Skip to content
2000
Volume 18, Issue 7
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Microfluidic sensors have garnered significant attention over the past decade due to the growing need for microsystem automation and their applications in biology and optical control. This review paper explores the extensive use of microfluidic applications across diverse sectors, including medical, optical, and automation. The study examines various types of microfluidic sensors tailored for specific applications and analyzes the materials employed in microfluidic chips, including their respective advantages and disadvantages. Additionally, it delves into specific microfluidic pressure sensors, elucidating their underlying principles and methods for detecting parameters. This paper explores the concept of microfluidics sensing mechanisms with biomedical applications, flow sensor application to measure the pressure of a fluid, thermal sensor application to measure the cell temperature, and chemical sensor application to measure the concentration of chemicals such as glucose and cocaine. This material is utilized to design the sensor and fabricate the device to measure the fluid properties and effect of fluid in the channel. The paper also explores the need for microfluidic pressure sensors in different categories of applications. In conclusion, the research highlights the existing research gaps within the realm of microfluidic sensors.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965285419240313040515
2024-04-17
2025-09-26
Loading full text...

Full text loading...

References

  1. AllertR.D. BruckmaierF. NeulingN.R. Freire-MoschovitisF.A. LiuK.S. SchrepelC. SchätzleP. KnittelP. HermansM. BucherD.B. Microfluidic quantum sensing platform for lab-on-a-chip applications.Lab Chip202222244831484010.1039/D2LC00874B 36398977
    [Google Scholar]
  2. KrussS. HilmerA.J. ZhangJ. ReuelN.F. MuB. StranoM.S. Carbon nanotubes as optical biomedical sensors.Adv. Drug Deliv. Rev.201365151933195010.1016/j.addr.2013.07.015 23906934
    [Google Scholar]
  3. ZhangS. YuF. Piezoelectric materials for high temperature sensors.J. Am. Ceram. Soc.201194103153317010.1111/j.1551‑2916.2011.04792.x
    [Google Scholar]
  4. MohanJ.M. AmreenK. JavedA. DubeyS.K. GoelS. Emerging trends in miniaturized and microfluidic electrochemical sensing platforms.Curr. Opin. Electrochem.20223310093010.1016/j.coelec.2021.100930
    [Google Scholar]
  5. GlaningerA. JachimowiczA. KohlF. ChabicovskyR. UrbanG. Wide range semiconductor flow sensors.Sens. Actuators A Phys.2000851-313914610.1016/S0924‑4247(00)00370‑8
    [Google Scholar]
  6. BaltesH. PaulO. BrandO. Micromachined thermally based CMOS microsensors.Proc. IEEE19988681660167810.1109/5.704271
    [Google Scholar]
  7. ComiC. ZegaV. CoriglianoA. Non-linear mechanics in resonant inertial micro sensors.Int. J. Non-linear Mech.202012010338610.1016/j.ijnonlinmec.2019.103386
    [Google Scholar]
  8. LucklumR. HauptmannP. Acoustic microsensors—the challenge behind microgravimetry.Anal. Bioanal. Chem.2006384366768210.1007/s00216‑005‑0236‑x 16544392
    [Google Scholar]
  9. MadanJ. TamersitK. SharmaK. KumarA. PandeyR. Performance assessment of a new radiation microsensor based 4H-SiC trench MOSFET: A simulation study.Silicon20231521115112110.1007/s12633‑022‑02084‑w
    [Google Scholar]
  10. NagA. AfsrimaneshN. MukhopadhyayS.C. Impedimetric microsensors for biomedical applications.Curr. Opin. Biomed. Eng.201991710.1016/j.cobme.2018.11.002
    [Google Scholar]
  11. ZhukovaV. IpatovM. ZhukovA. Thin magnetically soft wires for magnetic microsensors.Sensors20099119216924010.3390/s91109216 22291562
    [Google Scholar]
  12. KrečmarováM. GulkaM. VandenrytT. HrubýJ. FeketeL. HubíkP. TaylorA. MortetV. ThoelenR. BourgeoisE. NesládekM. A label-free diamond microfluidic dna sensor based on active nitrogen-vacancy center charge state control.ACS Appl. Mater. Interfaces20211316185001851010.1021/acsami.1c01118 33849273
