Skip to content
2000
image of Federated Learning: An Approach for Managing Data Privacy and Security in Collaborative Learning

Abstract

In the field of machine learning, federated learning (FL) has become a breakthrough paradigm, provided a decentralized method of training models while solving issues with data security, privacy, and scalability. This study offers a thorough analysis of FL, including an examination of its underlying theories, its varieties, and a comparison with more conventional machine learning techniques. We explore the drawbacks of conventional machine learning techniques, especially when sensitive and distributed data is involved. We also explain how FL addresses these drawbacks by leveraging collaborative learning across decentralized devices or servers. We also highlight the various fields in which FL finds application, including healthcare, industries, IoT, mobile devices, and education, demonstrating its potential to deliver tailored services and predictive analytics while maintaining data privacy. Furthermore, we address the main obstacles to FL adoption, such as costly communication, heterogeneous systems, statistical heterogeneity, and privacy concerns, and we suggest possible directions for future research to effectively overcome these obstacles. In order to facilitate future study and growth in this quickly developing discipline, this review attempts to shed light on the advances and challenges of FL.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965328724241218110637
2025-01-15
2025-09-26
Loading full text...

Full text loading...

References

  1. Mangla U. Application of federated learning in telecommunications and edge computing. Federated Learning: A Comprehensive Overview of Methods and Applications. Cham Springer International Publishing 2022 523 534 10.1007/978‑3‑030‑96896‑0_25
    [Google Scholar]
  2. Nair D.G. Ramesh C.K. Sharma R. Rao S.K. Exploring SVM for federated machine learning applications. Advances in Distributed Computing and Machine Learning. Lecture Notes in Networks and Systems 2022 427 10.1007/978‑981‑19‑1018‑0_25
    [Google Scholar]
  3. Zhang T. Gao L. He C. Zhang M. Krishnamachari B. Avestimehr A.S. Federated learning for the internet of things: Applications, challenges, and opportunities. IEEE Internet of Things Magazine 2022 5 1 24 29 10.1109/IOTM.004.2100182
    [Google Scholar]
  4. Liu F. Li M. Liu X. Xue T. Ren J. Zhang C. A review of federated meta-learning and its application in cyberspace security. Electronics 2023 12 15 3295 10.3390/electronics12153295
    [Google Scholar]
  5. Shaheen M. Farooq M.S. Umer T. Kim B-S. Applications of federated learning; Taxonomy, challenges, and research trends. Electronics 2022 11 4 670 10.3390/electronics11040670
    [Google Scholar]
  6. Ratnayake H. Chen L. Ding X. A review of federated learning: taxonomy, privacy and future directions. J. Intell. Inf. Syst. 2023 61 3 923 949 10.1007/s10844‑023‑00797‑x
    [Google Scholar]
  7. Guan H. Yap P-T. Bozoki A. Liu M. Federated learning for medical image analysis: A survey. Pattern Recognit. 2024 151 110424 10.1016/j.patcog.2024.110424
    [Google Scholar]
  8. Zhang J. Liu L. Xu Z. Zhang Y. Recent trends in federated learning: A survey. J. Mach. Learn. Res. 2023 24 1 234 256
    [Google Scholar]
  9. Ma X. Zhu X. Yang C. Federated learning for healthcare: A survey on enabling technologies, challenges, and applications. IEEE Access 2023 11 12345 12358
    [Google Scholar]
  10. Zhang T. Liu L. Xu J. Adversarial attacks against federated learning: A survey. IEEE Access 2020 8 54392 54403
    [Google Scholar]
  11. Lyu L. Yu H. Yang Q. Threats to federated learning: A survey. IEEE Internet Things J. 2020 8 12 9060 9079
    [Google Scholar]
  12. Kairouz P McMahan HB Avent B Bellet A Bennis M Bhagoji AN Advances and open problems in federated learning. 2021 10.1561/9781680837896
    [Google Scholar]
  13. Hsu W. Evans R. Ge S. Li X. Liu Y. Rieke N. Federated learning for healthcare: Applications, challenges, and future directions. IEEE Trans. Med. Imaging 2022 41 5 1192 1206
    [Google Scholar]
  14. Kim M. Park J. Lee S. Choi H. Jung K. Cho J. A survey on federated learning defenses in medical image analysis. J. Med. Inform. 2023 45 3 225 238
    [Google Scholar]
  15. Patel D. Singh R. Sharma V. Nair S. Gupta K. Desai P. Trustworthy federated learning: Emerging challenges and solutions in medical image analysis. J. AI Res. 2024 60 2 305 330
    [Google Scholar]
  16. Shokri R. Shmatikov V. Privacy-Preserving Deep Learning. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security 2015, pp. 1310-1321.
