19 using chest X-Ray images through deep feature learning model with SMOTE and machine learning classifiers.MedRxiv 2020.04.13.20063461202010.1101/2020.04.13.20063461
    [Google Scholar]
  50. YooS.H. GengH. ChiuT.L. YuS.K. ChoD.C. HeoJ. ChoiM.S. ChoiI.H. Cung VanC. NhungN.V. MinB.J. LeeH. Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging.Front. Med. (Lausanne)2020742710.3389/fmed.2020.0042732760732
    [Google Scholar]
  51. AlbahliS. A deep neural network to distinguish COVID-19 from other chest diseases using x-ray images.Curr. Med. Imaging Rev.202117110911910.2174/157340561666620060416395432496988
    [Google Scholar]
  52. Civit-MasotJ. Luna-PerejónF. Domínguez MoralesM. CivitA. Deep learning system for COVID-19 diagnosis aid using X-ray pulmonary images.Appl. Sci. (Basel)20201013464010.3390/app10134640
    [Google Scholar]
  53. SarkerL. IslamM.M. HannanT. AhmedZ. COVID-DenseNet: A deep learning architecture to detect COVID-19 from chest radiology images.Preprints 20200501512020
    [Google Scholar]
  54. WangS. ZhaY. LiW. WuQ. LiX. NiuM. WangM. QiuX. LiH. YuH. GongW. BaiY. LiL. ZhuY. WangL. TianJ. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis.Eur. Respir. J.2020562200077510.1183/13993003.00775‑202032444412
    [Google Scholar]
  55. ApostolopoulosI.D. AznaouridisS.I. TzaniM.A. Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases.J. Med. Biol. Eng.202040346246910.1007/s40846‑020‑00529‑432412551
    [Google Scholar]
  56. VantaggiatoE. PaladiniE. BougourziF. DistanteC. HadidA. Taleb-AhmedA. Covid-19 recognition using ensemble-cnns in two new chest x-ray databases.Sensors (Basel)2021215174210.3390/s2105174233802428
    [Google Scholar]
  57. Covid-19 image dataset.Available from:https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset/data(accessed on 8-10-2024)
  58. SzegedyC. LiuW. JiaY. SermanetP. ReedS. AnguelovD. ErhanD. VanhouckeV. RabinovichA. Going deeper with convolutions.Proceedings of the IEEE conference on computer vision and pattern recognitionBoston, MA, USA, 2015 pp. 1-9.
    [Google Scholar]
  59. SzegedyC. VanhouckeV. IoffeS. ShlensJ. WojnaZ. Rethinking the inception architecture for computer vision.Proceedings of the IEEE conference on computer vision and pattern recognition27-30 Jun, 2016, Las Vegas, NV, USA, 2016, pp. 2818-2826.10.1109/CVPR.2016.308
    [Google Scholar]
  60. HuangG. LiuZ. Van Der MaatenL. WeinbergerK.Q. Densely connected convolutional networks.Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitionHonolulu, HI, USA, 2014, pp. 4700-4708.
    [Google Scholar]
  61. KrizhevskyA. SutskeverI. HintonG.E. ImageNet classification with deep convolutional neural networks.Commun. ACM2017606849010.1145/3065386
    [Google Scholar]
  62. SandlerM. HowardA. ZhuM. ZhmoginovA. ChenL.C. 2018Mobilenetv2: Inverted residuals and linear bottlenecks.Proceedings of the IEEE conference on computer vision and pattern recognition18-23 June 2018, Salt Lake City, UT, USA, 2018, pp. 4510-4520.
    [Google Scholar]
  63. HowardA.G. ZhuM. ChenB. KalenichenkoD. WangW. WeyandT. AndreettoM. AdamH. Mobilenets: Efficient convolutional neural networks for mobile vision applications.arXiv:1704.048612017
    [Google Scholar]
  64. BahdanauD. ChoK. BengioY. Neural machine translation by jointly learning to align and translate.arXiv:1409.04732014
    [Google Scholar]
  65. VaswaniA. ShazeerN. ParmarN. UszkoreitJ. JonesL. GomezA.N. KaiserŁ. PolosukhinI. Attention is all you need.Proceedings of the Advances in Neural Information Processing Systems04 Dec, 2017, Long Beach, CA, USA, pp. 5998-6008.