    [Google Scholar]
  13. VarmaS. VoldmanJ. A cell-based sensor of fluid shear stress for microfluidics.Lab Chip20151561563157310.1039/C4LC01369G 25648195
    [Google Scholar]
  14. PaknahadM. BachhalJ.S. HoorfarM. Diffusion-based humidity control membrane for microfluidic-based gas detectors.Anal. Chim. Acta2018102110311210.1016/j.aca.2018.03.021 29681276
    [Google Scholar]
  15. SierraJ. Marrugo-RamírezJ. Rodríguez-TrujilloR. MirM. SamitierJ. Sensor-integrated microfluidic approaches for liquid biopsies applications in early detection of cancer.Sensors2020205131710.3390/s20051317 32121271
    [Google Scholar]
  16. EschE.W. BahinskiA. HuhD. Organs-on-chips at the frontiers of drug discovery.Nat. Rev. Drug Discov.201514424826010.1038/nrd4539 25792263
    [Google Scholar]
  17. YamadaT. InomataN. OnoT. Sensitive thermal microsensor with pn junction for heat measurement of a single cell.Jpn. J. Appl. Phys.201655202700110.7567/JJAP.55.027001
    [Google Scholar]
  18. CapulliA.K. TianK. MehandruN. BukhtaA. ChoudhuryS.F. SuchytaM. ParkerK.K. Approaching the in vitro clinical trial: Engineering organs on chips.Lab Chip201414173181318610.1039/C4LC00276H 24828385
    [Google Scholar]
  19. WuL. GuoZ. LiuW. Surface behaviors of droplet manipulation in microfluidics devices.Adv. Colloid Interface Sci.202230810277010.1016/j.cis.2022.102770 36113310
    [Google Scholar]
  20. GreenJ.V. KniazevaT. AbediM. SokheyD.S. TaslimM.E. MurthyS.K. Effect of channel geometry on cell adhesion in microfluidic devices.Lab Chip20099567768510.1039/B813516A 19224017
    [Google Scholar]
  21. TaiC.H. HsiungS.K. ChenC.Y. TsaiM.L. LeeG.B. Automatic microfluidic platform for cell separation and nucleus collection.Biomed. Microdevices20079453354310.1007/s10544‑007‑9061‑7 17508288
    [Google Scholar]
  22. WardK. FanZ.H. Mixing in microfluidic devices and enhancement methods.J. Micromech. Microeng.201525909400110.1088/0960‑1317/25/9/094001 26549938
    [Google Scholar]
  23. ChenX. CuiD. LiuC. LiH. Microfluidic chip for blood cell separation and collection based on crossflow filtration.Sens. Actuators B Chem.2008130121622110.1016/j.snb.2007.07.126
    [Google Scholar]
  24. Wyatt ShieldsC.IV ReyesC.D. LópezG.P. Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation.Lab Chip20151551230124910.1039/C4LC01246A 25598308
    [Google Scholar]
  25. RifaiA. Wireless chipless passive microfluidic temperature sensor2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 16-20 June 2013, pp. 1024-1027.10.1109/Transducers.2013.6626944
    [Google Scholar]
  26. MahmoodA. SigmarssonH.H. JoshiH. ChappellW.J. PeroulisD. An evanescent-mode cavity resonator based thermal sensor. IEEE Sensors.IEEE200795095310.1109/ICSENS.2007.4388560
    [Google Scholar]
  27. ThaiT.T. A novel passive wireless ultrasensitive RF temperature transducer for remote sensing2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23-28 May 2010, pp. 473-476.10.1109/MWSYM.2010.5517892
    [Google Scholar]
  28. ReddyK. GuoY. LiuJ. LeeW. Khaing OoM.K. FanX. On-chip Fabry–Pérot interferometric sensors for micro-gas chromatography detection.Sens. Actuators B Chem.20111591606510.1016/j.snb.2011.06.041
    [Google Scholar]
  29. ZhongQ. SteineckerW.H. ZellersE.T. Characterization of a high-performance portable GC with a chemiresistor array detector.Analyst2009134228329310.1039/B810944C 19173051
    [Google Scholar]
  30. Hossein-BabaeiF. PaknahadM. GhafariniaV. A miniature gas analyzer made by integrating a chemoresistor with a microchannel.Lab Chip201212101874188010.1039/c2lc00035k 22434319
    [Google Scholar]
  31. ReddyK. GuoY. LiuJ. LeeW. Khaing OoM.K. FanX. Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography.Lab Chip201212590190510.1039/c2lc20922e 22245960
    [Google Scholar]
  32. EpsteinJ.R. BiranI. WaltD.R. Fluorescence-based nucleic acid detection and microarrays.Available from: http://www3.mdanderson.org/depts/pathology/fish/fish.html 200210.1016/S0003‑2670(02)00030‑2