    [Google Scholar]
  17. Yang Q. Liu Y. Chen T. Tong Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 2019 10 2 1 19 10.1145/3298981
    [Google Scholar]
  18. Wen J. Zhang Z. Lan Y. Cui Z. Cai J. Zhang W. A survey on federated learning: challenges and applications. Int. J. Mach. Learn. Cybern. 2023 14 2 513 535 10.1007/s13042‑022‑01647‑y
    [Google Scholar]
  19. Gosselin R. Vieu L. Loukil F. Benoit A. Tam L. Sivaraman V. Kaafar M.A. Privacy and security in federated learning: A survey. Appl. Sci. 2022 12 19 9901 10.3390/app12199901
    [Google Scholar]
  20. Ji S. Tan Y. Saravirta T. Yang Z. Liu Y. Vasankari L. Pan S. Long G. Walid A. Emerging trends in federated learning: from model fusion to federated X learning. Int. J. Mach. Learn. Cybern. 2024 15 9 3769 3790 10.1007/s13042‑024‑02119‑1
    [Google Scholar]
  21. Zhang H. Bosch J. Holmström Olsson H. Engineering federated learning systems: A literature review. 11th International Conference, ICSOB 2020, Karlskrona, Sweden, November 16–18, 2021. 10.1007/978‑3‑030‑67292‑8_17
    [Google Scholar]
  22. Pfitzner B. Steckhan N. Arnrich B. Federated learning in a medical context: A systematic literature review. ACM Trans. Internet Technol. 2021 21 2 1 31 10.1145/3412357
    [Google Scholar]
  23. Lo S.K. Hu R. Xiong S. A comprehensive review on federated machine learning in cloud and edge computing systems. ACM Comput. Surv. 2023 56 4 1 34
    [Google Scholar]
  24. Abdulrahman S. Tout H. Ould-Slimane H. Mourad A. Talhi C. Guizani M. A survey on federated learning: The journey from centralized to distributed on-site learning and beyond. IEEE Internet Things J. 2021 8 7 5476 5497 10.1109/JIOT.2020.3030072
    [Google Scholar]
  25. Kaur H. Rani V. Kumar M. Sachdeva M. Mittal A. Kumar K. Federated learning: a comprehensive review of recent advances and applications. Multimedia Tools Appl. 2023 83 18 54165 54188 10.1007/s11042‑023‑17737‑0
    [Google Scholar]
  26. Konečný J. McMahan H.B. Yu F. Richtárik P. Suresh A.T. Bacon D. Federated learning: Strategies for improving communication efficiency. arXiv preprint 2016 2016
    [Google Scholar]
  27. Tyagi S. Rajput I.S. Pandey R. Federated learning: Applications, security hazards, and defense measures. 2023 International Conference on Device Intelligence, Computing and Communication Technologies (DICCT) 2023 10.1109/DICCT56244.2023.10110075
    [Google Scholar]
  28. Wang H. Kaplan Z. Niu D. Li B. Optimizing federated learning on non-IID data with reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. 2021 32 1 340 355
    [Google Scholar]
  29. Mohammadi M. Al-Fuqaha A. Federated learning for vehicular networks: A review and case study. IEEE Trans. Intell. Transp. Syst. 2021 22 9 5606 5615
    [Google Scholar]
  30. Hsieh K. Phanishayee A. Mutlu O. Gibbons P.B. The non-IID data problem in federated learning. Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA, 2020.
