Skip to content
2000
Volume 18, Issue 7
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

Accurate diagnosis of respiratory conditions is paramount, and this is particularly the case for pneumonia - a common but potentially life-threatening illness that affects many millions worldwide. This review focuses on the diagnostic dilemma and testing paradigm in all types of pneumonia i-e bacterial, viral especially COVID-19 associated.

Methods

This study will use chest X-ray and CT scans, traditional tools for pneumonia detection pulmonary image analysis. Given the subjectivity of radiological interpretations, which may heavily depend on observer expertise, objective methods are required. For solving this problem, we present sophisticated deep learning algorithms to improve image analysis true positive rate and reduce false alarm. This paper compares these state-of-the-art machine-learning techniques with traditional radiological methods to show how technology can revolutionize the diagnosis of pneumonia.

Results

The COVID-19 pandemic has presented the complication regarding differentiation of COVID-19-associated pneumonia from than other types due to overlapping symptom and radiological features. We want to characterize these fine differences in our study for even more robust diagnostic accuracy and reliability.

Conclusion

We investigated and built a new diagnostic landscape for pneumonia where the traditional individual methods seem to be flawed while machine learning predictions provide some strengths as well as weaknesses. It demonstrates how enhancing diagnosis can again be of par importance towards developing more viably doable public health measures towards mitigating, not only pneumonia, but also other respiratory diseases.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965325192240923074336
2025-03-11
2025-09-26
Loading full text...

Full text loading...