    [Google Scholar]
  33. DrummondT.G. HillM.G. BartonJ.K. Electrochemical DNA sensors.Nat. Biotechnol.200321101192119910.1038/nbt873 14520405
    [Google Scholar]
  34. CaiH. CaoX. JiangY. HeP. FangY. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection.Anal. Bioanal. Chem.2003375228729310.1007/s00216‑002‑1652‑9 12560975
    [Google Scholar]
  35. SureshS. Biomechanics and biophysics of cancer cells.Acta Biomater.20073441343810.1016/j.actbio.2007.04.002 17540628
    [Google Scholar]
  36. NikkhahM. StroblJ.S. AgahM. Attachment and response of human fibroblast and breast cancer cells to three dimensional silicon microstructures of different geometries.Biomed. Microdevices200911242944110.1007/s10544‑008‑9249‑5 19058013
    [Google Scholar]
  37. IbrahimF. OsmanN.A. A review of MEMS drug delivery in medical applicationAvailable from: www.springerlink.com 2007
    [Google Scholar]
  38. PrausnitzM.R. Microneedles for transdermal drug delivery.Adv. Drug Deliv. Rev.200456558158710.1016/j.addr.2003.10.023 15019747
    [Google Scholar]
  39. NisarA. AfzulpurkarN. MahaisavariyaB. TuantranontA. MEMS-based micropumps in drug delivery and biomedical applications.Sens. Actuators B Chem.2008130291794210.1016/j.snb.2007.10.064
    [Google Scholar]
  40. KimE.G. OhJ. ChoiB. A study on the development of a continuous peristaltic micropump using magnetic fluids.Sens. Actuators A Phys.20061281435110.1016/j.sna.2006.01.021
    [Google Scholar]
  41. LinL. Thermal challenges in MEMS applications: Phase change phenomena and thermal bonding processes.Microelectronics200334317918510.1016/S0026‑2692(02)00186‑6
    [Google Scholar]
  42. SateeshJ. Girija SravaniK. Akshay KumarR. GuhaK. Srinivasa RaoK. Design and flow analysis of MEMS based piezo-electric micro pump.Microsyst. Technol.20182431609161410.1007/s00542‑017‑3563‑x
    [Google Scholar]
  43. YihT.C. WeiC. HammadB. Modeling and characterization of a nanoliter drug-delivery MEMS micropump with circular bossed membrane.Nanomedicine20051216417510.1016/j.nano.2005.01.002 17292074
    [Google Scholar]
  44. KudoH. SawadaT. KazawaE. YoshidaH. IwasakiY. MitsubayashiK. A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques.Biosens. Bioelectron.200622455856210.1016/j.bios.2006.05.006 16777401
    [Google Scholar]
  45. R.Badugu J. R.Lakowicz C. D. (2003)Geddes A glucose sensing contact lens: A non-invasive technique for continuous physiological glucose monitoring. Journal of Fluorescence, 13, 371-374. 2003.10.1023/A:1026103804104
    [Google Scholar]
  46. BaduguR. LakowiczJ.R. GeddesC.D. Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring.Bioorg. Med. Chem.200513111311910.1016/j.bmc.2004.09.058 15582456
    [Google Scholar]
  47. WangLi SipeD.M. XuYong LinQiao A MEMS thermal biosensor for metabolic monitoring applications.J. Microelectromech. Syst.200817231832710.1109/JMEMS.2008.916357
    [Google Scholar]
  48. ChithraP.S. SP. PrinceA.A. RF MEMS-based biosensor for pathogenic bacteria detectionBionanoscience20133332132810.1007/s12668‑013‑0098‑1
    [Google Scholar]
  49. A.S.Hassan V.Juliet C.Joshua A.Raj MEMS Based Humidity Sensor with Integration of Temperature Sensor2018Available from: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853
  50. MunirajN.J.R. MEMS based humidity sensor using Si cantilever beam for harsh environmental conditions.Microsyst. Technol.2011171272910.1007/s00542‑010‑1174‑x
    [Google Scholar]
  51. XuYong LinQiao LinGuoyu KatragaddaR.B. JiangFukang TungS. TaiYu-Chong Micromachined thermal shear-stress sensor for underwater applications.J. Microelectromech. Syst.20051451023103010.1109/JMEMS.2005.856644
    [Google Scholar]
  52. McKenzieB.A. GroverW.H. A microfluidic thermometer: Precise temperature measurements in microliter- and nanoliter-scale volumes.PLoS One20171212e018943010.1371/journal.pone.0189430 29284028
    [Google Scholar]
  53. BhargavaK. ThompsonB. TembhekarA. MalmstadtN. Temperature sensing in modular microfluidic architectures.Micromachines2016711110.3390/mi7010011 30407384