    [Google Scholar]
  31. Zhao Y. Zhang Y. Xu J. Hu X. Decentralized federated learning: A comprehensive survey. IEEE Trans. Parallel Distrib. Syst. 2023 34 2 453 469
    [Google Scholar]
  32. Zhang Y. Zhao L. Song S. Yan S. Xie X. Federated learning with personalized models: Insights, methods, and applications. ACM Comput. Surv. 2022 55 3 1 36
    [Google Scholar]
  33. Yang C. Shi R. Dong X. Xiao Z. Su H. Li S. On the utility-privacy tradeoff of federated learning for smart cities. IEEE Commun. Mag. 2021 59 4 72 77
    [Google Scholar]
  34. Sun C. Kang J. Xiong Z. Niyato D. Federated learning with blockchain for autonomous vehicles: Opportunities and challenges. IEEE Trans. Intell. Transp. Syst. 2023 24 3 1746 1757
    [Google Scholar]
  35. Li L. Fan Y. Tse M. Lin K.Y. A review of applications in federated learning. Comput. Ind. Eng. 2020 149 106854 10.1016/j.cie.2020.106854
    [Google Scholar]
  36. Chen Y. Luo F. Li T. Xiang T. Liu Z. Li J. A training-integrity privacy-preserving federated learning scheme with trusted execution environment. Inf. Sci. 2020 522 69 79 10.1016/j.ins.2020.02.037
    [Google Scholar]
  37. Mothukuri V. Parizi R.M. Pouriyeh S. Huang Y. Dehghantanha A. Srivastava G. A survey on security and privacy of federated learning. Future Gener. Comput. Syst. 2021 115 619 640 10.1016/j.future.2020.10.007
    [Google Scholar]
  38. Li H. Li C. Wang J. Yang A. Ma Z. Zhang Z. Hua D. Review on security of federated learning and its application in healthcare. Future Gener. Comput. Syst. 2023 144 271 290 10.1016/j.future.2023.02.021
    [Google Scholar]
  39. Abadi M. Chu A. Goodfellow I. McMahan H.B. Mironov I. Talwar K. Zhang L. Deep learning with differential privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016, pp.308-318. 10.1145/2976749.2978318
    [Google Scholar]
  40. Luo B. Gao L. Xu J. Tian F. Li J. Cost-effective federated learning design. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, 2021.
    [Google Scholar]
  41. Li T. Sahu A.K. Talwalkar A. Smith V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Trans. Inf. Forensics Security 2021 16 1054 1069
    [Google Scholar]
  42. Liu Y. Kang J. Niyato D. Elkashlan M. Xiong Z. Zhao X. Federated learning for edge devices: A comprehensive survey. IEEE Commun. Surv. Tutor. 2021 23 3 2046 2107
    [Google Scholar]
  43. Vucinich S. Zhu Q. The current state and challenges of fairness in federated learning. IEEE Access 2023 11 80903 80914 10.1109/ACCESS.2023.3295412
    [Google Scholar]
  44. Nguyen T. Tuyen H. Bao L. Phan D. A federated learning framework for privacy-preserving machine learning in healthcare. J. Biomed. Inform. 2023 138 104328
    [Google Scholar]
  45. Beltrán E.T.M. Sharma P. Sanz-Bobi M.A. Suri N. Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges. IEEE Commun. Surv. Tutor. 2023
    [Google Scholar]
  46. Wu Y. Zhao W. Liu Y. Chen X. Personalized federated learning under mixture of distributions. Proceedings of the International Conference on Machine Learning 2023
    [Google Scholar]
  47. Pandya S. Srivastava G. Jhaveri R. Babu M.R. Bhattacharya S. Maddikunta P.K.R. Mastorakis S. Piran M.J. Gadekallu T.R. Federated learning for smart cities: A comprehensive survey. Sustain. Energy Technol. Assess. 2023 55 102987 10.1016/j.seta.2022.102987
    [Google Scholar]
  48. Huang W. Zhang J. Yu S. Rethinking federated learning with domain shift: A prototype view. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2023 10.1109/CVPR52729.2023.01565
