Skip to content
2000
Volume 18, Issue 7
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

Detecting heart disease in a timely manner is vital for preventing its progression, as it is the primary cause of death across the globe. Machine learning has the potential to enhance diagnostic accuracy and enable better clinical decision-making. A machine learning-powered hybrid system for diagnosing heart disease may provide a better optimal solution for heart disease prediction

Objective

The overarching objectives include accuracy improvement, enhanced classification reliability, and the development of high-performance prediction models for heart disease. These objectives indicate a commitment to advancing methodologies and models in the field of machine learning and data science, particularly within the domain of healthcare and disease prediction.

Methods

The proposed system was developed using the Cleveland dataset that was preprocessed and analyzed using Recursive Feature Elimination with Cross-Validation (RFECV) and Least Absolute Shrinkage and Selection Operator (LASSO) feature extraction techniques. Further, a hybrid feature selection approach using RFECV and K-Best has been proposed for feature selection. Eight machine learning classifiers such as Multilayer Perceptron (MLP), Random Forest (RF), Extreme Gradient Boosting (XGB), K-Nearest Neighbours (KNN), Extra Tree (ET), Support Vector Machine (SVC), Adaboost, Decision Tree (DT) were utilized, and the performance of the system was measured in terms of various metrics.

Results

The results showed that the proposed HSLE algorithm with hybrid feature selection led to the highest overall accuracy of 98.76%.

Conclusion

As mentioned, the main cause of adult death worldwide is chronic disease. Early detection can stop the condition from getting worse. Our research presents an innovative hybrid machine-learning approach designed to forecast heart disease.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965291887240422051823
2024-05-10
2025-08-18
Loading full text...

Full text loading...