    [Google Scholar]
  54. MirallesV. HuerreA. MalloggiF. JullienM.C. A review of heating and temperature control in microfluidic systems: Techniques and applications Diagnostics201311336710.3390/diagnostics3010033
    [Google Scholar]
  55. ZhaoX. GaoW. YinJ. FanW. WangZ. HuK. MaiY. LuanA. XuB. JinQ. A high-precision thermometry microfluidic chip for real-time monitoring of the physiological process of live tumour cells.Talanta202122612210110.1016/j.talanta.2021.122101 33676657
    [Google Scholar]
  56. DinhT. PhanH.P. KashaninejadN. NguyenT.K. DaoD.V. NguyenN.T. An on‐chip SiC MEMs device with integrated heating, sensing, and microfluidic cooling systems.Adv. Mater. Interfaces2018520180076410.1002/admi.201800764
    [Google Scholar]
  57. SuL. XiongQ. ZhuY. ZiY. A liquid–solid contact electrification based all‐optical liquid flow sensor for microfluidic analysis in biomedical applications.Adv. Funct. Mater.20223245220709610.1002/adfm.202207096
    [Google Scholar]
  58. MohdO. SotoudeganM.S. LiglerF.S. WalkerG.M. A simple cantilever system for measurement of flow rates in paper microfluidic devices.Eng. Res. Express.20191202501910.1088/2631‑8695/ab4ee5
    [Google Scholar]
  59. NawiM.N.M. ManafA.A. ArshadM.R. SidekO. Numerical simulation of the microchannel for the microfluidic based flow sensor2012 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 23-25 November 2012, pp. 345-348.10.1109/ICCSCE.2012.6487168
    [Google Scholar]
  60. ZarifiM.H. SadabadiH. HejaziS.H. DaneshmandM. Sanati-NezhadA. Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering.Sci. Rep.20188113910.1038/s41598‑017‑18621‑2 29317767
    [Google Scholar]
  61. KimT.H. LeeJ.M. AhrbergC.D. ChungB.G. Development of the microfluidic device to regulate shear stress gradients.Biochip J.201812429430310.1007/s13206‑018‑2407‑9
    [Google Scholar]
  62. ParkD.Y. KimT.H. LeeJ.M. AhrbergC.D. ChungB.G. Circular‐shaped microfluidic device to study the effect of shear stress on cellular orientation.Electrophoresis201839141816182010.1002/elps.201800109 29659029
    [Google Scholar]
  63. QuYanli ChowW.W.Y. OuyangMengxing TungS.C.H. LiW.J. HanXuliang Ultra-low-powered aqueous shear stress sensors based on bulk EG-CNTs integrated in microfluidic systems.IEEE Trans. Nanotechnol.20087556557210.1109/TNANO.2008.928572
    [Google Scholar]
  64. LiuM.C. ShihH.C. WuJ.G. WengT.W. WuC.Y. LuJ.C. TungY.C. Electrofluidic pressure sensor embedded microfluidic device: A study of endothelial cells under hydrostatic pressure and shear stress combinations.Lab Chip20131391743175310.1039/c3lc41414k 23475014
    [Google Scholar]
  65. KarmanS. IbrahimF. SoinN. A review of MEMS drug delivery in medical application3rd Kuala Lumpur International Conference on Biomedical Engineering, Springer, Berlin, Heidelberg. 2007. vol 15. pp. 312–315.10.1007/978‑3‑540‑68017‑8_80
    [Google Scholar]
  66. OosterbroekR.E. Modelling, design and realization of microfluidic componentsPhD Thesis - Research UT, graduation UT1999
    [Google Scholar]
  67. ManY. BanM. LiA. JinX. DuY. PanL. A microfluidic colorimetric biosensor for in-field detection of Salmonella in fresh-cut vegetables using thiolated polystyrene microspheres, hose-based microvalve and smartphone imaging APP.Food Chem.202135412957810.1016/j.foodchem.2021.129578 33756331
    [Google Scholar]
  68. AmemiyaY. NakashimaY. MaedaJ. YokoyamaS. Design and simulation of MEMS microvalves for silicon photonic biosensor chip.Jpn. J. Appl. Phys.2018574S04FC1010.7567/JJAP.57.04FC10
    [Google Scholar]
  69. CaoL. MantellS. PollaD. Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology.Sens. Actuators A Phys.2001941-211712510.1016/S0924‑4247(01)00680‑X
    [Google Scholar]
  70. LinS. WangZ. ChenX. RenJ. LingS. Ultrastrong and highly sensitive fiber microactuators constructed by force‐reeled silks.Adv. Sci.202076190274310.1002/advs.201902743 32195093
    [Google Scholar]