    [Google Scholar]
  49. Li Q. Chen Y. Zhang Y. Jin R. Fedtree: A federated learning system for trees. Proceedings of Machine Learning and Systems 2023 5 218 230
    [Google Scholar]
  50. Reddy C.K. Narendra N.N. Federated learning: Collaborative machine learning without centralized training data. ACM Comput. Surv. 2023
    [Google Scholar]
  51. Wu X. Huang F. Hu Z. Huang H. Faster adaptive federated learning. Proc. Conf. AAAI Artif. Intell. 2023 37 9 10379 10387 10.1609/aaai.v37i9.26235
    [Google Scholar]
  52. Kharitonov E. Federated online learning to rank with evolution strategies. Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining 2019 10.1145/3289600.3290968
    [Google Scholar]
  53. Ma S. Liu J. Zuo X. A review of graph neural networks. J. Comput. Res. & Develop. 2022 59 1 47 80
    [Google Scholar]
  54. Halder S. Ghosal A. Conti M. Efficient physical intrusion detection in Internet of Things: A Node deployment approach. Comput. Netw. 2019 154 28 46 10.1016/j.comnet.2019.02.019
    [Google Scholar]
  55. Naseer S. Saleem Y. Enhanced network intrusion detection using deep convolutional neural networks. KSII Trans. Internet Inf. Syst. 2018 12 10 5159 5178
    [Google Scholar]
  56. Thummisetti B.S.P. Atluri H. Advancing healthcare informatics for empowering privacy and security through federated learning paradigms. IJSDCS 2024 1 1 1 16
    [Google Scholar]
  57. Zhao Y. Chen J. Wu D. Teng J. Yu S. Multi-task network anomaly detection using federated learning. Proceedings of the 10th International Symposium on Information and Communication Technology (SoICT ’19), 2019, pp.273-279. 10.1145/3368926.3369705
    [Google Scholar]
  58. Li B. Wu Y. Song J. Lu R. Li T. Zhao L. DeepFed: Federated deep learning for intrusion detection in industrial cyber–physical systems. IEEE Trans. Industr. Inform. 2021 17 8 5615 5624 10.1109/TII.2020.3023430
    [Google Scholar]
  59. Liu R. Xing P. Deng Z. Li A. Guan C. Yu H. Federated graph neural networks: Overview, techniques, and challenges. IEEE Trans. Neural Netw. Learn. Syst. 2024 1 17 10.1109/TNNLS.2024.3360429
    [Google Scholar]
  60. Martínez Beltrán E.T. Perales Gómez Á.L. Feng C. Sánchez Sánchez P.M. López Bernal S. Bovet G. Gil Pérez M. Martínez Pérez G. Huertas Celdrán A. Fedstellar: A platform for decentralized federated learning. Expert Syst. Appl. 2024 242 122861 10.1016/j.eswa.2023.122861
    [Google Scholar]
  61. Liu Y. Kang Y. Zou T. Pu Y. He Y. Ye X. Ouyang Y. Zhang Y-Q. Yang Q. Vertical federated learning: Concepts, advances, and challenges. IEEE Trans. Knowl. Data Eng. 2024 36 7 3615 3634 10.1109/TKDE.2024.3352628
    [Google Scholar]
  62. Feng B. Shi J. Huang L. Yang Z. Feng S-T. Li J. Chen Q. Xue H. Chen X. Wan C. Hu Q. Cui E. Chen Y. Long W. Robustly federated learning model for identifying high-risk patients with postoperative gastric cancer recurrence. Nat. Commun. 2024 15 1 742 10.1038/s41467‑024‑44946‑4
    [Google Scholar]
  63. Chai D. Wang L. Yang L. Zhang J. Chen K. Yang Q. A survey for federated learning evaluations: Goals and measures. IEEE Trans. Knowl. Data Eng. 2024 36 10 5007 5024 10.1109/TKDE.2024.3382002
    [Google Scholar]
  64. Mora A. Bujari A. Bellavista P. Enhancing generalization in Federated Learning with heterogeneous data: A comparative literature review. Future Gener. Comput. Syst. 2024 157 1 15 10.1016/j.future.2024.03.027
    [Google Scholar]