    [Google Scholar]
  66. TaoH. Smoke Recognition in Satellite Imagery via an Attention Pyramid Network With Bidirectional Multi-Level Multi-Granularity Feature Aggregation and Gated Fusion.IEEE Internet Things J.2023
    [Google Scholar]
  67. TaoH. A label-relevance multi-direction interaction network with enhanced deformable convolution for forest smoke recognition.Expert Syst. Appl.202423612138310.1016/j.eswa.2023.121383
    [Google Scholar]
  68. TaoH. DuanQ. Hierarchical attention network with progressive feature fusion for facial expression recognition.Neural Netw.202417033734810.1016/j.neunet.2023.11.03338006736
    [Google Scholar]
  69. ZhangH. LvZ. LiuS. SangZ. ZhangZ. Cn2a-capsnet: a capsule network and CNN-attention based method for COVID-19 chest X-ray image diagnosis.Discover Applied Sciences20246419010.1007/s42452‑024‑05796‑3
    [Google Scholar]
  70. DasA.K. GhoshS. ThunderS. DuttaR. AgarwalS. ChakrabartiA. Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network.Pattern Anal. Appl.20212431111112410.1007/s10044‑021‑00970‑4
    [Google Scholar]
  71. gifaniP. ShalbafA. VafaeezadehM. Automated detection of COVID-19 using ensemble of transfer learning with deep convolutional neural network based on CT scans.Int. J. CARS202116111512310.1007/s11548‑020‑02286‑w33191476
    [Google Scholar]
  72. TürkF. Covid-19 Diagnosis Using a Deep Learning Ensemble Model with Chest X-Ray Images.Comput. Syst. Sci. Eng.2023452
    [Google Scholar]
  73. YangY. ZhangL. DuM. BoJ. LiuH. RenL. LiX. DeenM.J. A comparative analysis of eleven neural networks architectures for small datasets of lung images of COVID-19 patients toward improved clinical decisions.Comput. Biol. Med.202113910488710.1016/j.compbiomed.2021.10488734688974
    [Google Scholar]
  74. GillmanA.G. LunardoF. PrinableJ. BelousG. NicolsonA. MinH. TerhorstA. DowlingJ.A. Automated COVID-19 diagnosis and prognosis with medical imaging and who is publishing: A systematic review.Phys. Eng. Sci. Med.20214511329
    [Google Scholar]
  75. ToramanS. AlakusT.B. TurkogluI. Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks.Chaos Solitons Fractals202014011012210.1016/j.chaos.2020.11012232834634
    [Google Scholar]
  76. ZhangK LiuX ShenJ LiZ SangY WuX ZhaY LiangW WangC Clinically applicable ai system for accurate diagnosis, quantitative measurements, and prognosis of covid-19 pneumonia using computed tomography.Cell2021181614231433
    [Google Scholar]
  77. WangZ. XiaoY. Automatically discriminating and localizing covid-19 from community-acquired pneumonia on chest x-rays.Pattern Recognit.2021110107613
    [Google Scholar]
  78. KarakanisS. LeontidisG. Lightweight deep learning models for detecting COVID-19 from chest X-ray images.Comput. Biol. Med.202113010418110.1016/j.compbiomed.2020.10418133360271
    [Google Scholar]
  79. IbrahimA.U. OzsozM. SerteS. Al-TurjmanF. YakoiP.S. Pneumonia classification using deep learning from chest x-ray images during covid-19.Cognit. Comput.202111333425044
    [Google Scholar]
  80. LondonoJ.D. GarciaJ.A. VelazquezL. LlorenteJ.I. Artificial intelligence applied to chest X-ray images for the automatic detection of COVID-19. A thoughtful evaluation approach.IEEE Access2020822681122682710.1109/ACCESS.2020.3044858
    [Google Scholar]
  81. GhaffarZ. ShahP.M. KhanH. Comparative analysis of state-of-the-art deep learning models for detecting COVID-19 lung infection from chest X-ray images.techrxiv.200327152022
    [Google Scholar]
  82. TareshM.M. ZhuN. AliT.A.A. HameedA.S. MutarM.L. Transfer learning to detect COVID-19 automatically from X-ray images using convolutional neural networks.Int. J. Biomed. Imaging202120211910.1155/2021/882840434194484
    [Google Scholar]
  83. El AsnaouiK. ChawkiY. Using X-ray images and deep learning for automated detection of coronavirus disease.J. Biomol. Struct. Dyn.202139103615362610.1080/07391102.2020.176721232397844
    [Google Scholar]
  84. OhY. ParkS. YeJ.C. Deep learning COVID-19 features on CXR using limited training data sets.IEEE Trans. Med. Imaging20203982688270010.1109/TMI.2020.299329132396075
    [Google Scholar]
  85. HammoudiK. BenhabilesH. MelkemiM. DornaikaF. Arganda-CarrerasI. CollardD. ScherpereelA. Deep learning on chest X-ray images to detect and evaluate pneumonia cases at the era of COVID-19.J. Med. Syst.20214577510.1007/s10916‑021‑01745‑434101042
    [Google Scholar]