  71. KalaiarasiA.R. AishwaryaG.P. Microsensor for cancer detection and mems actuator for cancer therapy.Trans. Electr. Electron. Mater.2023241829010.1007/s42341‑022‑00421‑9
    [Google Scholar]
  72. Blanco-GomezG. GlidleA. FlendrigL.M. CooperJ.M. Integration of low-power microfluidic pumps with biosensors within a laboratory-on-a-chip device.Anal. Chem.20098141365137010.1021/ac802006d 19143543
    [Google Scholar]
  73. YooJ.C. LaG.S. KangC.J. KimY.S. Microfabricated polydimethylsiloxane microfluidic system including micropump and microvalve for integrated biosensor.Curr. Appl. Phys.20088669269510.1016/j.cap.2007.04.050
    [Google Scholar]
  74. BollellaP. SharmaS. CassA.E.G. AntiochiaR. Microneedle-based biosensor for minimally-invasive lactate detection.Biosens. Bioelectron.201912315215910.1016/j.bios.2018.08.010 30177422
    [Google Scholar]
  75. LiangW. LiuJ. YangX. ZhangQ. YangW. ZhangH. LiuL. Microfluidic-based cancer cell separation using active and passive mechanisms.Microfluid. Nanofluidics20202442610.1007/s10404‑020‑2331‑x
    [Google Scholar]
  76. AlsabbaghK. HornungT. VoigtA. SadirS. RajabiT. LängeK. Microfluidic impedance biosensor chips using sensing layers based on dna-based self-assembled monolayers for label-free detection of proteins.Biosensors20211138010.3390/bios11030080 33805676
    [Google Scholar]
  77. DorfmanK.D. AdrahtasD.Z. ThomasM.S. FrisbieC.D. Microfluidic opportunities in printed electrolyte-gated transistor biosensors.Biomicrofluidics202014101130110.1063/1.5131365 32002104
    [Google Scholar]
  78. JungT. YangS. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel.Sensors2015155118231183510.3390/s150511823 26007732
    [Google Scholar]
  79. DaiC.L. LuP.W. ChangC. LiuC.Y. Capacitive micro pressure sensor integrated with a ring oscillator circuit on chip.Sensors2009912101581017010.3390/s91210158 22303167
    [Google Scholar]
  80. GaoY. OtaH. SchalerE.W. ChenK. ZhaoA. GaoW. FahadH.M. LengY. ZhengA. XiongF. ZhangC. TaiL.C. ZhaoP. FearingR.S. JaveyA. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring.Adv. Mater.20172939170198510.1002/adma.201701985 28833673
    [Google Scholar]
  81. SunX. SunJ. LiT. ZhengS. WangC. TanW. ZhangJ. LiuC. MaT. QiZ. LiuC. XueN. Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites.Nano-Micro Lett.20191115710.1007/s40820‑019‑0288‑7 34137984
    [Google Scholar]
  82. CostaJ.C. SpinaF. LugodaP. Garcia-GarciaL. RoggenD. MünzenriederN. Flexible sensors—from materials to applications.Technologies2019723510.3390/technologies7020035
    [Google Scholar]
  83. HosokawaK. MaedaR. In-line pressure monitoring for microfluidic devices using a deformable diffraction gratingTechnical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090), Interlaken, Switzerland, 25-25 January 2001, pp. 174-177.
    [Google Scholar]
  84. HoeraC. KiontkeA. PahlM. BelderD. A chip-integrated optical microfluidic pressure sensor.Sens. Actuators B Chem.20182552407241510.1016/j.snb.2017.08.195
    [Google Scholar]
  85. BlairE.O. CorriganD.K. A review of microfabricated electrochemical biosensors for DNA detection.Biosens. Bioelectron.2019134576710.1016/j.bios.2019.03.055
    [Google Scholar]
  86. HiltonJ.P. NguyenT.H. PeiR. StojanovicM. LinQ. A microfluidic affinity sensor for the detection of cocaine.Sens. Actuators A Phys.2011166224124610.1016/j.sna.2009.12.006
    [Google Scholar]
  87. SiebenV.J. FloquetC.F.A. OgilvieI.R.G. MowlemM.C. MorganH. Microfluidic colourimetric chemical analysis system: Application to nitrite detection.Anal. Methods20102548449110.1039/c002672g
    [Google Scholar]
  88. ModhaS. CastroC. TsutsuiH. Recent developments in flow modeling and fluid control for paper-based microfluidic biosensors.Biosens. Bioelectron.202117811302610.1016/j.bios.2021.113026 33545552
    [Google Scholar]
  89. ShenL.L. ZhangG.R. EtzoldB.J.M. Paper‐based microfluidics for electrochemical applications.ChemElectroChem202071103010.1002/celc.201901495 32025468