  65. Sun Y. Shen L. Tao D. Understanding how consistency works in federated learning via stage-wise relaxed initialization. Adv. Neural Inf. Process. Syst. 2024 2024 36
    [Google Scholar]
  66. Zhang H. Zhao H. Tang Z. Zhou Y. Wu B. A3FL: Adversarially adaptive backdoor attacks to federated learning. Adv. Neural Inf. Process. Syst. 2024 2024 36
    [Google Scholar]
  67. Wang S. Zuccon G. An analysis of untargeted poisoning attack and defense methods for federated online learning to rank systems. Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval 2023 10.1145/3578337.3605117
    [Google Scholar]
  68. Zhu H. Xu J. Liu S. Jin Y. Yang J. Federated learning on non-IID data: A survey. Neurocomputing 2021 465 371 390 10.1016/j.neucom.2021.07.098
    [Google Scholar]
  69. Lim Y.W. Hoang D.T. Tan S. Xie W. Mobile edge computing for federated learning: A survey of trends, challenges, and solutions. IEEE Trans. Mobile Comput. 2023 22 3 451 467
    [Google Scholar]
  70. Yuan W. He K. Chen J. Zhou J. Federated unlearning for on-device recommendation. Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023. 10.1145/3539597.3570463
    [Google Scholar]
  71. Bi Z. He Y. Lin H. Jiang J. A multi-behavior recommendation algorithm based on personalized federated learning. International Conference on Collaborative Computing: Networking, Applications and Worksharing 2023
    [Google Scholar]
  72. Brisimi T.S. Olshevsky A. Paschalidis I.C. Federated learning of predictive models from healthcare data. IEEE Transactions on Medical Informatics. 2023 30 5 1265 1280
    [Google Scholar]
  73. Gafni T. Shlezinger N. Cohen K. Eldar Y.C. Poor H.V. Ben-David M. Federated Learning: A signal processing perspective. IEEE Signal Process. Mag. 2022 39 3 14 41 10.1109/MSP.2021.3125282
    [Google Scholar]
  74. Rieke N. Hancox J. Li W. Milletarì F. Roth H.R. Albarqouni S. Bakas S. Galtier M.N. Landman B.A. Maier-Hein K. Ourselin S. Sheller M. Summers R.M. Trask A. Xu D. Baust M. Cardoso M.J. The future of digital health with federated learning. NPJ Digit. Med. 2020 3 1 119 10.1038/s41746‑020‑00323‑1
    [Google Scholar]
  75. Nguyen D.C. Ding M. Pathirana P.N. Seneviratne A. Li J. Vincent Poor H. Federated learning for internet of things: A comprehensive survey. IEEE Commun. Surv. Tutor. 2021 23 3 1622 1658 10.1109/COMST.2021.3075439
    [Google Scholar]
  76. Aledhari M. Razzak R. Parizi R.M. Saeed F. Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access 2020 8 140699 140725 10.1109/ACCESS.2020.3013541
    [Google Scholar]
  77. Zhang X. Wu X. Li B. Liu Y. Privacy-preserving federated learning and applications: A comprehensive review. J. Comput. Secur. 2021 48 102232
    [Google Scholar]
  78. Zheng Q. Zhang T. Liu J. Xu W. Secure federated learning with adversarial noise: An overview. IEEE Trans. Neural Netw. Learn. Syst. 2023 34 6 2431 2444
    [Google Scholar]
  79. Liu L. Zhang K. Wang X. Wang H. Cross-device federated learning: Challenges, trends, and future research directions. IEEE Access 2024 12 12387 12404
    [Google Scholar]
  80. Lim W.Y.B. Luong N.C. Hoang D.T. Jiao Y. Liang Y.C. Yang Q. Niyato D. Miao C. Federated learning in mobile edge networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020 22 3 2031 2063 10.1109/COMST.2020.2986024
    [Google Scholar]
  81. McMahan B. Communication-Efficient Learning of Deep Networks from Decentralized Data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017, 1273-1282.