References

  1. CillonizC. Martin-LoechesI. Garcia-VidalC. San JoseA. TorresA. Microbial Etiology of Pneumonia: Epidemiology, Diagnosis and Resistance Patterns.Int. J. Mol. Sci.20161712212010.3390/ijms17122120 27999274
    [Google Scholar]
  2. WangC. HorbyP.W. HaydenF.G. GaoG.F. A novel coronavirus outbreak of global health concern.Lancet20203951022347047310.1016/S0140‑6736(20)30185‑9 31986257
    [Google Scholar]
  3. Centers for Disease Control and PreventionSymptoms of COVID-19Available From: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
  4. FranquetT. Imaging of pulmonary viral pneumonia.Radiology20112601183910.1148/radiol.11092149 21697307
    [Google Scholar]
  5. SimpsonS. KayF.U. AbbaraS. BhallaS. ChungJ.H. ChungM. HenryT.S. KanneJ.P. KligermanS. KoJ.P. LittH. Radiological Society of North America Expert Consensus Document on Reporting Chest CT Findings Related to COVID-19: Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA.Radiol. Cardiothorac. Imaging202022e20015210.1148/ryct.2020200152 33778571
    [Google Scholar]
  6. ZhouF. YuT. DuR. FanG. LiuY. LiuZ. XiangJ. WangY. SongB. GuX. GuanL. WeiY. LiH. WuX. XuJ. TuS. ZhangY. ChenH. CaoB. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study.Lancet2020395102291054106210.1016/S0140‑6736(20)30566‑3 32171076
    [Google Scholar]
  7. AiT. YangZ. HouH. ZhanC. ChenC. LvW. TaoQ. SunZ. XiaL. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases.Radiology20202962E32E4010.1148/radiol.2020200642 32101510
    [Google Scholar]
  8. RubinG.D. RyersonC.J. HaramatiL.B. SverzellatiN. KanneJ.P. RaoofS. SchlugerN.W. VolpiA. YimJ.J. MartinI.B.K. AndersonD.J. KongC. AltesT. BushA. DesaiS.R. GoldinJ. GooJ.M. HumbertM. InoueY. KauczorH.U. LuoF. MazzoneP.J. ProkopM. Remy-JardinM. RicheldiL. Schaefer-ProkopC.M. TomiyamaN. WellsA.U. LeungA.N. The role of chest imaging in patient management during the COVID-19 Pandemic.Chest2020158110611610.1016/j.chest.2020.04.003 32275978
    [Google Scholar]
  9. TajbakhshN. GuruduS.R. Impact of machine learning in gastrointestinal disease.Lancet Gastroenterol. Hepatol.201947487488
    [Google Scholar]
  10. ChowdhuryM.E.H. RahmanT. KhandakarA. MazharR. KadirM.A. MahbubZ.B. IslamK.R. KhanM.S. IqbalA. EmadiN.A. ReazM.B.I. IslamM.T. Can AI help in screening Viral and COVID-19 pneumonia?IEEE Access2020813266513267610.1109/ACCESS.2020.3010287
    [Google Scholar]
  11. WangL. WongA. COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest Radiography Images.Sci. Rep.2021111112 33414495
    [Google Scholar]
  12. WuZ. McGooganJ.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China.JAMA2020323131239124210.1001/jama.2020.2648 32091533
    [Google Scholar]
  13. MandellL. A. WunderinkR. G. AnzuetoA. BartlettJ. G. CampbellG. D. DeanN. C. DowellS. F. FileT. M. MusherD. M. NiedermanM. S. TorresA. WhitneyC. G. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adultsClin Infect Dis.200744Suppl 2, suppl. Suppl 2S27S72
    [Google Scholar]
  14. ShoushtariA.H. NugentK. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America.Southwest Respiratory and Critical Care Chronicles20208331610.12746/swrccc.v8i33.625
    [Google Scholar]
  15. MusherD.M. ThornerA.R. Community-Acquired Pneumonia.N. Engl. J. Med.2014371171619162810.1056/NEJMra1312885 25337751
    [Google Scholar]
  16. CaoY. LiuX. XiongL. CaiK. Imaging and clinical features of patients with 2019 novel coronavirus SARS‐CoV‐2: A systematic review and meta‐analysis.J. Med. Virol.20209291449145910.1002/jmv.25822 32242947
    [Google Scholar]
  17. RajkomarA. DeanJ. KohaneI. Machine Learning in Medicine.N. Engl. J. Med.2019380141347135810.1056/NEJMra1814259 30943338
    [Google Scholar]
  18. ApostolopoulosI.D. MpesianaT.A. Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks.Phys. Eng. Sci. Med.202043263564010.1007/s13246‑020‑00865‑4 32524445
    [Google Scholar]
  19. WangL. LinZ.Q. WongA. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images.Sci. Rep.20201011954910.1038/s41598‑020‑76550‑z 33177550
    [Google Scholar]
  20. WynantsLaure CalsterBen Van CollinsGary S. RileyRichard D. HeinzeGeorg SchuitEwoud AlbuElena Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal.BMJ2020369m132810.1136/bmj.m1328
    [Google Scholar]
  21. MaghdedH.S. GhafoorK.Z. SadiqA.S. CurranK. RawatD.B. RabieK. A novel AI-enabled framework to diagnose coronavirus COVID-19 using smartphone embedded sensors: Design study2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), 2020 Las Vegas, NV, USA 10.1109/IRI49571.2020.00033
    [Google Scholar]
  22. HeyenN.B. SallochS. The ethics of machine learning-based clinical decision support: An analysis through the lens of professionalisation theory.BMC Med. Ethics202122111210.1186/s12910‑021‑00679‑3 34412649
    [Google Scholar]
  23. WuJ. RoyJ. StewartW.F. Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches.Med. Care2010486S106S11310.1097/MLR.0b013e3181de9e17 20473190
    [Google Scholar]
  24. ChengW. HaoC. Case-Initiated COVID-19 Contact Tracing Using Anonymous Notifications.JMIR Mhealth Uhealth202086e2036910.2196/20369 32501802
    [Google Scholar]
  25. BernheimA. MeiX. HuangM. YangY. FayadZ.A. ZhangN. DiaoK. LinB. ZhuX. LiK. LiS. ShanH. JacobiA. ChungM. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection.Radiology2020295320046310.1148/radiol.2020200463 32077789
    [Google Scholar]
  26. YeZ. ZhangY. WangY. HuangZ. SongB. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): A pictorial review.Eur. Radiol.20203084381438910.1007/s00330‑020‑06801‑0 32193638
    [Google Scholar]
  27. PanF. YeT. SunP. GuiS. LiangB. LiL. ZhengD. WangJ. HeskethR.L. YangL. ZhengC. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19).Radiology2020295371572110.1148/radiol.2020200370 32053470
    [Google Scholar]
  28. JehangirM. ShahP. YaddanapudiK. ChengG.S. PipavathS. Imaging viral pneumonias.Adv. Clin. Radiol.202241597110.1016/j.yacr.2022.04.006
    [Google Scholar]
  29. GroskinS.A. StadnickM.E. DuPontP.G. Pneumocystis carinii pneumonia: Effect of corticosteroid treatment on radiographic appearance in a patient with AIDS.Radiology1991180242342510.1148/radiology.180.2.2068305 2068305
    [Google Scholar]
  30. ZhouP. YangX.L. WangX.G. HuB. ZhangL. ZhangW. SiH.R. ZhuY. LiB. HuangC.L. ChenH.D. ChenJ. LuoY. GuoH. JiangR.D. LiuM.Q. ChenY. ShenX.R. WangX. ZhengX.S. ZhaoK. ChenQ.J. DengF. LiuL.L. YanB. ZhanF.X. WangY.Y. XiaoG.F. ShiZ.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature2020579779827027310.1038/s41586‑020‑2012‑7 32015507
    [Google Scholar]
  31. TzotzosS.J. FischerB. FischerH. ZeitlingerM. Incidence of ARDS and outcomes in hospitalized patients with COVID-19: A global literature survey.Crit. Care202024151610.1186/s13054‑020‑03240‑7 32825837
    [Google Scholar]
  32. HammingI. TimensW. BulthuisM.L.C. LelyA.T. NavisG.J. van GoorH. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.J. Pathol.2004203263163710.1002/path.1570 15141377
    [Google Scholar]
  33. MooreJ.B. JuneC.H. Cytokine release syndrome in severe COVID-19.Science2020368649047347410.1126/science.abb8925 32303591
    [Google Scholar]
  34. MenniC. ValdesA.M. FreidinM.B. SudreC.H. NguyenL.H. DrewD.A. GaneshS. VarsavskyT. CardosoM.J. El-Sayed MoustafaJ.S. ViscontiA. HysiP. BowyerR.C.E. ManginoM. FalchiM. WolfJ. OurselinS. ChanA.T. StevesC.J. SpectorT.D. Real-time tracking of self-reported symptoms to predict potential COVID-19.Nat. Med.20202671037104010.1038/s41591‑020‑0916‑2 32393804
    [Google Scholar]
  35. HanR. HuangL. JiangH. DongJ. PengH. ZhangD. Early Clinical and CT Manifestations of Coronavirus Disease 2019 (COVID-19) Pneumonia.AJR Am. J. Roentgenol.2020215233834310.2214/AJR.20.22961 32181672
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965325192240923074336
Loading
/content/journals/raeeng/10.2174/0123520965325192240923074336
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): COVID; deep-learning; machine learning; medical imaging; pneumonia; radiology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test