    [Google Scholar]
  90. AlsaeedB. MansourF.R. Distance-based paper microfluidics; Principle, technical aspects and applications.Microchem. J.202015510466410.1016/j.microc.2020.104664
    [Google Scholar]
  91. ChenZ. LvZ. ZhangZ. WeitzD.A. ZhangH. ZhangY. CuiW. Advanced microfluidic devices for fabricating multi‐structural hydrogel microsphere.Exploration2021132021003610.1002/EXP.20210036 37323691
    [Google Scholar]
  92. ZhaoH. ZhangY. ChenY. HoN.R.Y. SundahN.R. NataliaA. LiuY. MiowQ.H. WangY. TambyahP.A. OngC.W.M. ShaoH. Accessible detection of SARS-CoV-2 through molecular nanostructures and automated microfluidics.Biosens. Bioelectron.202119411362910.1016/j.bios.2021.113629 34534949
    [Google Scholar]
  93. NieJ. FuJ. HeY. Hydrogels: The next generation body materials for microfluidic chips?Small20201646200379710.1002/smll.202003797 33103353
    [Google Scholar]
  94. DongR. LiuY. MouL. DengJ. JiangX. Microfluidics‐based biomaterials and biodevices.Adv. Mater.20193145180503310.1002/adma.201805033 30345586
    [Google Scholar]
  95. DesaiD. GuerreroY.A. BalachandranV. MortonA. LyonL. LarkinB. SolomonD.E. Towards a microfluidics platform for the continuous manufacture of organic and inorganic nanoparticles.Nanomedicine20213510240210.1016/j.nano.2021.102402 33932590
    [Google Scholar]
  96. ShenJ. ShafiqM. MaM. ChenH. Synthesis and surface engineering of inorganic nanomaterials based on microfluidic technology.Nanomaterials2020106117710.3390/nano10061177 32560284
    [Google Scholar]
  97. FanY. Low‐cost microfluidics: Materials and methods.Micro & Nano Lett.201813101367137210.1049/mnl.2018.5169
    [Google Scholar]
  98. GencturkE. MutluS. UlgenK.O. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses.Biomicrofluidics201711505150210.1063/1.4998604 29152025
    [Google Scholar]
  99. HouX. ZhangY.S. SantiagoG.T. AlvarezM.M. RibasJ. JonasS.J. WeissP.S. AndrewsA.M. AizenbergJ. KhademhosseiniA. Interplay between materials and microfluidics.Nat. Rev. Mater.2017251701610.1038/natrevmats.2017.16
    [Google Scholar]
  100. SongG. WeichengY. YongL. Rapid prototyping of microfluidics devices using novel thermoset polydicyclopentadiene.J. Micromech. Microeng.202333707500210.1088/1361‑6439/acd25c
    [Google Scholar]
  101. StickerD. RothbauerM. LechnerS. HehenbergerM.T. ErtlP. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol–ene epoxy thermoset for organ-on-a-chip applications.Lab Chip201515244542455410.1039/C5LC01028D 26524977
    [Google Scholar]
  102. LiY. ThouasG.A. ChenQ.Z. Biodegradable soft elastomers: Synthesis/properties of materials and fabrication of scaffolds.RSC Advances2012222822910.1039/c2ra20736b
    [Google Scholar]
  103. OhmC. FleischmannE.K. KrausI. SerraC. ZentelR. Control of the properties of micrometer‐sized actuators from liquid crystalline elastomers prepared in a microfluidic setup.Adv. Funct. Mater.201020244314432210.1002/adfm.201001178
    [Google Scholar]
  104. SunJ. SunR. JiaP. MaM. SongY. Fabricating flexible conductive structures by printing techniques and printable conductive materials.J. Mater. Chem. C Mater. Opt. Electron. Devices202210259441946410.1039/D2TC01168A
    [Google Scholar]
  105. SunR. MaM. MaX. KangH. WangS. SunJ. Direct-writing flexible metal circuit with polymer/metal precursor ink and interfacial reaction.Langmuir202339217426743310.1021/acs.langmuir.3c00642 37192423
    [Google Scholar]
  106. de CastroL.F. de FreitasS.V. DuarteL.C. de SouzaJ.A.C. PaixãoT.R.L.C. ColtroW.K.T. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring.Anal. Bioanal. Chem.2019411194919492810.1007/s00216‑019‑01788‑0 30941478
    [Google Scholar]
  107. RenK. ZhouJ. WuH. Materials for microfluidic chip fabrication.Acc. Chem. Res.201346112396240610.1021/ar300314s 24245999
    [Google Scholar]
  108. JakeS. JiangK. Elastomer application in microsystem and microfluidics. Advanced Elastomers - Technology.Properties and Applications, InTech201210.5772/48121
    [Google Scholar]