References

  1. Jasinska-PiadloA. BondR. BiglarbeigiP. BriskR. CampbellP. McEneanenyD. What can machines learn about heart failure? A systematic literature review.Int. J. Data Sci. Anal.202213316318310.1007/s41060‑021‑00300‑1
    [Google Scholar]
  2. KutiameS. Application of machine learning algorithms in coronary heart disease: A systematic literature review and meta-analysis.Int. J. Adv. Comput. Sci. Appl.202213613
    [Google Scholar]
  3. AdlaD. ReddyG.V.R. NayakP. KarunaG. Deep learning-based computer aided diagnosis model for skin cancer detection and classification.Distrib. Parallel Databases202140471773610.1007/s10619‑021‑07360‑z
    [Google Scholar]
  4. GuptaR. MohanI. NarulaJ. Trends in coronary heart disease epidemiology in India.Ann. Glob. Health201682230731510.1016/j.aogh.2016.04.002 27372534
    [Google Scholar]
  5. AlyasT. HamidM. AlissaK. FaizT. TabassumN. AhmadA. Empirical method for thyroid disease classification using a machine learning approach.BioMed Res. Int.2022202211010.1155/2022/9809932 35711517
    [Google Scholar]
  6. Cardiovascular diseases (CVDs) key factsWho152021
    [Google Scholar]
  7. ReidC. Heart, stroke and vascular diseases, Australian facts.Heart Lung Circ.20011014210.1046/j.1444‑2892.2001.00075.x
    [Google Scholar]
  8. CordinaR. Nasir AhmadS. KotchetkovaI. EvebornG. PressleyL. AyerJ. ChardR. TanousD. RobinsonP. KilianJ. DeanfieldJ.E. CelermajerD.S. Management errors in adults with congenital heart disease: Prevalence, sources, and consequences.Eur. Heart J.2018391298298910.1093/eurheartj/ehx685 29236965
    [Google Scholar]
  9. MuibideenM. PrasadR. A fast algorithm for heart disease prediction using bayesian network modelarXiv2020111
    [Google Scholar]
  10. HsuC.H. ChenX. LinW. JiangC. ZhangY. HaoZ. ChungY-C. Effective multiple cancer disease diagnosis frameworks for improved healthcare using machine learning.Measurement202117510914510.1016/j.measurement.2021.109145
    [Google Scholar]
  11. DhimanG. Vinoth KumarV. KaurA. SharmaA. DON: Deep learning and optimization-based framework for detection of novel coronavirus disease using x-ray images.Interdiscip. Sci.202113226027210.1007/s12539‑021‑00418‑7 33587262
    [Google Scholar]
  12. Al BatainehA. JarrahA. High performance implementation of neural networks learning using swarm optimization algorithms for eeg classification based on brain wave data.Int. J. Appl. Metaheuristic Comput.202213111710.4018/IJAMC.292500
    [Google Scholar]
  13. GA. Logistic regression technique for prediction of cardiovascular disease.Glob. Transitions Proc20223127130
    [Google Scholar]
  14. MuhammadY. TahirM. HayatM. ChongK.T. Early and accurate detection and diagnosis of heart disease using intelligent computational model.Sci. Rep.20201011974710.1038/s41598‑020‑76635‑9 33184369
    [Google Scholar]
  15. BhartiR. KhampariaA. ShabazM. DhimanG. PandeS. SinghP. Prediction of heart disease using a combination of machine learning and deep learning.Comput. Intell. Neurosci.2021202111110.1155/2021/8387680 34306056
    [Google Scholar]
  16. AbdollahiJ. Nouri-MoghaddamB. A hybrid method for heart disease diagnosis utilizing feature selection based ensemble classifier model generation.Iran J. Comput. Sci.20225322924610.1007/s42044‑022‑00104‑x
    [Google Scholar]
  17. Al BatainehA. ManacekS. MLP-PSO hybrid algorithm for heart disease prediction.J. Pers. Med.2022128120810.3390/jpm12081208 35893302
    [Google Scholar]
  18. PlaiaA. BuscemiS. FürnkranzJ. MencíaE.L. Comparing boosting and bagging for decision trees of rankings.J. Classif.2022391789910.1007/s00357‑021‑09397‑2
    [Google Scholar]
  19. DoppalaB.P. BhattacharyyaD. ChakkravarthyM. KimT. A hybrid machine learning approach to identify coronary diseases using feature selection mechanism on heart disease dataset.Distrib. Parallel Databases202141112010.1007/s10619‑021‑07329‑y
    [Google Scholar]
  20. SaboorA. UsmanM. AliS. SamadA. AbrarM.F. UllahN. A method for improving prediction of human heart disease using machine learning algorithms.Mob. Inf. Syst.202220221910.1155/2022/1410169
    [Google Scholar]
  21. S.Guruprasad V.L.Mathias W.Dcunha Heart disease prediction using machine learning techniques2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT), Mysuru, India, 10-11 December 2021, pp. 762-76610.1109/ICEECCOT52851.2021.9707966
    [Google Scholar]
  22. Al Mehedi HasanM. ShinJ. DasU. Yakin SrizonA. "Identifying prognostic features for predicting heart failure by using machine learning algorithm", ACM International Conference Proceeding Series2021404610.1145/3460238.3460245
    [Google Scholar]
  23. ChangV. BhavaniV.R. XuA.Q. HossainM.A. An artificial intelligence model for heart disease detection using machine learning algorithms.Healthcare Analytics2022210001610.1016/j.health.2022.100016
    [Google Scholar]
  24. AlhenawiE. AlazzamH. Al-SayyedR. AbuAlghanamO. AdwanO. Hybrid feature selection method for intrusion detection systems based on an improved intelligent water drop algorithm.Cybern. Inf. Technol.2022224739010.2478/cait‑2022‑0040
    [Google Scholar]
  25. TsaoC.W. AdayA.W. AlmarzooqZ.I. AlonsoA. BeatonA.Z. BittencourtM.S. BoehmeA.K. BuxtonA.E. CarsonA.P. Commodore-MensahY. ElkindM.S.V. EvensonK.R. Eze-NliamC. FergusonJ.F. GenerosoG. HoJ.E. KalaniR. KhanS.S. KisselaB.M. KnutsonK.L. LevineD.A. LewisT.T. LiuJ. LoopM.S. MaJ. MussolinoM.E. NavaneethanS.D. PerakA.M. PoudelR. Rezk-HannaM. RothG.A. SchroederE.B. ShahS.H. ThackerE.L. VanWagnerL.B. ViraniS.S. VoecksJ.H. WangN.Y. YaffeK. MartinS.S. Heart disease and stroke statistics—2022 update: A report from the american heart association.Circulation20221458e153e63910.1161/CIR.0000000000001052 35078371
    [Google Scholar]
  26. van der LaanM.J. PolleyE.C. HubbardA.E. Super learner.Stat. Appl. Genet. Mol. Biol.200761e2510.2202/1544‑6115.1309 17910531
    [Google Scholar]
  27. PaldinoG.M. LebichotB. Le BorgneY.A. SibliniW. ObléF. BoracchiG. BontempiG. The role of diversity and ensemble learning in credit card fraud detection.Adv. Data Anal. Classif.202212510.1007/s11634‑022‑00515‑5 36188101
    [Google Scholar]
  28. DiwakarM. Latest trends on heart disease prediction using machine learning and image fusionMaterials Today: ProceedingsElsevier Ltd20203732133218
    [Google Scholar]
  29. ShaikhF.J. RaoD.S. Prediction of cancer disease using machine learning approach.Mater. Today Proc.202250404710.1016/j.matpr.2021.03.625
    [Google Scholar]
  30. MienyeI.D. SunY. WangZ. An improved ensemble learning approach for the prediction of heart disease risk.Inform. Med. Unlocked20202010040210.1016/j.imu.2020.100402
    [Google Scholar]
  31. HassaballahM. WazeryY.M. IbrahimI.E. FaragA. ECG heartbeat classification using machine learning and metaheuristic optimization for smart healthcare systems.Bioengineering202310442910.3390/bioengineering10040429 37106616
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965291887240422051823
Loading
/content/journals/raeeng/10.2174/0123520965291887240422051823
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Feature selection; heart disease; K-best; LASSO; RFECV; super learner ensemble
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test