  86. ShahP.M. UllahF. ShahD. Deep GRU-CNN model for COVID-19 detection from chest X-rays data.IEEE Access202210350943510510.1109/ACCESS.2021.3077592
    [Google Scholar]
  87. AgrawalT. ChoudharyP. FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images.Evol. Syst.202213451953310.1007/s12530‑021‑09385‑238624806
    [Google Scholar]
  88. S.Thuseethan C.Wimalasooriya S.Vasanthapriyan Deep COVID-19 recognition using chest X-ray images: A comparative analysis.Proceedings of the 2021 5th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI) October 13, 2024, Colombo, Sri Lanka, pp. 1-5.10.1109/SLAAI‑ICAI54477.2021.9664727
    [Google Scholar]
  89. GiełczykA. MarciniakA. TarczewskaM. LutowskiZ. Pre-processing methods in chest X-ray image classification.PLoS One2022174e026594910.1371/journal.pone.026594935381050
    [Google Scholar]
  90. AbdulahiA.T. OgundokunR.O. AdenikeA.R. ShahM.A. AhmedY.K. PulmoNet: a novel deep learning based pulmonary diseases detection model.BMC Med. Imaging20242415110.1186/s12880‑024‑01227‑238418987
    [Google Scholar]
  91. TekerekA. Al-RaweI.A.M. A novel approach for prediction of lung disease using chest x-ray images based on DenseNet and MobileNet.Wirel. Pers. Commun.2023•••11510.1007/s11277‑023‑10489‑y37360137
    [Google Scholar]
  92. SharmaP. AryaR. VermaR. VermaB. Conv-CapsNet: capsule based network for COVID-19 detection through X-Ray scans.Multimedia Tools Appl.20238218285212854510.1007/s11042‑023‑14353‑w36846527
    [Google Scholar]
  93. ChowdhuryN.K. KabirM.A. RahmanM.M. RezoanaN. ECOVNet: a highly effective ensemble based deep learning model for detecting COVID-19.PeerJ Comput. Sci.20217e55110.7717/peerj‑cs.55134141883
    [Google Scholar]
  94. PaulA. BasuA. MahmudM. KaiserM.S. SarkarR. Inverted bell-curve-based ensemble of deep learning models for detection of COVID-19 from chest X-rays.Neural Comput. Appl.2022352211535013650
    [Google Scholar]
  95. DebS.D. JhaR.K. JhaK. TripathiP.S. A multi model ensemble based deep convolution neural network structure for detection of COVID19.Biomed. Signal Process. Control20227110312610.1016/j.bspc.2021.10312634493940
    [Google Scholar]
  96. MiyazakiA. IkejimaK. NishioM. YabutaM. MatsuoH. OnoueK. MatsunagaT. NishiokaE. KonoA. YamadaD. ObaK. IshikuraR. MurakamiT. Computer-aided diagnosis of chest X-ray for COVID-19 diagnosis in external validation study by radiologists with and without deep learning system.Sci. Rep.20231311753310.1038/s41598‑023‑44818‑937845348
    [Google Scholar]
  97. HussainA. AminS.U. LeeH. KhanA. KhanN.F. SeoS. An Automated Chest X-Ray Image Analysis for Covid-19 and Pneumonia Diagnosis Using Deep Ensemble Strategy.IEEE Access202311972079722010.1109/ACCESS.2023.3312533
    [Google Scholar]
  98. TangS. WangC. NieJ. KumarN. ZhangY. XiongZ. BarnawiA. EDL-COVID: Ensemble deep learning for COVID-19 case detection from chest X-ray images.IEEE Trans. Industr. Inform.20211796539654910.1109/TII.2021.305768337981915
    [Google Scholar]
  99. PramanikR. DeyS. MalakarS. MirjaliliS. SarkarR. TOPSIS aided ensemble of CNN models for screening COVID-19 in chest X-ray images.Sci. Rep.20221211540910.1038/s41598‑022‑18463‑736104401
    [Google Scholar]
  100. NishioM. KobayashiD. NishiokaE. MatsuoH. UraseY. OnoueK. IshikuraR. KitamuraY. SakaiE. TomitaM. HamanakaA. MurakamiT. Deep learning model for the automatic classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy: a multi-center retrospective study.Sci. Rep.2022121821410.1038/s41598‑022‑11990‑335581272
    [Google Scholar]
  101. AsifS. ZhaoM. TangF. ZhuY. LWSE: a lightweight stacked ensemble model for accurate detection of multiple chest infectious diseases including COVID-19.Multimedia Tools Appl.2023838239672400310.1007/s11042‑023‑16432‑4
    [Google Scholar]
  102. MeddageD.P.P. EkanayakeI.U. HerathS. GobirahavanR. MuttilN. RathnayakeU. Predicting bulk average velocity with rigid vegetation in open channels using tree-based machine learning: a novel approach using explainable artificial intelligence.Sensors (Basel)20222212439810.3390/s2212439835746184
    [Google Scholar]
  103. DharmarathneG. JayasingheT.N. BogahawaththaM. MeddageD.P.P. RathnayakeU. A novel machine learning approach for diagnosing diabetes with a self-explainable interface.Healthcare Analytics2024510030110.1016/j.health.2024.100301
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965334135241115064754
Loading
/content/journals/raeeng/10.2174/0123520965334135241115064754
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test