  109. OrthA. SchonbrunE.F. CrozierK.B. Elastomer membrane pressure sensors for microfluidicsAvailable from: http://www.kirbyresearch.com/index.cfm/wrap/textbook/microfluidicsnanofluidics.html
  110. Domingo-EspinM. Puigoriol-ForcadaJ.M. Garcia-GranadaA.A. LlumàJ. BorrosS. ReyesG. Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts.Mater. Des.20158367067710.1016/j.matdes.2015.06.074
    [Google Scholar]
  111. SmithW.C. DeanR.W. Structural characteristics of fused deposition modeling polycarbonate material.Polym. Test.20133281306131210.1016/j.polymertesting.2013.07.014
    [Google Scholar]
  112. PalczynskiK. WilkeA. PaeschkeM. DzubiellaJ. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties.Phys. Rev. Mater.20171404380410.1103/PhysRevMaterials.1.043804
    [Google Scholar]
  113. TranR. AhnB. MyersD.R. QiuY. SakuraiY. MootR. MihevcE. Trent SpencerH. DoeringC. LamW.A. Simplified prototyping of perfusable polystyrene microfluidics.Biomicrofluidics20148404650110.1063/1.4892035 25379106
    [Google Scholar]
  114. JohnsonA.S. AndersonK.B. HalpinS.T. KirkpatrickD.C. SpenceD.M. MartinR.S. Integration of multiple components in polystyrene-based microfluidic devices part I: Fabrication and characterization.Analyst2013138112913610.1039/C2AN36168J 23120747
    [Google Scholar]
  115. ChenW. HaoH. HughesD. ShiY. CuiJ. LiZ.X. Static and dynamic mechanical properties of expanded polystyrene.Mater. Des.20156917018010.1016/j.matdes.2014.12.024
    [Google Scholar]
  116. AggarwalS.L. SweetingO.J. Polyethylene: Preparation, structure, and properties.Chem. Rev.195757466574210.1021/cr50016a004
    [Google Scholar]
  117. van MidwoudP.M. JanseA. MeremaM.T. GroothuisG.M.M. VerpoorteE. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models.Anal. Chem.20128493938394410.1021/ac300771z 22444457
    [Google Scholar]
  118. RoncaS. Polyethylene. Brydson’s Plastics Materials.Elsevier201724727810.1016/B978‑0‑323‑35824‑8.00010‑4
    [Google Scholar]
  119. SunH. ChanC.W. WangY. YaoX. MuX. LuX. ZhouJ. CaiZ. RenK. Reliable and reusable whole polypropylene plastic microfluidic devices for a rapid, low-cost antimicrobial susceptibility test.Lab Chip201919172915292410.1039/C9LC00502A 31369010
    [Google Scholar]
  120. GrebowiczJ. LauS.F. WunderlichB. The thermal properties of polypropylene.J. Polym. Sci. Polym. Symp.1984711193710.1002/polc.5070710106
    [Google Scholar]
  121. NisticòR. Polyethylene terephthalate (PET) in the packaging industry.Polym. Test.20209010670710.1016/j.polymertesting.2020.106707
    [Google Scholar]
  122. JiL.N. Study on preparation process and properties of polyethylene terephthalate (PET).Appl. Mech. Mater.201331240641010.4028/www.scientific.net/AMM.312.406
    [Google Scholar]
  123. MotlaghG.H. HrymakA.N. ThompsonM.R. Properties of a carbon filled cyclic olefin copolymer.J. Polym. Sci., B, Polym. Phys.200745141808182010.1002/polb.21177
    [Google Scholar]
  124. KhanarianG. Optical properties of cyclic olefin copolymers.Opt. Eng.2001406102410.1117/1.1369411
    [Google Scholar]
  125. AhnJ. ChungW.J. PinnauI. GuiverM.D. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation.J. Membr. Sci.20083141-212313310.1016/j.memsci.2008.01.031
    [Google Scholar]
  126. SerbanescuO.S. VoicuS.I. ThakurV.K. Polysulfone functionalized membranes: Properties and challenges.Mater. Today Chem.20201710030210.1016/j.mtchem.2020.100302
    [Google Scholar]
  127. EdrakiM. SheydaeiM. Alinia-AhandaniE. Nezhadghaffar-BorhaniE. Polyvinyl chloride: Chemical modification and investigation of structural and thermal properties.J. Sulfur Chem.202142439740910.1080/17415993.2021.1895996
    [Google Scholar]
  128. LieberzeitP. BekchanovD. MukhamedievM. Polyvinyl chloride modifications, properties, and applications: Review.Polym. Adv. Technol.20223361809182010.1002/pat.5656
    [Google Scholar]
  129. WanA.M.D. DevadasD. YoungE.W.K. Recycled polymethylmethacrylate (PMMA) microfluidic devices.Sens. Actuators B Chem.201725373874410.1016/j.snb.2017.07.011