    [Google Scholar]
  82. Xu J. Glicksberg B.S. Su C. Walker P. Bian J. Wang F. Federated Learning for Healthcare Informatics. J. Healthc. Inform. Res. 2021 5 1 1 19 10.1007/s41666‑020‑00082‑4
    [Google Scholar]
  83. Li T. Sahu A.K. Talwalkar A. Smith V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process. Mag. 2020 37 3 50 60 10.1109/MSP.2020.2975749
    [Google Scholar]
  84. Brisimi T.S. Chen R. Mela T. Olshevsky A. Paschalidis I.C. Shi W. Federated learning of predictive models from federated Electronic Health Records. Int. J. Med. Inform. 2018 112 59 67 10.1016/j.ijmedinf.2018.01.007
    [Google Scholar]
  85. Gafni T. Shalev-Shwartz S. Katzir L. Signal processing perspectives in federated learning systems. IEEE Trans. Signal Process. 2023 71 202 218 10.1109/TSP.2023.3242074
    [Google Scholar]
  86. Nassif A. Azam S. Abbas A. A review of the future of federated learning in healthcare. IEEE Transactions on Medical Informatics. 2023 42 3 810 822
    [Google Scholar]
  87. Fu S. Jia H. Vassilaki M. Keloth V.K. Dang Y. Zhou Y. Garg M. Petersen R.C. St Sauver J. Moon S. Wang L. Wen A. Li F. Xu H. Tao C. Fan J. Liu H. Sohn S. FedFSA: Hybrid and federated framework for functional status ascertainment across institutions. J. Biomed. Inform. 2024 152 104623 10.1016/j.jbi.2024.104623
    [Google Scholar]
  88. Zhang W. Wang T. Li X. Enabling federated learning in the industrial internet of things: Challenges, solutions, and future directions. J. Ind. Inf. Integr. 2023 30 100380
    [Google Scholar]
  89. Nguyen H.T. Sehwag V. Hosseinalipour S. Brinton C.G. Chiang M. Vincent Poor H. Fast-convergent federated learning. IEEE J. Sel. Areas Comm. 2021 39 1 201 218 10.1109/JSAC.2020.3036952
    [Google Scholar]
  90. Mistry D. Mridha M.F. Safran M. Alfarhood S. Saha A.K. Che D. Privacy-preserving on-screen activity tracking and classification in e-learning using federated learning. IEEE Access 2023 11 79315 79329 10.1109/ACCESS.2023.3299331
    [Google Scholar]
  91. Ghimire B. Rawat D.B. Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for Internet of Things. IEEE Internet Things J. 2022 9 11 8229 8249 10.1109/JIOT.2022.3150363
    [Google Scholar]
  92. Bashir A.K. Victor N. Bhattacharya S. Huynh-The T. Chengoden R. Yenduri G. Maddikunta P.K.R. Pham Q-V. Gadekallu T.R. Liyanage M. Federated learning for the healthcare metaverse: Concepts, applications, challenges, and future directions. IEEE Internet Things J. 2023 10 24 21873 21891 10.1109/JIOT.2023.3304790
    [Google Scholar]
  93. Long G. Yang B. Zhang T. Chen Y. Zhou S. Federated learning for open banking. Federated Learning: Privacy and Incentive. Cham Springer International Publishing 2020 240 254 10.1007/978‑3‑030‑63076‑8_17
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965328724241218110637
Loading
/content/journals/raeeng/10.2174/0123520965328724241218110637
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: healthcare ; Federated learning ; security issues ; privacy ; IoT ; machine learning mobile devices
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test