    [Google Scholar]
  130. AshB.J. RogersD.F. WiegandC.J. SchadlerL.S. SiegelR.W. BenicewiczB.C. AppleT. Mechanical properties of Al2O3/polymethylmethacrylate nanocomposites.Polym. Compos.20022361014102510.1002/pc.10497
    [Google Scholar]
  131. SongY. KumarC.S.S.R. HormesJ. Fabrication of an SU-8 based microfluidic reactor on a PEEK substrate sealed by a flexible semi-solid transfer (FST) process.J. Micromech. Microeng.200414793294010.1088/0960‑1317/14/7/013
    [Google Scholar]
  132. KoslohJ. SackmannJ. SchomburgW.K. Ultrasonic fabrication of micro fluidic channels from polyether ether ketone (PEEK).Microsyst. Technol.201723125505551310.1007/s00542‑017‑3284‑1
    [Google Scholar]
  133. HaoN. NieY. ZhangJ.X.J. Microfluidic synthesis of functional inorganic micro-/nanoparticles and applications in biomedical engineering.Int. Mater. Rev.201863846148710.1080/09506608.2018.1434452
    [Google Scholar]
  134. TsaoC.W. Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized production.Micromachines201671222510.3390/mi7120225
    [Google Scholar]
  135. GoyC.B. ChaileR.E. MadridR.E. Microfluidics and hydrogel: A powerful combination.React. Funct. Polym.201914510431410.1016/j.reactfunctpolym.2019.104314
    [Google Scholar]
  136. KooH.-J. VelevO. D. Design and characterization of hydrogel-based microfluidic devices with biomimetic solute transport networks.Biomicrofluidics2013112024104
    [Google Scholar]
  137. NieJ. GaoQ. WangY. ZengJ. ZhaoH. SunY. ShenJ. RamezaniH. FuZ. LiuZ. XiangM. FuJ. ZhaoP. ChenW. HeY. Vessel‐on‐a‐chip with hydrogel‐based microfluidics.Small20181445180236810.1002/smll.201802368 30307698
    [Google Scholar]
  138. AkyaziT. Basabe-DesmontsL. Benito-LopezF. Review on microfluidic paper-based analytical devices towards commercialisation.Anal. Chim. Acta2018100111710.1016/j.aca.2017.11.010 29291790
    [Google Scholar]
  139. SoumV. ParkS. BrilianA.I. KwonO.S. ShinK. Programmable paper-based microfluidic devices for biomarker detections.Micromachines201910851610.3390/mi10080516 31382502
    [Google Scholar]
  140. StrongE.B. SchultzS.A. MartinezA.W. MartinezN.W. Fabrication of miniaturized paper-based microfluidic devices (MicroPADs).Sci. Rep.201991710.1038/s41598‑018‑37029‑0 30626903
    [Google Scholar]
  141. JalalU.M. JinG.J. ShimJ.S. Paper–plastic hybrid microfluidic device for smartphone-based colorimetric analysis of urine.Anal. Chem.20178924131601316610.1021/acs.analchem.7b02612 29131592
    [Google Scholar]
  142. CutlerA. Aerodynamic measurements: From physical principles to turnkey instrumentation.AIAA J.201351375875810.2514/1.J052027
    [Google Scholar]
  143. ShiQ. WangH. WangT. LeeC. Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications.Nano Energy20163045045910.1016/j.nanoen.2016.10.046
    [Google Scholar]
  144. CakmakO. ElbukenC. ErmekE. MostafazadehA. BarisI. Erdem AlacaB. KavakliI.H. UreyH. Microcantilever based disposable viscosity sensor for serum and blood plasma measurements.Methods201363322523210.1016/j.ymeth.2013.07.009 23880427
    [Google Scholar]
  145. SamoeiV.K. JayatissaA.H. Aluminum doped zinc oxide (AZO)-based pressure sensor.Sens. Actuators A Phys.202030311181610.1016/j.sna.2019.111816
    [Google Scholar]
  146. RamachandranB. LiaoY.C. Microfluidic wearable electrochemical sweat sensors for health monitoring.Biomicrofluidics202216505150110.1063/5.0116648 36186757
    [Google Scholar]
  147. AraciI.E. AgaogluS. LeeJ.Y. Rivas YepesL. DiepP. MartiniM. SchmidtA. Flow stabilization in wearable microfluidic sensors enables noise suppression.Lab Chip201919223899390810.1039/C9LC00842J 31641709
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965285419240313040515
Loading
/content/journals/raeeng/10.2174/0123520965285419240313040515
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biosensor; microchannel; Microfluidic; PDMS; pressure sensor; temperature sensor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test